
IOSR Journal of Engineering (IOSR JEN) www.iosrjen.org

ISSN (e): 2250-3021, ISSN (p): 2278-8719

PP 74-77

International Conference on Emerging Trends in Engineering and Technology Research 74 | Page

(ICETETR-2019)

Memory Efficient High Throughput Pattern Matching Engine for

Nids System

D.Betsha Kerlin A.Heerasri B.Hemamalini Ms. P.Sasireka,M.E
UG Student, Final year ECE Department, S.A.Engineering College.

Assistant Professor, Department of Electronics and Communication, S.A.Engineering College.

Abstract : High speed and always-on network access is becoming common place around the world, creating a

demand for increased network security. Network Intrusion Detection Systems (NIDS) attempt to detect and

prevent attacks from the network using pattern-matching rules in a way similar to anti-virus software. For the

low-cost hardware-based intrusion detection systems, this project work proposed a memory-efficient parallel

string matching scheme. In order to reduce the number of state transitions, the finite state machine tiles in a

string matcher adopt bit-level input symbols. Long target patterns are divided into sub patterns with a fixed

length; deterministic finite automata are built with the sub patterns. Using the pattern dividing, the variety of

target pattern lengths can be mitigated, so that memory usage in homogeneous string matchers can be efficient.

As an extended work, here adding the all-digital Phase locked loop (ADPLL) for the multi-rate clock

synchronization. The input intrusions are divided into pages and each of the incoming pages will be in variable

rate. An adaptive reconfigurable PLL based clock divider is used for variable rate pattern match and gated

clock system through early mismatch detection is verified through exhaustive test bench simulation.

I. Introduction
 The proliferation of Internet and networking applications, coupled with the wide-spread availability of

system hacks and viruses have increased the need for network security. Firewalls have been used extensively to

prevent access to systems from all but a few, well defined access points (ports), but they cannot eliminate all

security threats, nor can they detect attacks when they happen. State full inspection firewalls are able to

understand details of the protocol that are inspecting by tracking the state of a connection. They actually

establish and monitor connections for when it is terminated. However, current network security needs, require a

much more efficient analysis and understanding of the application data. Content-based security threats and

problems occur more frequently, in an everyday basis. Virus and worm inflections, SPAMs (unsolicited e-

mails), email spoofing, and dangerous or undesirable data, get more and more annoying and cause innumerable

problems. Therefore, next generation firewalls should provide deep packet Inspection capabilities, in order to

provide protection from these attacks. Such systems check packet header, rely on pattern matching techniques to

analyze packet payload, and make decisions on the significance of the packet body, based on the content of the

payload.

1.1 Motivation

 Network Intrusion Detection Systems (NIDS) perform deep packet inspection. They scan packet’s

payload looking for patterns that would indicate security threats. Matching every incoming byte, though, against

thousands of pattern characters at wire rates is a complicated task. Measurements on SNORT show that 31% of

total processing is due to string matching; the percentage goes up to 80% in 2 the case of Web-intensive traffic.

So, string matching can be considered as one of the most computationally intensive parts of a NIDS and in this

thesis we focus on payload matching. Many different algorithms or combination of algorithms have been

introduced and implemented in general purpose processors (GPP) for fast string matching, using mostly SNORT

open source NIDS rule-set. However, intrusion detection systems running in GPP can only serve up to a few

hundred Mbps throughput. Therefore, seeking for hardware-based solutions is possibly the only way to increase

performance for speeds higher than a few hundred Mbps. Until now several ASIC commercial products have

been developed. These systems can support high throughput, but constitute a relatively expensive solution. On

the other hand, FPGA-based systems provide higher flexibility and high throughput comparable to ASICs

performance. FPGA-based platforms can exploit the fact that the NIDS rules change relatively infrequently, and

use reconfiguration to reduce implementation cost. In addition, they can exploit parallelism in order to achieve

satisfactory processing throughput.

 Several architectures have been proposed for FPGA-based NIDS, using regular expressions

(NFAs/DFAs), CAM, discrete comparators, and approximate filtering techniques. Generally, the performance

results of FPGA systems are promising, showing that FPGAs can be used to support the increasing needs for

Memory Efficient High Throughput Pattern Matching Engine for Nids System

International Conference on Emerging Trends in Engineering and Technology Research 75 | Page

(ICETETR-2019)

network security. FPGAs are flexible, reconfigurable, provide hardware speed, and therefore, are suitable for

implementing such systems. On the other hand, there are several issues that should be faced. Large designs are

complex and therefore hard to operate at high frequency. Additionally, matching a large number of patterns has

high area cost, so sharing logic is critical, since it could save a significant amount of resources, and make

designs smaller and faster.

1.2 Scope Of This Thesis

 Since string matching is the most computationally intensive part of an NIDS, our proposed

architectures exploit the benefits of FPGAs to design efficient string matching systems. The proposed

architectures can support between 3 to 10 Gbps throughput, storing an entire NIDS set of patterns in a single

device. In this thesis, we suggest solutions to maintain high performance and minimize area cost, show also how

pattern matching designs can be updated and partially or entirely changed, and advocate that brute-force

solutions can offer high performance, while require low area. Techniques such as fine-grain pipelining,

parallelism, partitioning, and pre-decoding are described, analyzing how they affect performance and resource

consumption. This thesis proposes a pattern matching algorithm that reduces total memory requirements by

sharing common infixes of target patterns. For the pattern

identification, a state should contain its own match vector with a set of bits, where each bit represents a matched

pattern in the state.

 Even though the information of shared common infixes was stored in match vectors, the number of

shared common infixes was limited by the size of the match vectors. In addition, throughput could decrease due

to the modified state transition mechanism. The memory requirements for match vectors were reduced by

relabeling states and eliminating the match vectors of non-output states. By sharing common infixes of target

patterns or relabeling states and eliminating the match vectors of non-output states, the memoryusage in the

match vectors could be efficient. However, the variety of target pattern lengths is another serious problem in

achieving regularity and scalability with low hardware cost. Each pattern consists of multiple character codes,

where the number of character codes is defined as the pattern length. According to the rule sets, the distribution

of pattern lengths could be different from each other. In addition, the variation of pattern lengths in each rule set

is irregular. If target patterns are to be mapped onto multiple homogeneous string matchers, memory usage

cannot be balanced without considering different pattern lengths.

 In order to reduce the memory requirements of the DFA-based string matching engine, this proposes a

memory-efficient parallel string matching scheme using the pattern dividing approach and its hardware

architecture for the pattern identification. Long target patterns are divided into sub-patterns with a fixed length;

therefore, the variety of target pattern lengths can be mitigated. By balancing memory usage between the string

matchers, unused memory area in homogeneous string matchers decreases. Moreover, the number of shared

common states increases due to both the reduced length and the increasing number of sub-patterns, compared

with the cases of the string matching with long target patterns. For each string matching, DFAs are built with

bit-level input symbols for the bit splitting in order to reduce the number of state transitions from each state. For

identifying the original long target patterns, the successive matches with sub-patterns are detected using the

proposed two-stage sequential string matching engine. Experimental results show that memory requirements

decrease on average by 47.8 percent and 62.8 percent for selected rules Snort and Clam AV, compared with

several existing bit-split string matching approaches.

1.3 Dissertation Outline

 The rest of the thesis is organized as follows: the next chapter presents brief description of NIDS, offers

some statistics about the patterns contained in a NIDS, and present some performance results of software-based

NIDS.

Chapter 3, describes hardware-based NIDSs, previous FPGA-based pattern matching architectures, and

commercial products.

Chapter 4, proposes a memory-efficient parallel string matching scheme using the patterndividing approach and

its hardware architecture for the pattern identification.

Chapter 5, hardware and software used, and

Chapter 6, we present the results and conclusions of this work and discuss

future extensions.

II. PROPOSED SYSTEM
 In this work we proposed hardware efficient VLSI architectures to detect the complex NIDS patterns

based on the information reduction approach. Here we preprocessed input bytes to transform the byte-oriented

matching problem to a token-based matching problem. The input byte stream is converted into a tokenstream

Memory Efficient High Throughput Pattern Matching Engine for Nids System

International Conference on Emerging Trends in Engineering and Technology Research 76 | Page

(ICETETR-2019)

using dedicated hardware units which can perform parallel computations for high throughput rate. A NIDS

pattern contains one or more segments will be subdivided into multiple non-trivial tokens. Finally the token-

stream is processed by a NFA-based aggregation unit to determine the virus to be found. Here FEMEs are finite

state machines (FSM) designed to extract field values within a header data of the application layer as shown

FEMEs search the header data sequentially. The extraction time is a function of the length of the header and

number of bytes searched in a clock cycle.

III. Modules
Simulating wave form

Verilog Module- debugging

 Analysis of timing characteristics

Divided Patterns :

 A target pattern and a set of its k sub-patterns, which are obtained after dividing the target pattern, are

denoted as Pi and Qi ¼ fSPi1; SPi2; . . . ; S Pikg, respectively. The subscript i is the index of the target pattern.

A set of k sub-patterns Qi will be called the quotient vector of Pi. The fixed length of k sub-patterns is denoted

as f. If the length of a target pattern is shorter than f, the target pattern does not need to be divided, so the pattern

is defined as the short pattern. The remnant pattern Ri represents a suffix or residual sub-pattern of the target

pattern Pi that succeeds the quotient vector of Pi.

Memory-Based Bit-Split Dfa:

 DFA is an FSM where there is one and only one transition to a next state according to each pair of state

and input symbols. DFA can be represented with a five-tuple: a finite set of states (Q), a finite set of an initial

state (q0), and a set of output states (F Q). The identification index of a target pattern is an individual keyword

used to distinguish the target pattern match. The memory requirements of DFA are proportional to the size of Q

and.

Pattern Identification:

 For each target pattern, a unique identification index should be provided in order to distinguish its

pattern match from other pattern matches. If multiple target patterns are mapped onto a DFA, it is possible that

a target pattern can be a subpattern of other target patterns. For example, it is assumed that four target patterns

{“abc,” “abcd,” “ac,” “bcd”} are mapped on a DFA, where target pattern lengths range from 2 to 4. The fourth

target pattern is a suffix of the second target pattern. If the second target pattern is matched, the fourth target

pattern is always matched, but not vice versa.

Virus Detection Engine:

 The overall organization of the virus detection engine is depicted in Fig. 4.1 Hardware modules are

built to detect the three types of tokens, namely string tokens, PACX tokens and MX-NFA tokens. The input

byte stream is converted into a token stream, where the number of tokens is much less than the number of bytes.

An example based on virus Worm.Allaple-11 is shown in Fig. 4.1 to illustrate idea. The simplified virus

Memory Efficient High Throughput Pattern Matching Engine for Nids System

International Conference on Emerging Trends in Engineering and Technology Research 77 | Page

(ICETETR-2019)

signature is divided into 3 tokens. The token detection units are responsible for finding the corresponding type

of tokens in the input byte stream, and the detected tokens are merged into a token stream. A token can be part

of a segment, a single token segment, or a pattern. If it is a pattern, then the token ID is sent to the output

interface directly, otherwise the token ID together with its reference location and control flags are inserted into

the token queue for further processing by the AU.

Nfa Token Detection Unit:

 The NFA regex detection method was initially developed to support intrusion detection. In principle

NFA can also be used to detect the full virus patterns but the cost can be very high for long patterns and patterns

with large exact-count and range count. In this study, the virus signatures are divided into tokens, and the NFA

is used to process tokens that cannot be detected by other methods. The design of the NFA detection unit is

refined for virus detection. In the Snort regex, the counting block corresponds to the repetition of a symbol by

the given number of times. Here each FEME has additional error handling capability to check for malformed

headers.

IV. Conclusion
 Here we verified the functionality proposed novel Deep Packet Field Extraction Engine-based parallel

string matching scheme with minimized memory requirements for NIDS virus database. The problem of various

pattern lengths with wild cards can be mitigated by dividing long target patterns into tokens with a fixed length.

The memory-efficient architectures were proposed for both string matching and complex NIDS pattern

matching which can reduce the total memory requirements. Considering the reduced memory requirements for

the real rule sets, it is concluded that the proposed matching scheme is useful for reducing total memory

requirements of parallel string matching engines.

