
IOSR Journal of Engineering (IOSR JEN) www.iosrjen.org

ISSN (e): 2250-3021, ISSN (p): 2278-8719

PP 24-29

2nd International Conference On Innovative Data Science 24 | Page

Annai Women's College, TNPL Road, Punnamchatram, Karur, Tamil Nadu, India.

To Determine Patterns from Source Code Mining

Prof. M. MUTHALAGU
Department of Computer Science, Thiagarajar College, Madurai., Email id:muthalagucs76@gmail.com

Abstract: This paper surveys the tools and techniques which rely only on data mining methods to determine

patterns from source code in context of programming, bug detection, maintenance, program understanding and

software reuse. The work provides comparison and evaluation of the current state-of-the-art source code mining

tools and techniques, and organizes the large amount of information into a coherent conceptual way. Thus the

survey provides researchers with a concise overview of source code mining techniques and assists practitioners

the selection of appropriate techniques for their work. The result of this review shows existing studies focus on

one specific pattern being mined from source code such as special kind of bug detection. Hence there is a strong

need of tool which helps in developing quality software by automatically detecting different kind of bugs in one

pass and also provides code reusability for the developers.

Keywords: Source code mining; literature review; Programming rule; Copy-paste code; API usage

I. Introduction
The primary goal of software development is to deliver high quality software in the least amount of

time. To achieve these goals, Software Engineers are increasingly applying data mining algorithms to various

software engineering tasks [1] to improve software productivity and quality.

To deliver high quality software, automatic bug detection remains one of the most active areas in

software engineering research. Practitioners desire tools that would automatically detect bugs and flag the

location of bugs in their current code base so they can fix these bugs. In this direction much work has been done

to develop tools and techniques which analyze large amount of data about a software application such as source

code, to uncover the dominant behavior or patterns and to flag variations from that behavior as possible bugs.

One line of research in this direction is Rule Mining Techniques which induce set of rules from existing projects

which can be used to improve subsequent development or new project development.

Another dominant work by mining source code is clone detection. Developers often reuse code

fragments by copying and pasting (clone code) with or without minor adaptation to reduce programming efforts

and shorten developing time. It also increase productivity since the code is previously tested and is less likely to

have defects. However, clone code may cause potentially maintainability problem for example, when a cloned

code fragment needs to be changed, for example change requirement or additional features, all fragments similar

to it should be checked for the change. Moreover, the handling of duplicated code can be very problematic such

as an error in one component is reproduced in every copy. This problem has focused the attention of researcher

towards development of clone detection tools which allow developers to automatically find the locations in code

that must be changed when related code segment changes.

Another line of related research is how to write APIs code. A software system interacts with third-party

libraries through various APIs. Using these library APIs often needs to follow certain usage patterns. These

patterns aid developers in addressing commonly faced programming problems such as what checks should

precede or follow API calls, how to use a given set of APIs for a given task, or what API method sequence

should be used to obtain one object from another.

In this paper, we provide a comprehensive comparison and evaluation of the currently available source

code mining techniques and tools in the context of mining rules, detecting copy paste code and API usage. This

work not only provides significant contributions to the source code mining research, but have also exposes how

challenging it is to compare different tools, due to the diverse nature of the techniques and target languages. To

date all the previous evaluation studies consider only one aspect of mining techniques such as clone detection or

rules extraction and no comparative evaluation is available which detect various kind of patterns from source

code in one pass. We aim to identify the essential strengths and weaknesses of individual tools and techniques to

make an evaluation indicative of future potential e.g., when one aims to develop a new integrated or hybrid

technique which address multiple challenges in one tool rather presenting another new tool.

The rest of this paper is organized as follows. After introducing some background of software mining

in Section I, we provided a comprehensive literature review in section II. Section III presents an overall

evaluation of source code mining tools and techniques in term of taxonomy. Section IV compares the existing

techniques. Finally, Section IV concludes the paper and suggests directions for future work.

http://www.iosrjen.org/

To Determine Patterns from Source Code Mining

2nd International Conference On Innovative Data Science 25 | Page

Annai Women's College, TNPL Road, Punnamchatram, Karur, Tamil Nadu, India.

II. Related Work
A. Mining rules from source code

Rule mining techniques induce set of rules from existing projects which can be used to improve

subsequent development or new project development. Several methods were proposed to detect rule-violating

defects. Most of the studies used static source code analysis to find programming rules and subsequent rule

violation as bugs. For example Engler et al., approach [2] and PR-Miner [3] mine function-pairing rules,

CHRONICLER [4] mine function precedence protocols, Chang et al. [5] mine conditional rules and MUVI [6]

mines variable-pairing rules

Engler et al.,[2]approach mines function pairing rules by using compiler extensions called checkers to

match rule templates, Proposed tool extracts programming beliefs from acts at different location of source code

by exploiting all possible paths between function call and cross check for violated beliefs . Since approach relies

on developers to supply rule templates such as function A must be paired with function B and covers the given

or explicit rules known in advance, it may miss many violations due to the existence of implicit rules. PR-Miner

developed by Li and Zhou [3] find implicit programming rules and rule violations that is based on frequent

item-set mining and does not require specification of rule templates. It can detect simple function pair-wise

rules, complex rules as well as variable correlation rules. It computes the association in entire program elements

by just counting the together occurrences of any two elements and not considering data flow or control flow

which leads to increase number of false negative of violations in control path. CHRONICLER developed by

Ramanathan et al.,[4] applies inter-procedural path-sensitive static analysis to automatically infer accurate

function precedence protocols which specify ordering among function calls. CHRONICLER fundamentally

differs from PR-Miner as it ensures path-sensitivity hence generate less number of false negative. Chang et

al.,[5] proposed a new approach to mine implicit condition rules and to detect neglected conditions by applying

frequent sub graph mining. . The approach requires the user to indicate minimal constraints on the context of the

rules to be sought, rather than specific rule templates. However, frequent sub-graph mining algorithm does not

handle directed graphs and multigraphs and require the modification leads to information loss so that precision

is sacrificed in rule discovery. Another approach developed by Lu et al.,[6] called MUVI to mine variable

pairing rules which applied the frequent itemset mining technique to automatically detect multi-variable

inconsistent update bugs and multi-variable related concurrency bugs, which may result due to inconsistent

update of correlated variables. Engler et al. [2] work also detect variable inconsistency through logical reasoning

where as MUVI [6] detect inconsistencies using pattern analysis on multi-variable access correlations.

B. Detecting copy paste code

Several automated techniques for detecting code clones have been proposed differ by the level of

comparison unit from single source lines to entire AST/PDG sub-trees/sub-graphs. However, we only focus on

techniques which use data mining and few others leading techniques for clone detection such as CCFinder [7]

and Dup [8] that use tokenization on the source code. Dup detect two types of matching code that is either

exactly the same or name of parameters such as variable and constant are substituted. CCFinder detect clone

code portions that have different syntax but have similar meaning and applies rule-based transformation such as

regularization of identifiers, identification of structures, context information and parameter replacement of the

sequence. Abstract syntax tree based approaches [9] and PGDs based [10] tools looks for sub trees and

isomorphic graphs to find clones. In addition to above and many other technique we find only two approaches

that, CP-Miner [11] and Clonedetection [9] which uses data mining to detect clones. CP-Miner uses frequent

token sequence and flag bugs by recognizing deviations in mined patterns for renaming variables when copy-

and-pasting the code. It transforms a basic block into number by tokenizing its component. Once all the

components of a statement are tokenized, a hash value digest is computed using the “hashpjw” hash function.

The ColSpan algorithm is applied to the resulting sequence database to find basic copy-pasted segments. By

identifying abnormal mapping of identifiers among copy-paste segments, CP -Miner detects copy-paste related

bugs, especially those bugs caused by the fact that the programmer forgot to modify identifiers consistently after

copy-pasting. Whereas, Wahler et al. [9] approach find exact and parameterized clones at a more abstract level

by converting the AST to XML by using frequent item set-mining technique. This tool first converts source

code into Abstract Syntax Tree (AST) which contains complete information about source code by using parser.

Frequent itemset mining algorithm inputs XML configuration file and find frequent consecutive statements.

Proposed technique only finds exact and parameterized clones at a more abstract level.

C. API Usage pattern

Much research has been conducted to extract API usage rules or patterns from source code by

proposing tools and approaches which helps developers to reuse existing frameworks and libraries more easily

including [12 -17]. In this direction, Michail, [14] described how data mining can be used to discover library

To Determine Patterns from Source Code Mining

2nd International Conference On Innovative Data Science 26 | Page

Annai Women's College, TNPL Road, Punnamchatram, Karur, Tamil Nadu, India.

reuse patterns in existing applications by developing a tool CodeWeb based on itemset and association-rule

mining.

Prospector developed by Mandelin et al., [13], automatically synthesize the list of candidate jungloid

code based on simple query that described the required code in term of input and output . The Jungloid graph is

created using both API method signatures and a corpus of sample client programs, and consists of chains of

objects connected via method calls. Prospector mines signature graphs generated from API specifications and

jungloid graphs. The retrieval is accomplished by traversing a set of paths (API method call sequences) from Tin

to Tout. The code snippets returned by this traversal process are ranked using the length of the paths with the

shortest path ranked first from Tin to Tout.

MAPO developed by Xie and Pei [17], mines frequent usage patterns of API through class inheritance.

It uses API’s usage history to identify methods call in the form of frequent subsequences. The code search

engine receives a query that describes a method, class, or package for an API and then searches open source

repositories for source files that are relevant to the query. The code analyzer analyzes the relevant source files

and produces a set of method call sequences. The sequence preprocessor inline some call sequences into others

based on caller-callee relationships and removes some irrelevant call sequences from the set of call sequences

according to the given query. The frequent-sequence miner discovers frequent sequences from the preprocessed

sequences. The frequent-sequence postprocessor reduces the set of frequent sequences in some ways.

Sahavechaphan and Claypool [15] developed, a context-sensitive code assistant tool XSnippet , that

allows developers to query for relevant code snippets from a sample code repository to find code fragments

relevant to the programming task at hand. A range of instantiation queries are invoked from java editor

including generic query TQG that returns all possible code snippets for the instantiation of a type, to the

specialized type-based TQT and parent based queries TQP, that return either type-relevant or parent-relevant

results. User input the type of query, code context in which query is invoked and a specific code model instance

to graph based Xsnippet system. Mining algorithm BFSMINE, a breath first mining algorithm traverses a code

model instance and produces as output that represent the final code snippets meet the requirement of the

specified query.

PARSEWeb developed by S. Thummalapenta, and T. Xie [16], uses Google code search for collecting

relevant code snippets and mines the returned code snippets to find solution jungloids. The proposed technique

described the desired code in the form of “Source
→

 Destination” query which search for relevant code sample

of source and destination object and download to form a local source code repository which is analyzed to

constructs a directed acyclic graph. PARSEWeb identifies nodes that contain the given Source and Destination

object types and extracts a Method-Invocation Sequences (MISs. PARSEWeb clusters similar MISs using a

sequence postprocessor .The final MISs are sorts using several ranking heuristic and serves as a solution for the

given query. PARSEWeb also uses an additional heuristic called query splitting that helps address the problem

where code samples for the given query are split among different source files.

III. Taxonomy Of Source Code Minning Techniques
This section encompasses the analysis on previously mentioned research contributions based on criteria that

capture the main feature of each technique.

A supporting tool is developed by each approach as a plug-in for the programming environment.

Source code is provided as input to tool and it applies data mining technique to detect frequently co-occurring

patterns. Source code comprises of different elements such as functions, classes, variables, data types etc.

Criterion Input shows which elements of source code are used as input by data mining tool. The criterion output

indicate which type of mining information are extracted by tools developed by each approach e.g. programming

rules, copy paste code, API usage. The criterion Technique entails the algorithm used by tool. Different

algorithm used in source code mining research from data mining domain. Finally, criterion Open Issues

indicates the research challenge not addressed by specific tool or technique. Table 1 shows overall analysis of

techniques and tools.

IV. Comparison Of Source Code Mining Approaches

Both Engler et al., work and PR-Miner discover patterns involving set pairs of methods calls and

functions, variables, data types that frequently appear in same methods and do not contain control structures or

conditions among them, also the order of method calls is not considered. However, compared with Engler et al.

work that extracts only function-pair based rules, PR-Miner extracts substantially more rules by extracting rules

about variable correlations. Moreover, PR-Miner requires full parser to replace to work with other programming

languages. CHRONICLER [4] which is fundamentally differs from PR-Miner as it ensures path-sensitivity

hence generate less number of false negative as compare to PR miner. It differ from Engler et al., approach as it

computes the precedence relationship based on program’s control flow structure whereas Engler et al., approach

To Determine Patterns from Source Code Mining

2nd International Conference On Innovative Data Science 27 | Page

Annai Women's College, TNPL Road, Punnamchatram, Karur, Tamil Nadu, India.

detects relations between pairs of functions by exploiting all possible paths. MUVI [6] mines variable

correlations and generate variable-pairing rules. Engler et al. [2] also detect variable inconsistency through

logical reasoning where as MUVI [6] detect inconsistencies using pattern analysis on multi-variable access

correlations.

Dup[8] uses an order-sensitive indexing scheme to normalize for detection of consistently renamed

Syntactically identical clones whereas CCFinder [7] applies additional transformations of source code that

actually change the structure of the code, so that minor variations of the same syntactic form treated as similar.

However, token-by-token matching is more expensive than line-by-line matching in terms of computing

complexity since a single line is usually composed of several tokens. Dup, CCFinder and CloneDetection

identify clone code that can be helpful in software amenability to identify section of code that should be

replaced by procedure but do not detect copy paste related bugs. On the other hand CP - Miner [11] detect copy

paste related bugs. Compared to CCFinder, CP-Miner is able to find 17.52% more copy-pasted segments

because CP-Miner can tolerate statement insertions and modifications. whereas, Graph based analysis [10] can

capture more complicated changes such as statement reordering, insertion and control replacement, compared

with the common token-based approaches by capturing software’s inherit logic relationship through PDG.

Different mining techniques have been proposed in the literature to provide samples code which differs in the

means that a developer uses to retrieve relevant examples from the repository, for example, Strathcona [18] use

structural context to form a query is extracted automatically from the code a developer is writing. Xsnippets [15]

uses class structure information such as parents, fields and methods of a class to define code context to query a

sample repository for code snippets relevant to the object instantiation task at hand. Prospector [13] , Parseweb

[16] and MAPO [17] defines a query that describes the desired code.

Table I: Taxonomy Of Source Code Mining Tool And Techniques

 Description Tool Open
Ref
.

 Issues

 Name

Inp

ut Output Technique

 Need rules to check against Static
Functio
ns Pair-wise Statistical Fixed rule templates, only [2]

program code by inferring
code Analyzer programming analysis identify pair wise programming

 believes and cross check for rules. rules

 contradiction

Frequent itemset mining for
pair- PR-Miner

Functions,
variable Pair-wise, Item-set mining Does not consider inter- [3]

wise, multi-functions and
variable

and data
type complex and procedural analysis, data flow

D
a

ta
-

M
in

in
g
 correlation

rules variable and control relationship

 correlation rules

Freq
uent subsequence mining to CHRONIC

Functio
ns Function calls Frequent Does not take account of data [4]

infer function precedence
protocols LER ordering rules subsequence flow or data dependence R u l e

mining

 Graph based mining to search Framework
Progr
am Graph minor as Frequent item- Require manual inspection for [5]

conditional

rules

Dependenc

e conditional rules set and sub- valid rules that may miss some

Grap

hs graph mining instances of rules during

 algorithm inspection.

Frequent itemset mining to
extract MUVI

Functio
ns, Global, Variable pairing Frequent item- Only handled variable access [6]

 variable correlations

class

& structural rules set mining directly by caller functions

varia
bles

Suffix trees for tokens per
line Dup

Sequence of
lines Line by line Suffix tree Does not detect clone code [8]

 clones based matching portions having different syntax

 but similar meaning.

To Determine Patterns from Source Code Mining

2nd International Conference On Innovative Data Science 28 | Page

Annai Women's College, TNPL Road, Punnamchatram, Karur, Tamil Nadu, India.

Token normalizations, then
suffix- CC-Finder

Seque
nce of Clone pairs Token Does not detect changes such as [7]

co
d

e tree based

search

token

s comparison statement reordering, insertion

 Suffix tree and control replacement.

p
a

st
e

 based matching

Data mining for frequent
token CP-Miner

Statem
ent Copy-paste code frequent Same syntax but different [11]

co
p

y

sequ
ence

s

seque

nce subsequence & semantic are detected as copy

tokenization

paste segments

Clone- Clone pairs. Frequent item [9]
XML representation of ASTs
with XML It does not detect complicated

freq

uent itemsets techniques of Detetion

representati

on of set mining changes i.e. statement

 replacement.

Searching similar sub graphs
in Framework PDG Matching sub- Spatial search Limitation in search speed and [10]

PDG
s graph & Graph pattern accuracy

 matching

Disc
over library reuse patterns CodeWeb

Component
s, Library reuse Item-set and To use CodeWeb developer [14]

using association rule

mining

classe

s, and pattern through association-rule must find similar applications of

functi
ons class inheritance mining interest in advance.

Context based matching of
related Strathcona

Structu
ral context List of relevant Heuristic Each heuristic is generic, not [18]

sour
ce code from example

of
code code under matching specific to a particular task of

repos

itory development object instantiation

Mining past repositories to
search Prospector API Method API Jungloids Signature graph It returns many irrelevant [13]

U
sa

g
e

for a call chain that has
previously

signature/C
lass matching examples or in some cases too

been used. type few qualified examples
Context sensitive code assistant
to XSnippet

Inherita
nce

fields

 API code Graph mining XSnippet is limited to the [15]

A
P

I

mining sample code repository

for

hierarc

hy, snippets queries of a specific set of

relevant code
 and

methods

frameworks or libraries.

Mines API usage history to
identify MAPO

Meth
od, class or sequencing Frequent It does not synthesized code [17]

 call patterns

packa

ge information sequence fragments from mined frequent

 among method mining can be directly inserted into

 calls developers’ code.

 Search web for related code and ParseWeb
Objec
ts Method Clustering It only suggests the frequent [16]

 mine the return code to find Invocation MISs and code samples cannot

solut
ion sequence (MIS) directly generate compliable

 code.

V. Conclusion
In this paper we have provided concise but comprehensive survey of three types of source code mining

tools and techniques such as mining rules, copy-paste code and API usage. So far this is the first survey which

includes combination of different techniques .Comparison of techniques and tools shows there is a no single tool

which is superior to all other in all aspects because all tools have strength and weaknesses and intended for

different task and context. However, a combination of these three source code mining techniques help one to

understand how to design a hybrid/integrated technique to be robust across all types of software patterns that

To Determine Patterns from Source Code Mining

2nd International Conference On Innovative Data Science 29 | Page

Annai Women's College, TNPL Road, Punnamchatram, Karur, Tamil Nadu, India.

can help bug detection as well as help developers to write relevant API code. The comparison also helps how to

employ a set of different tools to achieve better results.

In future we are going to develop an integrated framework which can automatically find all the patterns

from source code in one pass and suggest developer potential bug locations for quality software development

and relevant code suggestion for rapid software development.

References
[1]. A. Hassan, and T. Xie, “Mining software engineering data,” in Proceedings of the 32nd ACM/IEEE International Conference on

Software Engineering-Volume 2, 2010, pp. 503-504.

[2]. D. Engler, D. Chen, S. Hallem et al., “Bugs as deviant behavior: A general approach to inferring errors in systems code,” ACM

SIGOPS Operating Systems Review, vol. 35, no. 5, pp. 57-72, 2001.
[3]. Z. Li, and Y. Zhou, “PR-Miner: Automatically extracting implicit programming rules and detecting violations in large software

code,” in Proceedings of the 10th European software engineering conference held jointly with 13th ACM SIGSOFT international

symposium on Foundations of software engineering, 2005, pp. 306-315.
[4]. M. Ramanathan, A. Grama, and S. Jagannathan, “Path-sensitive inference of function precedence protocols,” in 29th International

Conference on Software Engineering (ICSE 2007), 2007, pp. 240-250.

[5]. R. Chang, A. Podgurski, and J. Yang, “Finding what's not there: a new approach to revealing neglected conditions in software,” in

Proceedings of the 2007 international symposium on Software testing and analysis, 2007, pp. 163-173.

[6]. S. Lu, S. Park, C. Hu et al., “MUVI: automatically inferring multi-variable access correlations and detecting related semantic and

concurrency bugs,” ACM SIGOPS Operating Systems Review, vol. 41, no. 6, pp. 103-116, 2007.
[7]. T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a multilinguistic token-based code clone detection system for large scale source

code,” IEEE Transactions on Software Engineering, pp. 654-670, 2002.

[8]. B. Baker, “On finding duplication and near-duplication in large software systems,” in Proc. Second IEEE Working Conf. Reverse
Eng., 1995, pp. 86-95.

[9]. V. Wahler, D. Seipel, J. Wolff et al., “Clone detection in source code by frequent itemset techniques,” in Fourth IEEE International

Workshop on Source Code Analysis and Manipulation, 2004, pp. 128-135.
[10]. W. Qu, Y. Jia, and M. Jiang, “Pattern mining of cloned codes in software systems,” Information Sciences, 2010, 2010.

[11]. Z. Li, S. Lu, S. Myagmar et al., “CP-Miner: A tool for finding copy-paste and related bugs in operating system code,” in

Proceedings of the 6th conference on Symposium on Opearting Systems Design & Implementation-Volume 6, 2004, pp. 20.
[12]. M. Acharya, T. Xie, J. Pei et al., “Mining API patterns as partial orders from source code: from usage scenarios to specifications,”

in Proceedings of the 6th joint meeting of the European software engineering conference and the ACM SIGSOFT symposium on

The foundations of software engineering, 2007, pp. 25-34.
[13]. D. Mandelin, L. Xu, R. Bodík et al., “Jungloid mining: helping to navigate the API jungle,” ACM SIGPLAN Notices, vol. 40, no. 6,

pp. 48-61, 2005.

[14]. A. Michail, “Data mining library reuse patterns using generalized association rules,” in Proceedings of 22nd International
Conference on Software Engineering (ICSE'00), Limerick, Ireland, 2000, pp. 167-176.

[15]. N. Sahavechaphan, and K. Claypool, “XSnippet: mining for sample code,” ACM SIGPLAN Notices, vol. 41, no. 10, pp. 413-430,

2006.
[16]. S. Thummalapenta, and T. Xie, “Parseweb: a programmer assistant for reusing open source code on the web,” in Proceedings of the

twenty-second IEEE/ACM international conference on Automated software engineering, 2007, pp. 204-213.

[17]. T. Xie, and J. Pei, “MAPO: Mining API usages from open source repositories,” in Proceedings of the 2006 international workshop
on Mining software repositories, 2006, pp. 54-57.

[18]. R. Holmes, and G. C. Murphy, “Using structural context to recommend source code examples,” in Proceedings of the 27th

international conference on Software engineering, 2005, pp. 117-125.

