Comparative Dynamic Analysis of Upturned and Berlin Eye Mono Leaf Spring

Furquan Ak.¹, Abdul Basit², Affan Ather³, Sk. Parvez⁴, Md. Ahmed⁵, K. K. Sharma⁶

^{1, 2, 3, 4, 5, 6}(Department of Mechanical Engineering, M. M. A. N. T. C, Mansoora, Malegaon)

Abstract: In thisresearch work, study is carried out on mono steel leaf springs used by commercial vehicles. The chief thought behind this work is to examine the dynamic behavior of two leaf springs one having Upturned eye of Maxi Truck and one having Berlin eye of Maxi T-Plus, both is having similar parameters i.e. width, thickness, eye diameter, length, radius of curvature, camber & load carrying capacity. The material used for the deuce is 0.9% carbon steel with almost similar properties. The modal analysis is accomplished theoretically for determining the natural frequency of both the springs for first five mode shapes. To validate the theoretical modal analysis, modal analysis will be conducted with aid of simulation by FEA. Modeling will be finished by using Pro-E 4.0 and analysis on Pro-E Mechanica Platform. The result of all deuce-ace analyzed operations almost coincides and compared. From the outcomes we can say that there is almost no effect of eye conditions on modal frequencies.

Keywords-Berlin eye, upturned eye, Finite Element Analysis, Modal analysis, Mode shapes

I. Introduction

A leaf spring is a simple form of spring most commonly used for the suspension in wheeled vehicles. Sometimes referred to as a semi-elliptical spring or cart spring, it is one of the oldest forms of springing. In the most common configuration, the center of the arc provides location for the axle, while loops (eye) formed at either end from which one of them attached directly to the frame, usually the front, while the another end attached through a shackle. For very heavy vehicles, a leaf spring can be made from several leaves stacked on top of each other in several layers, often with progressively shorter leaves. Leaf springs can serve locating and to some extent damping as well as springing functions. While the interleaf friction provides a damping action, it is not well controlled and results in stiction in the motion of the suspension, for this reason, some manufacturers have used mono-leaf springs.

There are several types of eye comes in leaf spring but the most commonly used type of eye in leaf springs are Upturned eye and Berlin eye, for these type of springs static and dynamic analysis is done in this research work.

II. Selection Of Leaf Spring

There are two types of leaf spring used in this research work both are of steel material with 0.9% carbon, while one is upturned eye leaf spring and another is berlin eye leaf spring.

The table 01 gives an overview of properties and dimensions of selected mono leaf spring.

Table 01Properties of the Selected Specimen				
Sr. No.	Parameters	Upturned eye	Berlin eye	
01	Mass Density (ρ)- kg/m ³	7850	7850	
02	Moment of Inertia (I)- m ⁴	6.458×10^{-10}	6.458×10 ⁻¹⁰	
03	Young'sModulus Elasticity (E)-N/m ²	2.1×10 ¹¹	2.1×10^{11}	
04	Poisson's Ratio	0.27	0.27	
05	Outer diameter (mm)	48.5	48.5	
06	Thickness (d)-mm	5	5	
07	Full length (L)-mm	901.7	901.7	
08	Half length (mm)	450.85	450.85	
09	Width (b)-mm	62	62	
10	Radius of curvature (mm)	889	889	
11	Camber length (mm)	130	125	
12	Angle	12°	12°	
13	Mass (kg)	2.923	2.957	

III. Research Methodology

A. Analytical Solution by Euler Bernoulli Beam Theory

Beam theory given by Euler and Bernoulli is a simplification of the linear theory of elasticity which provides a means of calculating the load carrying and deflection characteristics of beams. It covers the case for small deflections of a beam that are subjected to lateral loads only. The Euler's equation for natural frequency is given as

$$\omega_n = \frac{n^2 \pi^2}{L^2} \left[\sqrt{\frac{EI}{\rho A}} \right]$$

Where, n = Mode Shape I = Moment of inertia of system $\rho = Density of material$ A = Area of cross section L = Length of spring E = Modulus of ElasticityFor cantilever beam

At X=0 , W=0
At X=1 ,
$$M = EI \frac{d^2 w}{dx^2} = 0$$

 $EI\frac{d^4W}{dx^4} + \frac{d^2w}{dt^2} = P_z$

With,

 $W(x) = C_1 \sin \lambda x + C_2 \cosh \lambda x + C_3 \sin \lambda x + C_4 \cos \lambda x$ Put the resulting four equations in matrix form

$$\begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ \sin \lambda l & \cos \lambda l & \sin \lambda l & \cos \lambda l \\ \sin \lambda l & \cos \lambda l & -\sin \lambda l & -\cos \lambda l \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = \begin{cases} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

From above matrix

Solution of determinant matrix generally yields values of λ which then yield frequencies and associated modes (as was done for multiple mass systems in a somewhat similar fashion) In this case, the determinant of the matrix yields:

$$C \sin \lambda l = 03$$

Note: Equations (1 & 2) give $c_2 = c_4 = 0$
Equations (3 & 4) give 2 $c_3 \sin \lambda l = 0$

1st National Conference on Technology

Maulana Mukhtar Ahmed Nadvi Technical Campus (MMANTC), Mansoora, Malegaon Maharashtra, India

 \Rightarrow Non trivial: $\lambda l = n\pi$ The nontrivial solution is:

$$\lambda l = n\pi$$
 (Eigen value problem) Recalling that,

 $\lambda = \left[\frac{m\omega^2}{EI}\right]^{\frac{1}{4}}$ $\frac{m\omega^2}{El} = \frac{n^4 \pi^4}{l^4}$ (Change n to r to be consistent with previous notation)

 $\omega_n = \frac{n^2 \pi^2}{L^2} \left[\sqrt{\frac{EI}{\rho A}} \right]$

(Natural frequency)

The natural frequencies obtained by using analytical method for upturned and berlin eye leaf spring is shown in table 02,

Table 02Natural Frequence	cy of Leaf Spring b	y Analytical Method
---------------------------	---------------------	---------------------

Number of Modes	Upturned Eye		Berlin Eye	
Number of Modes	rad/sec	Hz	rad/sec	Hz
1	90.616	14.421	90.616	14.421
2	362.464	57.688	362.464	57.688
3	815.544	129.798	815.544	129.798
4	1449.857	230.752	1449.857	230.752
5	2265.402	360.550	2265.402	360.550

B. Finite Element Method (FEM) Analysis

The check of aftereffects of explanatory strategy appeared table 02 is done through Pro-E wild fire 4.0. Modelling is finished utilizing Pro-E Wild Fire 4.0 and examination is done utilizing Pro-E Mechanica programming.

i. **3D MODEL AND MODE SHAPES OF UPTURNED EYE LEAF SPRING**

9 | Page

1st National Conference on Technology Maulana Mukhtar Ahmed Nadvi Technical Campus (MMANTC), Mansoora, Malegaon Maharashtra, India

ii. 3D MODEL AND MODE SHAPES OF BERLIN EYE LEAF SPRING

Fig 11: Mode Shape 4

Fig 12: Mode Shape 5

The natural frequencies obtained by using FEAmethod for upturned and berlin eye leaf spring is shown in table 03.

Tuble vertaliar i requency of Lear Spring by I Elvi Method				
Number of Modes	Upturned Eye		Berlin Eye	
	rad/sec	Hz	rad/sec	Hz
1	80.720	12.847	75.109	11.954
2	369.583	58.821	378.780	60.286
3	806.258	128.320	835.475	132.970
4	1409.758	224.379	1439.729	229.140
5	2250.197	358.130	2312.212	368.000

Table 03Natural Frequency of Leaf Spring by FEM Method

IV. Results And Discussion

As the mode frequencies got from both the methodology for the two sorts of eye conditions are coordinating with one another so we can presume that there is no impact of eye conditions on mode frequencies. The mode shape frequencies gotten by utilizing FEA we can likewise infer that the most encouraging eye is Berlin eye as their modular frequencies are high relatively

The relative outcomes got from Euler Bernoulli and FEA strategy is appeared table 04,

Table 04Comparative Results					
Number of Modes	Euler Bernoulli Method		FEA Method		
Number of Wodes	Upturned Eye	Berlin Eye	Upturned Eye	Berlin Eye	
1	14.421	14.421	12.847	11.954	
2	57.688	57.688	58.821	60.286	
3	129.798	129.798	128.320	132.970	
4	230.752	230.752	224.379	229.140	
5	360.550	360.550	358.130	368.000	

References

- Prof. K. K. Sharma, 2Khan Moin, 3Abdul Ashish, 4Choudhri Ibrahim, 5Rehan Ansari (2018) Modal Analysis of Mono Leaf Spring, Using Analytical, F.E.A (Pro-e Mechanica) and Experimental (Vibration Shaker) Approach, 6th International Conference on Recent Trends in Engineering & Technology (ICRTET - 2018)
- [2]. Mohammed I. Hameed, Dhia A. Alazawi, Zaid S. Hammoudi (2018), Finite Element Analysis of Steel and Composite Leaf Springs Under Static Loading, International Scientific Conference of Engineering Sciences - 3rd Scientific Conference of Engineering Science (ISCES) 2018

- [3]. Hemant RajendraNehete, Assistant Professor, Department of Mechanical Engineering, (2018), Vibration Analysis of Composite Leaf Spring by Finite Element Method, International Journal for Innovative Research in Science & Technology | Volume 4 | Issue 8 | January 2018
- K.Ashwini a, Prof C.V. Mohan Raob, Department of Mechanical Engineering, Kakatiya University, Warangal-506009, INDIA, Professor, Department of Mechanical Engineering, Kakatiya University, Warangal-506009, INDIA (2017),
- [5]. Design and Analysis of Leaf Spring using Various Composites –An Overview
- [6]. Science Direct Materials Today: Proceedings 5 (2018)
- [7]. P B Waghmare1 & R B Patil2, Student in Mechanical Engineering,
- [8]. Jawaharlal Nehru Engineering College, Aurangabad, (MS), India, (2017), Static and Modal Analysis of Leaf Spring Using FEA, Imperial Journal of Interdisciplinary Research (IJIR) Vol-3, Issue-4, 2017
- [9]. H.A khande 1, VaishnaviDhumal 2, Ganesh vanve 3 (2017), Design and Analysis of Leaf Spring Using Composite Material, International Conference on Ideas, Impact and Innovation in Mechanical Engineering (ICIIIME 2017) Volume: 5 Issue: 6 2017
- [10]. HarmeetSingha, Gurinder Singh Brarb (2017), Characterization and Investigation of Mechanical Properties of Composite Materials used for Leaf Spring, Science Direct 2017
- [11]. Godatha Joshua Jacob & Mr M.Deepak (2017), Design And Analysis Of Leaf Spring In A Heavy Truck, (IJITR) International Journal of Innovative Technology and Research Volume No.5, Issue No.4, June – July 2017
- [12]. Dev Dutt Dwivedi1, V. K. Jain2, Mechanical Engineering, IPS College of Technology Management 2 HOD, Mechanical Engineering, IPS College of Technology Management, Gwalior MP India (2016), Design And Analysis Of Aotomobile Leaf Spring Using Ansys, International Journal Of Current Engineering And Scientific Research (IJCESR) VOLUME-3, ISSUE-1, 2016
- [13]. Jaydeep J. Patil, Dr. S. A. Patil (2016), Design and Analysis of Composite Leaf Spring Using Finite Element Methods -A Review, al., International Journal of Advanced Engineering Technology 2016
- [14]. Rahul Ambare1, Hreday Mishra2 (2016), Design and performance testing of master
- [15]. -leaf for Mahindra Pick-up, International Research Journal of Engineering and Technology (IRJET) Volume: 03 Issue: 07 | July-2016
- [16]. Mr. N. D. Khairnar1, Prof.V.M.Mhaske (2015), Analysis & Active Suppression of Vibration In Leaf Spring A Review, IJASMT 2015
- [17]. Manjunath H.N1, Manjunath.K2, T.Rangaswamy3 (2014), Vibration Analysis of Composite Leaf Spring for a Light Commercial Vehicle, International Journal of Scientific Engineering and Technology (ISSN : 2277-1581) Volume No.3 Issue No.7 2014
- [18]. 1T.N.V.Ashok Kumar, 2E.Venkateswara Rao, 3S.V.Gopal Krishna, Sir C.R.Reddy College of Engineering, India Dept. of ME (2014), Design and Material Optimization of Heavy Vehicle Leaf Spring, International Journal of Research in Mechanical Engineering & Technology (IJRMET) Vol. 4, Issue Spl 1, Nov 2013- April 2014
- [19]. 1A. L. Aishwarya, 2A. Eswara Kumar, 3V. Balakrishna Murthy, Dept. of ME, V. R. Siddhartha Engg. College, Vijayawada, AP, India (2014), Free Vibration Analysis of Composite Leaf Springs, International Journal of Research in Mechanical Engineering & Technology (IJRMET) Vol. 4, Issue Spl - 1, Nov 2013 - April 2014
- [20]. S. Rajesh 1*, S. Nakkeran 2, G. B. Bhaskar 1, 1 Department of Mechanical Engineering, Tagore Engineering College, Chennai, 2 Department of Mechanical Engineering, Bharath University, Chennai, (2014) A survey of GFRP composite leaf spring, International Journal of Engineering & Technology, 3 (2) (2014)
 [21]. Pankaj Saini¹, Ashish Goel², Dushyant Kumar³, B. Tech 4th Year Student, Department of ME, Moradabad Institute of Technology,
- [21]. Pankaj Saini¹, Ashish Goel², Dushyant Kumar³, B. Tech 4th Year Student, Department of ME, Moradabad Institute of Technology, Moradabad, Uttar Pradesh, INDIA (2013), Design And Analysis Of Composite Leaf Spring For Light Vehicles, International Journal of Innovative Research in Science, Engineering and Technology Vol. 2, Issue 5, May 2013
- [22]. K.A. Sai Anuraag&BitraguntaVenkataSivaram (2012), Comparison of Static, Dynamic & Shock Analysis for Two & Five Layered Composite Leaf Spring, International Journal of Engineering Research and Applications (IJERA) Vol. 2, Issue 5, September-October 2012