Analysis of Accumulative Effect of Harmonics on Low Voltage Distribution Network

Bharat Mishra¹, Karuna Nikum², Rakesh Saxena³, Abhay Wagh⁴

¹(Physical Science, MGCGV University, Satna, India) ²(Electrical, Atharva College of Engg,/Mumbai University, Research Scholar of MGCGV,India) ³(Electrical, SGSITS,/RGPV, India) ²(Electronics, Directorate of Technical Education, Govt. of Maharashtra, India)

Abstract : In typical Low voltage (LV) customer are supplied through single phase and three phase supply from distribution transformer. As the residential and commercial loads are linear and nonlinear in nature. These nonlinear loads produces harmonics into the system. These harmonics are varying in nature and the collective effect of harmonics on the LV system is considerable. It is necessary to analysis of collective harmonic impact of distributed harmonic source on LV system. This paper presents a experimental study of harmonic distortions caused by nonlinear loads in residential and commercial customers through power quality(PQ) monitoring. After the harmonic impact on LV distribution system. The identification of the pattern of energy and the prediction of load profile is essential in order to analysis of harmonics sources in LV network. The usage pattern varies depending on many parameters such as type of habit, weather, working time and type of day either weekend or weekday is necessary to conduct harmonic analysis for each low voltage network load. There are two major probabilistic model for random harmonic assessment i.e. top-down model and bottom up model. This model is ideally suited for studied the consumer behavior and pattern.

Keywords - Distributed harmonic source, harmonic distortion, low voltage network, power quality, power quality monitoring.

I. Introduction

Recently, residential customers input voltages are becoming more distorted due to the widespread use of new energy efficient nonlinear load. As adoption from linear load to nonlinear loads for technological advancement. Several issues of concern to utilities, such as neutral to earth voltage rise, the overloading of distribution transformer [1-2]. This changing scenario of these load could result in an increase of total harmonic distortion (THD) by about 10% to 20% per year. It has been estimated that by 2020, 70% of the loads on LV network in India will be nonlinear loads. The penetration of harmonics in residential and commercial power system networks can cause severe problems such as decrease in power factor, increase in voltage distortion, increase system losses, unbalancing in phases and decrease the overall system efficiency[3,4,5] The response of the power system at each harmonic frequency determine the true impact of nonlinear load. All energy efficient equipment results a reduction in active power consumption, a reduction in peak current and reduction in losses in distribution. All have a positive impact on energy consumption but this new nonlinear load results in increase in reactive power consumption. The positive impact of energy savings equipment is too small. So reduction in harmonics and reactive power is required [6,7]. The non-linear loads used in single phase LV network are Compact Fluorescent Lamps (CFLs), Light Emitting Diode (LED) lamps, Television, audio, PCs, laptop etc. are also utilizing nonlinear power supplies are becoming more widespread and introduce nonlinearities into supply [8]. As the demand for low prices pressure manufacturers to make the circuit as simple as possible and exclude costly components, even if the power quality is worse. This ultimately create a new challenging situation for planning of the LV distributed network. In future the LV distribution network faces the problem of harmonics, unbalancing of phases, overloading and difficulty in maintaining voltage level all these problem leads to power quality issues.

1.1. Types of Load

1.1.1. Current Source Load Type

Typical commercial and residential appliances, such as motor, refrigerators, freezers, washing machines, air-conditioner, cloth dryer and dish washer, which impose current distortion, are the electromagnetic devices. For this type of current type harmonic source, a shunt harmonic filter, should be preferred and capable of absorbing the load's harmonic currents, according to the relative admittances of the filter $(1/Z_{fL})$ and the feeder $(1/Z_{in})$. According to Fig. 1, the relationship between the ac supply current and the load current may be estimated by

Voltage Source Type Load 1.1.2.

The circuit of a diode rectifier with a capacitive output filter is an example of nonlinear load with harmonic voltage source behavior. This type of circuit is present in almost all residential and commercial nonlinear loads, such as computers, Laptop, printer, scanner, photocopier, video monitors, TV sets, electronic lamp ballasts, CFL and LED etc. as shown in Fig. 2. Such load usually absorbs constant power, and the current varies in order to compensate the input voltage changes. The compensation in this case is possible only with series filters or active solutions.

1.1.3. LV Distribution System

The 500 KVA, 33KV/433V distribution transformer having percentage impedance (%Z) of 4.95% with connection in DY11 supplied to a single and three phase load of residential and commercial load. In this paper main focus has been given on residential load because earlier these loads were ignored because of less nonlinear loads were used as a residential load. Now a day's situation is different and change continuously from linear load to nonlinear load. Due to continuous increment in the nonlinear loads, an assessment of harmonics is very important for planning and operation of LV network design. If the amount of nonlinear load is exceeding the 25%, the harmonic analysis is required to check the compliance with the harmonic limits. The effect of collective harmonics in the secondary of the transformer are voltage and current distortions in the LV side, neutral conductor current and voltage rise, losses due to impact of harmonics and overloading of distribution transformer.

Fig.3. Low voltage distribution of load

II. Power Quality Parameter Measurement And Monitoring For Residential Load.

2.1. Power quality parameter measurement

This paper studies the different appliances individually in order to model the network response of nonlinear loads, different appliances were measured for real and reactive power, THD, PF and DPF. Here Fig. 4 to Fig. 7 shows the harmonic distortion and current taken by the laptop, THD and current monitoring for dishwasher and washing machine. The similar results are also taken for different appliances and the result for other appliance has been obtained from 3-phase power quality Analyzer as shown in table 1.

Fig.4. Supply voltage & current of Laptop

Fig. 5. THD of Laptop

HARMONICS		HOLD		HARMONICS			HC	
RECORD	() 29 Dec	2015 14:	27:56	RECORD		© 29 Dec	2015	18:19:41
862 THD M	AX 29 Dec	: 2015 14:	25:41	1000 THD	MOX	29 Dac	2015	18:18:14
62 THD M	UN 29 Dec	2015 14:	27:03	33 1 1 1 1	MIN	29 Dec	2015	18:18:27
80.0THD 5	XALAMA	,		- 3. 88.0TMD.	6.A 0.0.A	в А а	III D	MARA +
1000	VWVVYVV		· ·	ALL DALLAND		W WWWW	ami ta sa	
DATE OF			1 1	20.0THD		: Y	THE :	
046.6 M	AX 29 Dec	2015 14-	98-32	364.6	мөх	29 Der	2015	18-18-10
020 0 01	VG			0176	AUG			
0,02 A M	IN 29 Dec	2015 14:	25:59	0,02 A		29 Dec	2015	18118158
· · ·	i i i	1	0,600			· .N	kinta -	· 3,00A
	1 1 1					i de	internation in the	
			0.000	20		100	ullilla.	0.000
305	1205			305	DECA	1205		
BHCK				CONTRACT N				-

Fig.6.THD & current Monitoring of Dish washer Fig.7.THD & current Monitoring of Washing Machine

	Table. 1. Power Quality Parameter										
S.N	Device	Rating	VA	VAr	Watt	I _{rms}	P.F	DPF	Dominant harmonics	Thd	
1	AC	0.6W	886	162	871	4.26	0.98	0.99	3 rd and 5 th	14.8	
2	CFL	27W	41	33	25	0.19	0.60	0.90	3 rd , 5 th , 9 th 11 th , 13 th	74.9	
									,15 th ,17 th		
3	Desktop	1,6A,	50	45	21	0.21	0.43	0.55	3 rd , 5 th , 7 th , 11 th	36	
		16Wh									
4	Desktop with		735	82	731	0.35	0.99	1.00	3 rd , 5 th , 7 th , 11 th , 13 th	40.7	
	Printer										
5	Dish washer	1200W	92	11	91	0.120	0.99	1.00	3 rd	8.8	
6	Cloth Dryer	1000W	154	27	152	0.68	0.98	0.99	3 rd	17.5	
7	Laptop	65W	96	83	48	0.40	0.49	0.96	3^{rd} , 5^{th} , 9^{th} 11^{th} , 13^{th}	84.9	
									,15 th ,17 th ,19 th		
8	LED	7W	22	12	19	0.10	0.85	0.99	till 50 th are present	79.6	
9	Microwave	1500W	1.53	0.43	1.47	7.12	0.96	1.00	3 rd	24.9	
10	Mobile	350mA	16	13	8	0.05	0.51	0.97	$3^{\rm rd}$, $5^{\rm th}$, $7^{\rm th}$, $9^{\rm th}$ $11^{\rm th}$,	84.8	
	charger								13 th ,15 th ,17 th ,19 th		
11	Printer	2.9A	577	230	530	0.05	0.94	1.00	3 rd , 5 th , 9 th 11 th , 13 th	84.4	
									,15 th ,23 rd		
12	TV	136W	331	82	321	1.5	0.97	0.98	3 rd	11.7	
13	Washing	575W	257	162	200	0.07	0.66	0.77	till 50 th are present	95.8	
	Machine								_		
14	Refrigerator	400W	200	160	120	0.8	0.64	0.7	3^{rd} , 5^{th} and 7^{th}	60.3	

2.2. Power quality parameter monitoring for Power and THD At the fundamental frequency linear and nonlinear loads in LV system are modeled as constant power loads but at harmonic frequency the linear load act as a impedance while nonlinear load act as a current source. These load impedances and harmonic current sources are varying throughout the 24 hour [8]. The loads are tentatively switched on and off to obtain the average profile of the residential load by monitoring. For obtaining a one day THD profile, monitoring of various power quality parameters in different schedule with tentative loading has been taken and shown in Fig.9 to Fig.13. The tentative load pattern has been shown in table 2.

Fig.9. Power consumption & THD monitoring in between 06:00am to 10:00am

POMEN 10		HIC	ILD THEF	MANAGERIC			01.0
HECORD		C 14 Apr 2016	17:02:17	RECORD		CHAMPE 2916	17:06:53
22164	MAR	14 Apr 2016	17:01:27	170 110	POINT.	14 Apr 2016	17(23)35
210.60	HIN	14 Apr 2016	17:01:26	\$3 110	PRIM	14 Apr 2010	17(24)38
R.888564	annusi		P-1 1	20.01100			
many	againg a	TRUMPAN	2.6 - 9	S 15			
SPIRH -				5.97110	-		
STI KUNK	11025	14 Apr 2016	12:00:44	1339.0	PEAK	14 Apr 2016	17:24:36
BOT NUMB	HIN	14 Apr 2016	17:02:00	459.6	PELN	14 Apr 2010	17:25:2-
		1. (0.60kUnR				12.0
30%		1205	8,895.044	20.		1205	1.01
INCOM	100 C /01	10001200071	100	DODDER.	DEC	0 0 0	

Fig.10. Power consumption & THD monitoring in between 10:00am to 02:00pm

POWER 10			н	0L0 -CI	HORMONICS		H0LD -C
-092 kW -095 kW -100 kW	MAK AVG MIH	(14 Apr 14 Apr 14 Apr	2016 2016 2016	20:21:49 20:19:39 20:20:43	245 THE 245 THE 225 THE 214 THE	MAN	C)14 Apr 2016 20:16:58 14 Apr 2016 20:16:32 14 Apr 2016 20:13:29
-0,60kW -1,20kW	;_	<u> </u>	~		26,8THD 	m	non
0.32 KUAR 0.31 KUAR 0.30 KUAR	MAX AVG MIH	14 Apr 14 Apr	2016 2016	20:20:40 20:17:54	479.6 454.6 428.6	MAX AUG MIH	14 Apr 2016 20:13:00 14 Apr 2016 20:14:25
		1		0.60KVAN	min	201	manna m
306		1206		0.00kVAN	305	10	1284

Fig.11. Power consumption & THD monitoring in between 02:00pm to 06:00pm

Fig.12. Power consumption & THD monitoring in between 06:00pm to 10:00pm

POMER 10				01.0 -02	навмонцез				н	DLD	Å
192200000	100.00	C3 14 Rpr	2915	23:01:25	CITER COLORS		© 14	npr	2016	27 27 1 1 1 4	10.5
535 bb	HINK	HARP	2915	82:59:17	29 THB	M68	14	Opr	2016	22:56	108
19140	PHIN .	Linge	2016	22/57/28	68 THD	MIH		0.p.c.	89.16		1R.R.
2.566.64					10.0THD						
1,006.54					4.9THD					-	
020 1008	Magai	1-inpr	2016	22.58.22	1599.0	MAH	1.4	npr	2016	2121-1013	133
BIE KURR	PRIM	Linge	2015	22:57:28	706 6	MIN	14	Apr	2016	22:56	:16
1 1 1				0.005/000		:)	;	;	;	1	1-1,07
30.5	-	120s	-	8,086-3/A/A	305	. .	1205			1	1.000
BOCK	RECOL	1. 14	15	H	BACK	RECO		H.	-41	2	

Fig.13. Power consumption & THD monitoring in between 10:00pm to 06:00am

				~~	••••••••••••••••••••••••••••••••••••••					
S.	06:00am-		10:00am-	No.	02:00pm-	No.	06:00pm-10:00	No.	10:00 pm-	No
Ν	10:00am	No	02:00pm		06:00pm		am		6:00 am	
	Tentative	-	Tentative Load		Tentative Load		Tentative Load		Tentative	
	Load								Load	
1	Refrigerator	01	LED	02	LED	02	Television	01	Refrigerator	01
2	CFL	02	CFL	01	CFL	02	Refrigerator	01	CFL	01
3	LED	02	Television	01	Television	01	Desktop	01	AC	03
4	Microwave	01	Refrigerator	01	Refrigerator	01	LED	04		
	Oven									
5	Laptop	02	Washing	01	AC	02	CFL	02		
			Machine							
6	Mobile	04	Cloth dryer	01	Desktop	01	Mobile	04		
	Charging				-		Charging			
7			AC	02			Laptop	02		

Table 2. PQ Monitoring for tentative loading

8				Microwave	01	
				Oven		
9				AC	04	

	m:	Table 5. Rea		momorm	5 Date	0(1))
	Time	Range	THD	Irms	P(W)	Q(kvar)
1	06:00am-10:00 am	Max	20.8	11.9	0.9	0.23
		Avg	14.5	6.7	2.3	0.21
		Min	5.7	3.4	2.5	0.18
2	10:00am-02:00 pm	Max	17.0	13.2	3.9	0.29
		Avg	6.8	11.6	3.3	0.25
		Min	5.3	4.5	3.1	0.21
3	02:00pm-06:00pm	Max	24.5	4.76	0.9	0.32
		Avg	22.9	4.54	0.95	0.31
		Min	21.4	4.28	1.0	0.30
4	06:00pm-10:00am	Max	15.9	33.36	4.65	0.90
		Avg	12.5	18.7	2.79	0.57
		Min	6.5	14.7	4.07	0.53
5	10:00pm-6:00am	Max	9.8	15.69	2.75	0.2
		Avg	7.5	11.31	2.35	0.17
		Min	5.8	7.06	1.71	0.16

Table 3. Results of PQ monitoring

As shown in table 3, the monitoring results that, every time THD is changing according to the load ON/OFF. So it is very difficult to filter out harmonics from such varying load pattern.

2.3. Criteria for Residential Load Modeling

The LV systems are classified into three categories, residential, commercial and industrial. The criteria for the residential load profile modelling are type of family, number of working hour, number of person at home, type of day, type of weather and size of house. For the detail modelling of the LV network with respect to balancing and unbalancing phase require detailed switch ON and OFF pattern of load on each phase [9]. On the basis of published work consideration of some basic criteria are:

2.3.1. Socio Economic Influence

In India wealth, employment and population density considerably impact power consumption pattern.

2.3.2. House Size Factor (h.f)

The size of house and number of person living in the house is directly proportional to the load switch ON/OFF pattern as both are increases then switching frequency is also increases so it is necessary to include the house size factor k.

$$h.f = \frac{No.of \text{ pers on } (n)}{A \text{verage no.of people /house hold}}$$

(2)

2.3.3. Appliances Availability(k_a)

The appliance availability is directly proportional to the wealth of a family and size of house as it is difficult to get reliable information on the use of appliances.

2.3.4. Person Availability (PA(n))

The person availability pattern or number of persons in the house is depend upon the time of first person getting up in the morning and last person to go to sleep. This data is depending on type of habit, weather, working time and type of day either weekend and weekday. It is very difficult to accumulate the data for occupancy pattern by considering all of this data. The total energy load profile can be significantly varying from time to time depend on number of occupancy pattern. It is necessary to make assumption for the most common scenario of availability pattern. The availability factor is either one or zero depend on load condition.

2.3.5. Switching Frequency (S.F)

The switching frequency of load is depending upon all the factors which are mentioned above.

$$= \frac{Swiching Frequency(s.f)}{Load ON average hours per day \times 60}$$
(3)

The table 4. shows the probability of occupancy factor of persons with the type of family and size of house. The table 5. shows the pattern of occupancy according to weather and time.

Tuble 4. Type of fulling with f	iouse occupun	icy I actor	
Type of family with probability of their house living	House type with	scaling factor of	loading
(BHK: Bedroom, Hall and Kitchen)	1-BHK	2-BHK	3-BHK
Single			
Couple		\checkmark	
Family		V	V

Table 4.	Туре	of family	with house	occupancy	Factor
	I ypu	UI ranniny	with nouse	occupancy	racior

Number of Working per	son: Single (FT: Full	l time and PT: Pa	urt time)	
Weather Type	Type of Day	Job Type	Waking up time	Sleeping time
Summer	Weekday	FT	6:00-7:30	22:00
		PT	7:00-8:30	23:00
	Weekend		7:00-9:00	23:00
Winter	Weekday	FT	6:30-8:00	22:00
		PT	7:00-9:00	22:00
	Weekend		7:00-9:00	23:00
Rainy	Weekday	FT	6:00-7:30	22:00
		PT	7:00-8:30	23:00
	Weekend		7:00-9:00	23:00
Number of Working per	son: two			
Weather Type	Type of Day	Job Type	Waking up time	Sleeping time
Summer	Weekday	FT	6:00-7:30	22:00
		PT	7:00-8:30	23:00
		FT & PT	7:00-9:00	23:00
	Weekend		7:00-9:00	23:00
Winter	Weekday	FT	6:30-8:00	22:00
		PT	7:00-9:00	22:00
		FT & PT	7:00-9:00	23:00
	weekend		7:00-9:00	23:00
Rainy	Weekday	FT	6:00-7:30	22:00
	-	РТ	7:00-8:30	23:00
		FT & PT	7:00-9:00	23:00
	Weekend		7:00-9:00	23:00

Table 5. Occupancy Pattern for Residential Consumer

For residential load modeling advance and accurate, probabilistic methods are necessary to be evaluated the load pattern. The probabilistic load profile model of household are used to assess the adequacy of distribution network and possible mitigation technique. The top-down model based on field measurement and second is bottom up model based on energy usage. For quicker result top-down model generate the best results while for detailed scenario the bottom up model is preferred.

2.4. Criteria for Load

2.4.1. Base load

These loads includes fridge, modem, freezer etc. and modeled independently as they are not dependent on person's availability. The energy use of these appliances is modeled as constant or variable switch usage.

2.4.2. Heating Cooling Load

These loads includes air conditioner, heater and oven etc. are partially dependent on the type of weather, temperature and person availability.

2.4.3. Active pattern load

The loads includes television, cooking appliances, hair dryer and lighting etc, which are directly depend on persons availability.

2.4.4. Active pattern load

The loads includes television, cooking appliances, hair dryer and lighting etc, which are directly depend on persons availability. The switching and working cycle pattern of appliances is shown in table 6.

	Tuble of Divite.	ining unu	ttorking C	jele putter	n or upphane	60
S.N	Load type (For family)	Rating (Watt)	Nos.	Avg. Hr/dy	Working Cycle (C _w)	S.F
	Entertainment					
1	Television	70	2	8	2hr	4
2	Play station	30	1	2	30min	4
	Communication					
1	Mobile charging	6	4	8	1hr	8
2	Cordless					
3	Wi-Fi	20	1	24		1
	Kitchen					
1	Refrigerator	500	1	24		1
2	Blender	1500	1	0.25	3m	5
3	Coffee Maker	800	1	0.5	5m	6
4	Microwave	1500	1	2	3m	4
5	Toaster	1200	1	0.25	3m	5
6	Electric Kettle	1200	1	0.25	3m	5
7	Mixer	1000	1	0.25	3m	5
8	Dish Washer	1200	1	2	40m	3
9	Water filter	80	1	1	30m	2
10	Exhaust Fan	30	1	3	30m	6
	Office					
1	PC	120	1	4	2hr	2
2	Laptop	65	3	4	2hr	2
3	Fax	20	1	0.25		-
4	Scanner	3.5	1	0.25		-
5	Printer	350	1	0.25		-
6	Tablet charging	10	2	1	30m	2
	Lighting					
1	CFL	30	4	10	2hr	5
2	LED	20	3	12	2hr	6
3	Tube light(LED)	40	3	10	2hr	5
	Other					
1	Washing M/c	500	1	1	30m	2
2	Vacuum Cleaner	500	1	1	10m	6
3	Cloth Dryer	1000	1	0.5	15m	2
4	Iron	1000	1	0.5	15m	2
5	Hair Dryer	1000	1	0.25	2m	8
6	Ceiling Fan	50	4	12	1hr	12
7	Air Conditioner	1500	3	10	2hr	5
8	Cooler	1000	2	12	2hr	6
9	Electric Heater	3000	2	2	30m	4

Table 6. Switching and Working Cycle pattern of appliances

III. Algorithm

The commercial and residential load having random switching pattern and having different switching probability. Here an algorithm is developed to analysis of random harmonic loads switching pattern as shown in Fig. 17. The simulated house is 2 bedroom-hall-Kitchen in size with 4 persons and not available from 10:00 AM to 05:00 PM and the day type is weekday has been considered: Based on available data a switching pattern for a day, a bottom up approach using Monte Carlo is established for the profile [10,11,12].

3.1. Algorithm procedure

1. Select the data and probability profile and consider all necessary conditions.

2. The number of switch on event (S_{ON}) are modified according to switching frequency, house size factor, appliances availability and person availability.

$S_{ON} = K_a \times P_a \times s. f \times h. f$ 3. The probability $P_t(n)$ of switch on at present instant of the	(4) (4)
$P_t(\mathbf{n}) = P_r(\mathbf{n}) \times K_c \times K_a \times P_a \times s.f \times h.f$	(5)
$P_t(\mathbf{n}) = P_r(\mathbf{n}) \times K_c \times S_{ON}$	(6)

4. Compare the calculated probability $P_t(n)$ with normally distributed random number (n).

- 5. If $P_t(n)$ is greater than one then go to step 6 otherwise go to 7.
- 6. The load is switch on and the present time is updated to C_w and get back to 3.

7. The load remain of f and the present simulation time is updated by $(t+\Delta T)$

The calibration factor Kc shows the person availability PA(n). When PA(n) is 1,then persons is available at home and 0 then nobody is available. Some loads are independent on the person's availability like freezer, fridge etc. so K_c is equal to 1.

$$\sum_{n=1}^{N} P_t(\mathbf{n}) = \sum_{n=1}^{N} P_r(\mathbf{n}) \times K_c \times s. \, \mathbf{f} = 1 \tag{7}$$

$$K_c = \frac{1}{\sum_{n=1}^{N} P_r(\mathbf{n}) \times \mathbf{s}.\mathbf{f}}$$
(8)

The household probability profile is the result of interaction of person availability, appliance availability and switching frequency of the appliances shown in Fig 14 to Fig.16.

Fig. 14. Probability switch-on event of washing machine for one day

Fig.16. Probability switch-on event of washing machine

Fig.17. Flow chart

IV. Conclusion

In today's scenario, every residential house has nonlinear load. Earlier residential and commercial harmonics were ignored because all loads are not nonlinear. As the scenario is changing continuously, all new load and their characteristics is also changing. The effect of accumulative harmonics is a big problem for already connected distribution transformer. The entire nonlinear load has harmonic spectrum and only one or two harmonics will not significantly reduce the overall THD. The solution is to make a nonlinear load with harmonic filtering properties and make mandatory for manufacturers to limit harmonic effect on distribution system. Solution to harmonics problem is that one is to reinforce the distribution system to withstand the harmonics or to install devices to attenuate or remove the harmonics. So the LV network must be reconfigured according to the present and future scenario and enhance the quality of power supply to deal with new loads.

References

- [1]. Emad Ezzat Ahmed, wilsun Xu, guibin Zhang, Analyzing system with distribution harmonic sources including the attenuation and diversity effect, IEEE transaction on power delivery, 20(4), 2016, 2602-2612.
- [2]. Jing Yong, Liang Chen, shuangyan chen, Modeling of home appliances for power distribution system harmonic analysis", IEEE transaction on power delivery, 25(4), 2010, 3147-3155.
- [3]. Hooman E. Mazin, Edwin E.Nino, Wilsun Xu, Jing Yong, A study on the harmonics contributions of residential load, IEEE transaction on power delivery, 26(3), 2011,1592-1598.
- [4]. S.R. Kaprielian, A.E. Emanual, R.V. Dwyer, H. Mehta, Predicting voltage distribution in a system with multiple random harmonic sources, IEEE transaction on power delivery, 9(3), 1994,1632-1638.
- [5]. A Mansoor, W. M. Grady, A.H.Chawdhary, M.J.Samotyi, An Investigation of harmonics attenuation and diversity among distributed single-phase power electronic loads, IEEE transaction on power delivery,10(1), 1995, 467-473.
- [6]. Jose Antenor Pomilio, Sigmar Maurer Deckmann, Characterization and compensation of harmonics and reactive power of residential and reactive power of residential and commercial loads, IEEE transaction on power delivery, 22(2), 2007,1049-1055.
- [7]. G.Zhang, W.Xu, Estimating harmonic distortion levels for systems with random-varying distributed harmonic-producing load, IET Generation, Transmission & Distribution, 2(6), 2008, 847-855.
- [8]. Chen Jiang, Diogo Salles, Wilsun Xu, Walmir Freitas, Assessing the collective Harmonic Impact of Modern Residential Load-Part II: Applications, IEEE transactions on Power delivery, 27(4), 2012, 1947-1955.
- [9]. A. Capasso, W. Grattieri, R. Lamedica, A. Prudenzi, A bottom-up Approach to residential load Modeling, IEEE transaction on power system, 9(2), 1994, 957-964.
- [10]. Chen Jiang, Diogo Salles, Wilsun Xu, Walmir Freitas, Hooman Erfanian, Assessing the collective Harmonic Impact of Modern Residential Load-Part I: Methodology, IEEE transactions on Power delivery, 27(4), 2012,1937-1947.
- [11]. C.F.Walker, J.L.Pokoski, Residential Load shape modeling based on customer behavior, IEEE transaction on power Apparatus and system, 104(7), 1985, 1703-1711.
- [12]. Chau-shun chen, Tsung-Hsiten, Chung-Chieh Lee, Yenn-Minn Tzeng, The Application of load models of electric application distribution system analysis, IEEE transaction on power system, 10(3), 1995, 1376-1382.