Voice Calling Using TCP/IP Protocol Over Local Area Network

Mahesh Shripat Pokharkar	extsuperscript{1}, Nilesh Vasant Kurhade	extsuperscript{2}

	extsuperscript{1}(Computer Engineering, Sharadchandraji College of Engg/ SPPU Pune, India)

	extsuperscript{2}(Computer Engineering, Sharadchandraji College of Engg/ SPPU Pune, India)

Abstract: Calling is a very essential thing nowadays for us. But sometimes some problems occur because of network connection that affects everything related to our work and many things. This problem can be solve using the concept of Voice Calling Using IP Address Over Wireless Local Area Network (WLAN). This can be a solution for the problem mentioned above. This will be use-full in an office or in communication lab. TCP/IP will use existing network of office for communication which will be cost effective, secure and can work without any internet service.

I. Introduction:
TCP/IP, or the Transmission Control Protocol/Internet Protocol, is a used for communication between the two machines in the form of text, audio and video.

In the IT company or other organization where data is very sensitive and important where it is vulnerable to break of confidentiality principle of security while using the application based on the internet such as skype, email, facebook etc. Event it require the internet for the use.

When an employee use such application, it may divert to other tasks apart from his work. So it will be better to keep communication keep private within the LAN as well as fast and costless. It is possible by using TCP protocol with the help of socket programming. Socket programming provides Socket class used on client side and ServerSocket class which is used on server side.

II. Material And Methods
Client Server communication between the the Sockets created at the both the ends which is server and client. On server side Socket is obtained by calling accept() of ServerSocket. The accept() will return the Socket only when client is connected to server.

We can obtain the both the InputStream and OutputStream from the Socket. InputStream is used for accepting the input from other end by using read(). OutputStream is used for send the output to the other end by using write().

It transmits a single message, and its connection remains in place until all the packets in a message have been received and reassembled at the destination.

Inclusion criteria:
1. Computer network with each computer having the operating system based on Berkeley sockets
2. Computer should have LAN either wired or wireless
3. Each computer system must be java enabled
4. IP address of machine should be known and fixed.
5. Computer have microphone based headphone

Exclusion criteria:
1. Automatic IP based machine
2. Non java system.
3. Android or iOS platform

Procedure methodology
It is based on basic client server algorithm

Algorithm 1
Server Side:
1. Create Server on a single by using ServerSocket class
2. Call accept() method to accept the connection from the client.
3. Return Socket after connecting client
4. Create the OutputStream from Socket object to send message
5. Create the InputStream from the Socket object to receive the message
6. Repeat steps 4 and 5 until communication stops
7. Close the Input and Output stream
8. Stop

Client Side:
1. Create Client on all client machines by using Socket class
2. Create the InputStream from the Socket object to receive the message
3. Create the OutputStream from Socket object to send message
4. Repeat steps 3 and 4 until communication stops
5. Close the Input and Output stream
6. Stop

Above algorithm was modified to make communication between one server and many clients
1. Create a ServerSocket on those PC that we want to use as a server.
\[
\text{Ex ServerSocket ss=new ServerSocket(2035);}
\]
2. Now create Socket object on client machines. While creating Socket object mention the IP address of
Server machine and port no of ServerSocket as a parameters.
\[
\text{Ex Socket s=new Socket(“192.168.10.157”,2035);}
\]
3. Now on client machine create the object for InputStream and OutputStream
\[
\text{Ex: InputStream is=s.getInputStream(); OutputStream os=s.getOutputStream();}
\]
4. Now on server machine create the array of the object for InputStream and OutputStream
\[
\text{InputStream[] is=new InputStream[noOfclient]; OutputStream[] os=new OutputStream[noOfclient]; }
\]
\[
\text{Socket[] s=new Socket[noOfclient]; }
\]
\[
\text{for(int i=0;i<noOfclient;i++)}
\]
\[
\text{ }
\]
\[
\text{s[i]=ss.accept();}
\]
\[
\text{is[i]=s[i].getInputStream();}
\]
\[
\text{os[i]=s[i].getOutputStream();}
\]

\text{noOfClient specifies the number of clients to be connected to the server}
5. Now we can send \text{msg} from server to client in the form of byte[] and using the method write of
OutputStream class
\[
\text{for(int i=0;i<noOfclient;i++)}
\]
\[
\text{ }
\]
\[
\text{os[i].write(msg.getBytes());}
\]

6. Now client can receive this date on the its InputStream and obtained using read() of InputStream object.
\[
\text{b=new byte[50];}
\]
\[
\text{is.read(b);}
\]
\[
\text{msg=new String(b);}
\]

7. Now client can send \text{msg} from client to server in the form of byte[] and using the method write of
OutputStream class
\[
\text{os.write(msg.getBytes());}
\]

8. Now server can receive this date on the its InputStream and obtained using read() of InputStream object.
\[
\text{b=new byte[50]; is.read(b); msg=new String(b);}
\]

9. Steps no 5 to 8 are repeated until communication between client and server will stop.

10. End
Voice Calling Using TCP/IP Protocol Over Local Area Network

Statistical analysis
Communication between the machines using LAN by TCP/IP is analyzed by comparing with communication between the machines using Internet.
For the security analysis, breach of security principles in the case of TCP/IP through the LAN and packet switching through the internet can be considered.

III. Result
If we plot table of data size against different internet bandwidth and LAN bandwidth, then it will appear as shown below

<table>
<thead>
<tr>
<th>Size</th>
<th>10MB</th>
<th>20 MB</th>
<th>50 MB</th>
<th>100 MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time required for</td>
<td>100 ms</td>
<td>200 ms</td>
<td>50 ms</td>
<td>100 ms</td>
</tr>
<tr>
<td>Internet Bandwidth</td>
<td>10Mbps</td>
<td>20 Mbps</td>
<td>50 Mbps</td>
<td>100 Mbps</td>
</tr>
</tbody>
</table>

III. Discussion
In Table no 1, if we observe the information carefully then it is found that as the bandwidth increases, time required for delivering message is decreases. It is lowest for LAN.
In Table no 2, if we observe the information carefully then it is found that as the bandwidth increases then cost per computer increases for specific time but for the LAN it is not happening. As the period of usage increases then also cost for the LAN does not increases.

IV. Conclusion
TCP/IP communication over LAN is cheap. Faster and secure for the private communication such as the school, IT company where data security is most important.

References
[5]. TCP/IP sockets in Java: practical guide for programmers” by K. Calvert and M. Donahoo