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Abstract: Scikit-learn is an increasingly popular machine learning library. Written in Python, it is designed to
be simple and efficient, accessible to non-experts, and reusable in various contexts. In this paper, we present
and discuss the libraries that arenumpy, pandas,scipy also discuss the design choices for the application
programming interface (API) of the project. In particular, we describe the simple and elegant interface shared
by all learning and processing units in the library and then discuss its advantages in terms of composition and
reusability. Scikit-learn is the package focuses on bringing machine learning to non-specialists using a general-
purpose high-level language. Emphasis is put on ease of use, performance, documentation, and API
consistency. It has minimal dependencies and is distributed under the simplified BSD license, encouraging its
use in both academic and commercial settings.
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. Introduction

Machine learning is a type of artificial intelligence (Al) that provides computers with the ability to
learn without being explicitly programmed. Machine learning focuses on the development of Computer
Programs that can change when exposed to new data. In this article, we’ll see basics of Machine Learning, and
implementation of a simple machine learning algorithm using python. Python community has developed many
modules to help programmers implement machine learning. The Python programming language is establishing
itself as one of the most popular languages for scientific computing. Thanks to its high-level interactive nature
and its maturing ecosystem of scientific libraries, it is an appealing choice for algorithmic development and
exploratory data analysis (Dubois, 2007; Milmann andAvaizis, 2011).

Machine learning is a method of data analysis that automates
analytical model building. In the applied space most these models are
built in a language called Python.
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Fig: 1.1 Models in Python

Yet, as a general-purpose language, it is increasingly used not only in academic settings but also in
industry. Scikit-learn harnesses this rich environment to provide state-of-the-art implementations of many well-
known machine learning algorithms, while maintaining an easy-to-use interface tightly integrated with the
Python language. This answers the growing need for statistical data analysis by non-specialists in the software
and web industries, as well as in fields outside of computer-science, such as biology or physics. Scikit-
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learndiffers from other machine learning toolboxes in Python for various reasons: i) it is distributed under the
BSD license ii) it incorporates compiled code for efficiency, unlike MDP (Zito et al., 2008) and pybrain (Schaul
et al., 2010), iii) it depends only on numpy and scipy to facilitate easy distribution, unlike pymvpa (Hanke et al.,
2009) that has optional dependencies such as R and shogun, and iv) it focuses on imperative programming,
unlike pybrain which uses a data-flow framework. While the package is mostly written in Python, it
incorporates the C++ libraries LibSVM (Chang and Lin, 2001) and LibLinear (Fan et al., 2008) that provide
referenceimplementations of SVMs and generalized linear models with compatible licenses. Binary packages
are available on a rich set of platforms including Windows and any POSIX platforms.Furthermore, thanks to its
liberal license, it has been widely distributed as part of major free software distributions such as Ubuntu,
Debian, Mandriva, NetBSD and Macports and in commercial distributions such as the “Enthought Python
Distribution”.

Il. Project Vision

Code quality. Rather than providing as many features as possible, the project’s goal has been toprovide
solid implementations. Code quality is ensured with unit tests—as of release 0.8, testcoverage is 81%—and the
use of static analysis tools such as pyflakes and pep8. Finally, westrive to use consistent naming for the
functions and parameters used throughout a strict adherenceto the Python coding guidelines and numpy style
documentation. SD licensing. Most of the Python ecosystem is licensed with non-copy left licenses. While
suchpolicy is beneficial for adoption of these tools by commercial projects, it does impose some restrictions: we
are unable to use some existing scientific code, such as the GSL.Bare-bone design and API. To lower the barrier
of entry, we avoid framework code and keep thenumber of different objects to a minimum, relying on humpy
arrays for data containers. Community-driven development. We base our development on collaborative tools
such as git, githuband public mailing lists. External contributions are welcome and encouraged.Documentation.
Scikit-learn provides a _300 page user guide including narrative documentation,class references, a tutorial,
installation instructions, as well as more than 60 examples, some featuringreal-world applications. We try to
minimize the use of machine-learning jargon, while maintainingprecision with regards to the algorithms
employed.

I11. Underlying Technologies
Numpy:the base data structure used for data and model parameters. Input data is presented asnumpy arrays, thus
integrating seamlessly with other scientific Python libraries. Numpy’s view basedmemory model limits copies,
even when binding with compiled code (Van der Walt et al.,2011). It also provides basic arithmetic operations.

Scipy:efficient algorithms for linear algebra, sparse matrix representation, special functions andbasic statistical
functions. Scipy has bindings for many Fortran-based standard numerical packages,such as LAPACK. This is
important for ease of installation and portability, as providing librariesaround FORTRAN code can prove
challenging on various platforms.

Cython:a language for combining C in Python. Cython makes it easy to reach the performanceof compiled
languages with Python-like syntax and high-level operations. It is also used to bindcompiled libraries,
eliminating the boilerplate code of Python/C extensions.

A. NumPy :

NumPy derives from an old library called Numeric, which was the first array object built for Python. It
was quite successful and was used in a variety of applications before being phased out. NumPy also incorporates
features introduced by a library called Numarray, which was written after Numeric but before NumPy. When
NumPy was first written, it wasn’t actually called “NumPy”. For about 6 months at the end of 2005, NumPy
was called SciPy Core (not to be confused with the full SciPy package which remains a separate package).
However, it was decided in January 2006 to go with the historical name of NumPy for the new package.

Inclusion of a Numpy in Python's standard library: In the opinion of many involved in the Numpy
development, anN-dimensional array interface should be part of the Python standard libraries. Hence, a PEP was
started to describe what exactly is meant by an array interface, and a webpage was set up with useful
information. At the SciPy conference in 2006, Guido and Travis discussed which parts of NumPy should go into
Python. They decided that the best course to pursue is to write a series of PEPs to get

1. the data-type object into Python
2. Extend the buffer interface with the array interface.
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B.SciPy :

In the 1990s, Python was extended to include an array type for numerical computing called Numeric
(This package was eventually replaced by Travis Oliphant who wrote NumPy in 2006 as a blending of Numeric
and Numarray which had been started in 2001). As of 2000, there was a growing number of extension modules
and increasing interest in creating a complete environment for scientific and technical computing. In 2001,
Travis Oliphant, Eric Jones, and Pearu Peterson merged code they had written and called the resulting package
SciPy. The newly created package provided a standard collection of common numerical operations on top of the
Numeric array data structure. Shortly thereafter, Fernando Pérez released IPython, an enhanced interactive shell
widely used in the technical computing community, and John Hunter released the first version of Matplotlib, the
2D plotting library for technical computing. Since then the SciPy environment has continued to grow with more
packages and tools for technical computing. Several people used Numeric as a base for their scientific code and
developed their own modules. Around 2001, Travis Oliphant, Eric Jones and Pearu Peterson merged their
modules in one scientific super package: SciPy was born.

Data structures:The basic data structure used by SciPy is a multidimensional array provided by
the NumPy module. NumPy provides some functions for linear algebra, Fourier transforms, and random number
generation, but not with the generality of the equivalent functions in SciPy. NumPy can also be used as an
efficient multidimensional container of data with arbitrary datatypes. This allows NumPy to seamlessly and
speedily integrate with a wide variety of databases. Older versions of SciPy used Numeric as an array
type,which is now deprecated in favour of the newer NumPy array code.

C. Pandas :

Pandas is hands down one of the best libraries of python. It supports reading and writing excel
spreadsheets, CVS's and a whole lot of manipulation. It is more like a mandatory library you need to know if
you’re dealing with datasets from excel files and CSV files. l.e. for Machine learning and data science.Machine
Learning with Python. Machine learning is a branch in computer science that studies the design of algorithms
that can learn. Typical tasks are concept learning, function learning or “predictive modelling”, clustering and
finding predictive patterns.
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Figure 2:Phases of Machine Learning

V. Core API
"In simple words, an API is a (hypothetical) contract between 2 Softwares saying if the user software provides
input in a pre-defined format, the later with extend its functionality and provide the outcome to the user
software."All objects within scikit-learn share a uniform common basic API consisting ofthree complementary
interfaces: an estimator interface for building and fittingmodels, a predictor interface for making predictions and
a transformer interfacefor converting data. In this section, we describe these three interfaces, afterreviewing our
general principles and data representation choices.

A. General principles

As much as possible, our design choices have been guided so as to avoid theproliferation of framework
code. Wetry to adopt simple conventions and tolimit to a minimum the number of methods an object must
implement. The APlis designed to adhere to the following broad principles:
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Consistency. All objects (basic or composite) share a consistent interface composedof a limited set of methods.
This interface is documented in a consistentmanner for all objects. Inspection. Constructor parameters and
parameter values determined by learningalgorithms are stored and exposed as public attributes.Non-proliferation
of classes. Learning algorithms are the only objects to berepresented using custom classes. Datasets are
represented as NumPy arraysor SciPy sparse matrices. Hyper-parameter names and values are representedas
standard Python strings or numbers whenever possible. This keeps scikitlearneasy to use and easy to combine
with other libraries. Composition. Many machine learning tasks are expressible as sequences orcombinations of
transformations to data. Some learning algorithms are alsonaturally viewed asmeta-algorithms parametrized on
other algorithms. Wheneverfeasible, such algorithms are implemented and composed from existing building
blocks. Sensible defaults. Whenever an operation requires a user-defined parameter,an appropriate default value
is defined by the library. The default valueshould cause the operation to be performed in a sensible way (giving
a baselinesolution for the task at hand).

B. Data representation:

In most machine learning tasks, data is modelled as a set of variables. For example,in a supervised
learning task, the goal is to find a mapping from inputvariables X1, . . .Xp, called features, to some output
variables Y . A sample isthen defined as a pair of values ([x1, . . ., Xp]T, y) of these variables. A widelyused
representation of a dataset, a collection of such samples, is a pair of matriceswith numerical values: one for the
input values and one for the output values. Each row of these matrices corresponds to one sample of the dataset
andeach column to one variable of the problem. In scikit-learn, we chose a representation of data that is as close
as possibleto the matrix representation: datasets are encoded as NumPy multidimensionalarrays for dense data
and as SciPy sparse matrices for sparse data. While thesemay seem rather unsophisticated data representations
when compared to moreobject-oriented constructs, such as the ones used by Weka (Hall et al., 2009),they bring
the prime advantage of allowing us to rely on efficient NumPy andSciPy vectorised operations while keeping
the code short and readable. Thisdesign choice has also been motivated by the fact that, given their
pervasiveness

In many other scientific Python packages, many scientific users of Python arealready familiar with
NumPy dense arrays and SciPy sparse matrices. From apractical point of view, these formats also provide a
collection of data loading andconversion tools which make them very easy to use in many contexts.
Moreover,for tasks where the inputs are text files or semi-structured objects, we providevectorizer objects that
efficiently convert such data to the NumPy or SciPyformats. For efficiency reasons, the public interface is
oriented towards processingbatches of samples rather than single samples per API call. While classificationand
regression algorithms can indeed make predictions for single samples,scikit-learn objects are not optimized for
this use case. (The few online learningalgorithms implemented are intended to take mini-batches.) Batch
processingmakes optimal use of NumPy and SciPy by preventing the overhead inherent to Python function calls
or due to per-element dynamic type checking. Althoughthis might seem to be an artefact of the Python language,
and therefore an implementationdetail that leaks into the API, we argue that APIs should be designedso as not to
tie a library to a suboptimal implementation strategy. As such, batchprocessing enables fast implementations in
lower-level languages (where memoryhierarchy effects and the possibility of internal parallelization come into
play).
fromsklearn.linearmodelimportLogisticRegression
clf=LogisticRegression(penalty="11")
clf.fit(Xtrain,ytrain)

In this snippet, a LogisticRegression estimator is first initialized by setting thepenalty hyper-parameter
to "I1" for €1 regularization. Other hyper-parameters(such as C, the strength of the regularization) are not
explicitly given and thusset to the default values. Upon calling fit, a model is learned from the trainingarrays X
train and y train, and stored within the object for later use. Sinceall estimators share the same interface, using a
different learning algorithm is assimple as replacing the constructor (the class name); to build a random forest
onthe same data, one would simply replace Logistic Regression (penalty="11") in the snippet above by
RandomForestClassifier ().In scikit-learn, classical learning algorithms are not the only objects to
beimplemented as estimators. For example, pre-processing routines (e.g., scaling offeatures) or feature
extraction techniques (e.g., vectorization of text documents)also implement the estimator interface. Even
stateless processing steps, that donot require the fit method to perform useful work, implement the
estimatorinterface. As we will illustrate in the next sections, this design pattern is indeedof prime importance for
consistency, composition and model selection reasons.
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V. Predictors
The predictor interface extends the notion of an estimator by adding a predictmethod that takes an array
X test and produces predictions for X test, based onthe learned parameters of the estimator (we call the input to
predict “X test”in order to emphasize that predict generalizes to new data). In the case ofsupervised learning
estimators, this method typically returns the predicted labelsor values computed by the model. Continuing with
the previous example,predicted labels for X test can be obtained using the following snippet:

ypred=clf.predict(Xtest)

VI. Estimators

The estimator interface is at the core of the library. It defines instantiationmechanisms of objects and
exposes a fit method for learning a model fromtraining data. All supervised and unsupervised learning
algorithms (e.qg., for

Classification, regression or clustering) are offered as objects implementing thisinterface. Machine
learning tasks like feature extraction, feature selection ordimensionality reduction are also provided as
estimators. Estimator initialization and actual learning are strictly separated, in a waythat is similar to partial
function application: an estimator is initialized from aset of named constant hyper-parameter values (e.g., the C
constant in SVMSs) and can be considered as a function that maps these values to actual learningalgorithms. The
constructor of an estimator does not see any actual data, nordoes it perform any actual learning. All it does is
attach the given parametersto the object. For the sake of convenient model inspection, hyper-parametersare set
as public attributes, which is especially important in model selection settings. For ease of use, default hyper-
parameter values are also provided for allbuilt-in estimators. These default values are set to be relevant in many
commonsituations in order to make estimators as effective as possible out-of-box fornon-experts. Actual
learning is performed by the fit method. This method is called withtraining data (e.g., supplied as two arrays X
train and y train in supervisedlearning estimators). Its task is to run a learning algorithm and to determinemodel-
specific parameters from the training data and set these as attributes onthe estimator object. As a convention, the
parameters learned by an estimatorare exposed as public attributes with names suffixed with a trailing
underscore (e.g., coef for the learned coefficients of a linear model), again to facilitatemodel inspection. In the
partial application view, fit is a function from datato a model of that data. It always returns the estimator object
it was called on,which now serves as a model of its input and can be used to perform predictions or
transformations of input data.From the start, the choice to let a single object serve dual purpose as estimatorand
model has mostly been driven by usability and technical considerations.From the user point of view, having two
coupled instances (i.e., an estimatorobject, used as a factory, and a model object, produced by the estimator)
indeeddecreases the ease of use and is also more likely to unnecessarily confusenewcomers. From the developer
point of view, decoupling estimators from modelsalso creates parallel class hierarchies and increases the overall
maintenancecomplexity of the project. For these practical reasons, we believe that decouplingestimators from
models is not worth the effort. A good reason for decouplinghowever, would be that it makes it possible to ship
a model in a new environmentwithout having to deal with potentially complex software dependencies. Such
afeature could however still be implemented in scikit-learn by making estimatorsAble to export a fitted model,
using the information from its public attributes,to an agnostic model description such as PMML (Guazzelli et
al., 2009).To illustrate the initialize-fit sequence, let us consider a supervised learningtask using logistic
regression. Given the API defined above, solving this problem is as simple as the following example.

VII.  Model Selection

As introduced in Section 2, hyper-parameters set in the constructor of anestimator determine the
behaviour of the learning algorithm and hence the performanceof the resulting model on unseen data. The
problem of model selectionis therefore to find, within some hyper-parameter space, the best combination of
hyper-parameters,with respect to some user-specified criterion. For example, adecision tree with too small a
value for the maximal tree depth parameter willtend to under fit, while too large a value will make it overfit.In
scikit-learn, model selection is supported in two distinct meta-estimators,GridSearchCV and
RandomizedSearchCV.They take as input an estimator (basicor composite), whose hyper-parameters must be
optimized, and a set ofhyperparametersettings to search through. This set is represented as a mapping
ofparameter names to a set of discrete choices in the case of grid search, whichexhaustively enumerates the
“grid” (Cartesian product) of complete parametercombinations. Randomized search is a smarter algorithm that
avoids the combinatorialexplosion in grid search by sampling a fixed number of times from itsparameter
distributions (see Bergstra and Bengio, 2012).
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VIII. Implementation

Our implementation guidelines emphasize writing efficient but readable code. Inparticular, we focus on
making the codebase easily maintainable and understandablein order to favour external contributions. Whenever
practicable, algorithmsimplemented in scikit-learn are written in Python, using NumPy vector operations for
numerical work. This allows for the code to remain concise, readable andefficient. For critical algorithms that
cannot be easily and efficiently expressed asNumPy operations, we rely on Cython (Behnel et al., 2011) to
achieve competitiveperformance and scalability. Cython is a compiled programming languagethat extends
Python with static typing. It produces efficient C extension modulesthat are directly importable from the Python
run-time system. Examplesof algorithms written in Cython include stochastic gradient descent for linearmodels,
some graph-based clustering algorithms and decision trees. To facilitate the installation and thus adoption of
scikit-learn, the set ofexternal dependencies is kept to a bare minimum: only Python, NumPy andSciPy are
required for a functioning installation. Binary distributions of these areavailable for the major platforms.
Visualization functionality depends on Matplotlib(Hunter, 2007) and/or Graphviz (Gansner and North, 2000),
but neitheris required to perform machine learning or prediction. When feasible, externallibraries are integrated
into the codebase. In particular, scikit-learn includesmodified versions of LIBSVM and LIBLINEAR (Chang
and Lin, 2011; Fan et al.,2008), both written in C++ and wrapped using Cython modules.

IX. Conclusion

The foremost target of ML researchers is to design more efficient (in terms of both time and space) and
practicalgeneral purpose learning methods that can perform better over a widespread domain. In the context of
ML, the

Efficiency with which a method utilises data resources that is also an important performance paradigm
along with time and space complexity. Higher accuracy of prediction and humanly interpretable prediction rules
are also of high importance. Being completely data-driven and having the ability to examine a large amount of
data in smaller intervals of time,ML algorithms has an edge over manual or direct programming. Also they are
often more accurate and not prone to human bias.We have discussed the scikit-learn APl and the way it maps
machine learningconcepts and tasks onto objects and operations in the Python programminglanguage. We have
shown how a consistent APl across the package makes scikitlearnvery usable in practice: experimenting with
different learning algorithm is as simple as substituting a new class definition. Through composition
interfacessuch as Pipelines, Feature Unions, and Metaestimators, these simple buildingblocks lead to an API
which is powerful, and can accomplish a wide variety oflearning tasks within a small amount of easy-to-read
code. Through duck-typing, the consistent API leads to a library that is easily extensible, and allows user
definedestimators to be incorporated into the scikit-learn workflow without anyexplicit object inheritance.While
part of the scikit-learn API is necessarily Python-specific, core conceptsmay be applicable to machine learning
applications and toolkits writtenin other (dynamic) programming languages. The power, and extensibility of
thescikit-learn API is evidenced by the large and growing user-base, its use tosolve real problems across a wide
array of fields, as well as the appearance ofthird-party packages that follow the scikit-learn conventions. ML
provide software the flexibility and adaptability when necessary. In spite of some application (e.g., to write
matrix multiplication programs) where ML may fail to be beneficial, with increase of data resources and
increasing demand in personalised customisable software, ML will thrive in near future. Besides software
development, MLwill probably but help reformthe generaloutlook of Computer Science. By changing the
defining question from “how to program a computer” to “how to empowered to program itself,” ML priories
thedevelopment of devicesthat are self- monitoring, self-diagnosing and self-repairing, and the utilises of the
data flow available within the program rather than just processing it. Likewise, it will help reform Statistical
rules, byprovidingmore computational stance. Obviously, both Statistics and Computer Science will also
embellish ML as they develop and contributemore advancedtheories to modify the way of learning.
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