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Abstract: Linear Stability analysis plays a major role in understanding the efficiency of mathematical models. 

The analytical methods and numerical methods can be used effectively to compare the accuracy of the model. In 

this paper we will investigate the model using linear stability analysis. In particular we find equilibrium of the 

model, analyze the behaviour of the system in the vicinity of the equilibrium, and investigate the behaviour of 

the equilibrium when parameter values change especially when it concerns stability properties. We will also 

investigate the model numerically, that includes writing a MATLAB function that computes the right-hand side 

of the dynamical equations given by Bacterial Growth Model in question. Using rk6 and Multistep methods we 

explore the numerical solutions of the model and how they depend on the initial conditions and parameter 

values. For some fixed value of parameter(s). Then we compare the solutions obtained from the linear stability 

analysis method to the numerical solution starting from the same initial condition in the vicinity of an 

equilibrium point. We have also written MATLAB codes for the two new methods. 

Keywords -Linear Stability Analysis, Runge-Kutta 6th order method, numerical methods, Eigen values, Eigen 

vectors, Dynamic Modelling, Simulation of mathematical model 

 

I. Introduction 
The Modelling of bacterial growth into a mathematical model plays a vital role in Bio-Medical field 

and checking the stability of such models is essential and necessary. It decides the accuracy of the constructed 

model. In Section II of this paper we explain what Linear Stability Analysis is. In section III we will investigate 

the model using linear stability analysis. In particular to find equilibrium of the model, analyse the behaviour of 

the system in the vicinity of the equilibrium, investigate the behaviour of the equilibrium when parameter(s) 

values Change. In section IV we will investigate the model numerically, that includes simulating the model 

using a MATLAB function that computes the right-hand side of the dynamical equations given by the model in 

question. Then we derive and use rk6 to explore the numerical solutions of the model and how they depend on 

the initial conditions and parameter values. For some fixed value of parameter(s), comparing the solutions 

obtained from the analytical method to the numerical solution starting from the same initial condition in the 

vicinity of an equilibrium point. We use MATLAB codes for the two methods, one-step and multistep numerical 

solutions for our model. We also construct the step size-error diagrams for rk6 and Multistep Method to 

determine the order of the methods [1]. We use the solution with a small step size as the “exact” reference 

solution. 

Many research papers were published for the development of mathematical models for Bacterial 

growth and they were successful in establishing the relationship between the growth rate and population count. 

The linear stability analysis of these models will give an upper hand in proving the accuracy of these models.  

Following are few of the mathematical models for bacterial growth. Kapur, J.N. and Khan, Q.J.A. [3] gave two 

models based on consideration of enzyme kinetics and compares them with existing model and obtained S 

shaped curve with limiting population growth and general point of inflexion. Baranyi, J., Roberts, T.A., and 

McClure, P. [4] described the bacterial growth by a non -autonomous differential equation. In addition they 

showed a possible way to apply this theory in food microbiology. Juskat, A., Gedminiene, G., Ivanec, R. [5] 

presented a model  which is expressed  symbolically as a finite combination of elementary functions. This 

approach can be applied in other areas of modern biology such as dynamics of various cellular processes and 

enzyme and receptor kinetics. Teleken, J.T., Robazza, W., Gomes, G., [6] proposed and evaluated mathematical  

model  that predicts  a microbial growth in a dairy products. In addition, their model provides equations for the 

evaluation of the maximum specific growth rate and the duration of the lag phase. Liu, Q., Jiang, D., Shi, N., [7] 

presented a paper which concerns with the dynamical behaviour of a stochastic SIQR epidemic model  with 

standard incidence which is disturbed by both white and telegraph noises. In addition to that some numerical 

simulations are introduced to demonstrate the analytical results. Liu, C., Yu, L., Zhang, Q., and Li, Y.[8] 

investigated existence and uniqueness of global positive solution for stochastic system with double time delays, 

they also studied asymptotic behaviour of the interior equilibrium by constructing appropriate Lyapunov 
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functions. Vidurupola, S. [9] investigated an extended deterministic lytic bacteriophage model that contained 

phage –resistant bacteria, bacteria complexes and bacteria debris was formulated, analyzed and  numerically 

simulated. She also suggested that inclusion of these new states provides more realism and an accurate 

assessment of the bacteriophage interaction. 

 

II. What Is Linear Stability Analysis 
 In Mathematics, stability theory addresses the stability of solutions of differential equations and of 

trajectories of dynamical systems under small perturbations of initial conditions [2,9,10,11]. The heat equation, 

for example, is a stable partial differential equation because small perturbations of initial data lead to small 

variations in temperature at a later time as a result of the maximum principle. In the theory of differential 

equations and dynamical systems, a particular stationary or quasi-stationary solution to a nonlinear system is 

called linearly unstable if the linearization of the equation at this solution has the form 
𝑑𝑟

𝑑𝑡
= 𝐴𝑟, where A is a 

linear operator whose spectrum contains eigenvalues with positive real part. 

 

a. Linearization [2, 12]: 

 Linearization is finding the approximation to a function at a given point. In the study of dynamical 

system linearization is a method for assessing the local stability of an equilibrium point of a system of nonlinear 

Diff. Equations or discrete dynamical system. Linearization makes it possible to use tools for studying linear 

systems to analyse the behaviour of a nonlinear function near a given point. 

 

b. Stability Analysis: 

 In stability analysis of autonomous system, one can use Eigen values of the Jacobian matrix evaluated 

at a hyperbolic equilibrium point to determine the nature of that equilibrium.  

 

c. Procedure to determine stability of a system: 

1. Determine all the stationary points of the given system in order to find equilibria. 

2. Compute all Partial Differentials Equations of the right hand side of the given system and construct the 

Jacobian matrix. 

3. Evaluate the Jacobian matrix at the steady state. 

4. Compute Eigen values. 

5. Conclude stability or instability based on the real parts of the Eigen values. 

 

d. Stability Classification: 

1. If the Eigen values of the Jacobian matrix all have real parts less than Zero then the state is Stable.  

2. If at least one of the Eigen value of the Jacobian matrix has real part greater than Zero then the state is 

Unstable 

3. If Eigen values have different signs then the state is a Saddle point; saddle point is always Unstable.    

 

III. Analysis of the Linear Stability of the given Bacterial Model 
 

The System is given by, [2]  
𝑑𝑥

𝑑𝑡
=  −

𝑥2𝑦

(∝2+ 𝑥2)
+ 𝑥(1 − 𝑥) 

(A) 
𝑑𝑦

𝑑𝑡
=  −𝜀𝑦 +

𝑥2𝑦

(∝2+ 𝑥2)
 

 

 To Analyse the given system we must first find out the stationary  points to find its equlibria.For that 

consider the following  system of equations. 

 

−
𝑥2𝑦

(∝2+ 𝑥2)
+ 𝑥 1 − 𝑥 =  0 

(1) 

 

−𝜀𝑦 +
𝑥2𝑦

(∝2+ 𝑥2)
= 0 (2) 

 

From (1) We have, 

𝑥  −
𝑥𝑦

 ∝2+ 𝑥2 
+  1 − 𝑥  =  0 

⇒ 𝑥 = 0   𝑜𝑟    −
𝑥𝑦

 ∝2+ 𝑥2 
+  1 − 𝑥  = 0 

 ⇒ 𝑥 = 0 (a) 
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 −
𝑥𝑦

 ∝2+ 𝑥2 
+  1 − 𝑥  = 0 (b) 

From (2) we have,  

𝑦  −𝜀 +
𝑥2

 ∝2+ 𝑥2 
 = 0  

⟹ 𝑦 = 0  𝑜𝑟  −𝜀 +
𝑥2

 ∝2+ 𝑥2 
 = 0  

⟹ 𝑦 = 0 (c) 

 −𝜀 +
𝑥2

 ∝2+ 𝑥2 
 = 0 (d) 

 

If the sytem given by (1) and (2) is to satisfy  R.H.S then we must have  

  𝑎 ⋁ 𝑏   ⋀  𝑐 ⋁ 𝑑 =  0.    i.e. 𝑎⋀𝑐 ⋁ 𝑎⋀𝑑 ⋁ 𝑏⋀𝑐 ⋁ 𝑏⋀𝑑 =  0. 
1)  𝑎 ∧ 𝑐 =  0  gives, 𝑥 =  0,   𝑦 = 0. 
 

Therefore the first stationary point is (0,0). 

 2)  𝑎 ∧ 𝑑 =  0 gives,𝑥 = 0,    
𝑥2

 𝛼2+ 𝑥2 
=  𝜀.  

 3)  𝑏 ∧ 𝑐 =  0  gives, 

 −
𝑥𝑦

 𝛼2+ 𝑥2 
+  1 − 𝑥  = 0 and𝑦 = 0 

Substitute𝑦 = 0 in the above equation to get 𝑥 = 1 

 

Therefore the second stationary point is (1,0). 

4)  𝑏 ∧ 𝑑 = 0  gives, 

 −
𝑥𝑦

 𝛼2+ 𝑥2 
+  1 − 𝑥  = 0  and    −𝜀 +

𝑥2

 𝛼2+ 𝑥2 
 = 0 

i.e.   – 𝜀  ∝2 + 𝑥2 +  𝑥2 = 0, −𝜀 ∝2 +  1 −  𝜀 𝑥2 =  0, 

 1 −  𝜀 𝑥2      =  𝜀𝛼2 , 𝑥2      =  
𝜀𝛼2 

 1− 𝜀 
 , 𝑥   =   

𝜀𝛼2 

 1− 𝜀 
 ,   𝑥 =  𝛼  

𝜀

 1− 𝜀 
 

Substitute in the other equation  we get, 
𝜀 𝑦

𝑥
 =   𝑥 − 1 ,   

𝑦 =  
𝑥

𝜀
 𝑥 − 1  ,   

𝑦 =

𝛼  
𝜀

 1 −  𝜀 

𝜀
 𝛼 

𝜀

 1 −  𝜀 
 − 1 ,  

on simplification we get 

𝑦 =  
𝛼2

1 − 𝜀
− 

𝛼

 𝜀 1 − 𝜀
,   𝑥 =  𝛼  

𝜀

 1 −  𝜀 
 

Therefore the third  stationary point is      𝜶  
𝜺

 𝟏− 𝜺 
,

𝜶𝟐

𝟏−𝜺
− 

𝜶

 𝜺 𝟏−𝜺
  

 Now let us find the Jacobian of the the system. For that let us find all the partial derivatives. 

(𝑓1 )𝑥
′ =  

 𝛼2+ 𝑥2  2𝑥𝑦 −2𝑥3𝑦

 𝛼2+ 𝑥2 2 + 1 − 2𝑥, 

(𝑓1 )𝑦
′ =  

−𝑥2

(𝛼2 +  𝑥2)
 

 𝑓2 𝑥
′ =  

 𝛼2 + 𝑥2  2𝑥𝑦 − 2𝑥3𝑦

 𝛼2 + 𝑥2 2
 

(𝑓2 )𝑦
′ =  −𝜀 +

𝑥2

(𝛼2 +  𝑥2)
 

J =  

 𝛼2+ 𝑥2  2𝑥𝑦 −2𝑥3𝑦

 𝛼2+ 𝑥2 2 + 1 − 2𝑥
−𝑥2

(𝛼2+ 𝑥2)

 𝛼2+ 𝑥2  2𝑥𝑦 −2𝑥3𝑦

 𝛼2+ 𝑥2 2 −𝜀 +
𝑥2

(𝛼2+ 𝑥2)
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For ( 0, 0) : 

J =  
1    0
0 −𝜀

 , 

then the characteristic equation for the Eigen values is given by 

𝜆2 −  𝑇𝑟𝐴 𝜆 + Δ = 0.Here  𝑇𝑟𝐴 =  1 − 𝜀 ,  and Δ =  −𝜀. 

That gives us the case that 

(𝑇𝑟𝐴)2 −  4Δ) > 0 . 𝑖. 𝑒. 𝑡ℎ𝑒 𝑟𝑜𝑜𝑡𝑠 𝑎𝑟𝑒 𝑟𝑒𝑎𝑙. 
Since,(1 − 𝜀)2 −  4 −𝜀 = 1 − 2𝜀 +  𝜀2 +  4𝜀 =  𝜀2 +  2𝜀 + 1 =   𝟏 +  𝜺 𝟐 > 0 

Also, since 𝜀 > 0, ∴  ∆ < 0  Then the Eigen Values have different signs and this stationary state is a saddle 

point 

For (1,0) :  

J =  
−1 −

1

𝛼2+1

   0 −𝜀 +
1

𝛼2+1

  , 

thenthe Characteristic equation is given by  

𝜆2 −  𝑇𝑟𝐴 𝜆 + Δ = 0. Here𝑇𝑟𝐴 =  −1 − 𝜀 + 
1

𝛼2+1
 ,   𝑎𝑛𝑑  Δ =  𝜀 − 

1

𝛼2+1
 

That gives us the cases that 

1) (𝑇𝑟𝐴)2 −  4Δ > 0 . 𝑖. 𝑒. 𝑡ℎ𝑒 𝑟𝑜𝑜𝑡𝑠 𝑎𝑟𝑒 𝑟𝑒𝑎𝑙. 
2) (𝑇𝑟𝐴)2 −  4Δ < 0 . 𝑖. 𝑒. 𝑡ℎ𝑒 𝑟𝑜𝑜𝑡𝑠 𝑎𝑟𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑥. 

Since,  −1 − 𝜀 +  
1

𝛼2+1
 

2

=    
 −𝛼2−1−𝜀𝛼2−𝜀+ 1 

𝛼2+1
 

2

=  
−  1+𝜀 𝛼2+ 𝜀 

𝛼2+1
 

2

=     
  1+𝜀 𝛼2+ 𝜀 

2

(𝛼2+1)2  ∴   𝑇𝑟𝐴 2 −  4Δ =

  
  1+𝜀 𝛼2+ 𝜀 

2

 𝛼2+1 2  −  4  𝜀 −  
1

𝛼2+1
 . For fixed values of the parameter  

Case1: 𝜺 = 𝟐 , 𝜶 = 𝟏 

 𝑇𝑟𝐴 2 −  4Δ > 0 𝑎𝑙𝑠𝑜  ∆= 1.5 > 0  𝑎𝑛𝑑  𝑇𝑟𝐴 = −0.5 < 0   
∴The Eigen values have negative signs and the stationary state is a stable node. 

Case 2: But for 𝜺 = 𝟑 , 𝜶 = 𝟐 

 𝑇𝑟𝐴 2 −  4Δ < 0 𝑎𝑙𝑠𝑜  ∆ > 0  𝑎𝑛𝑑  𝑇𝑟𝐴 < 0  
∴ there will be an asymptotic stability 

And the stability is accquired for this particular parameter values. Other than this parameter values system is 

unstable for the parameter values near  𝜺 = 𝟑 , 𝜶 = 𝟐 . 

 

TO FIND THE LINEARISED SOLUTION OF THE SYSTEM 

For the Jacobian above the Characteristic equation is given by 

 −1 − 𝜆  −𝜀 +
1

𝛼2 + 1
−  𝜆 = 0 ⟹   𝜆 = −1  𝑎𝑛𝑑 𝜆 =   −𝜀 +

1

𝛼2 + 1
. 

Therefore the Eigen Values are  𝜆 = −1  𝑎𝑛𝑑 𝜆 =   −𝜀 +
1

𝛼2+1
   Let us find the corresponding Eigen Vectors. 

For that consider the equation, 

 
−1 − 𝜆 −

1

𝛼2 + 1

0 −𝜀 +
1

𝛼2 + 1
−  𝜆

  
ℎ1

1

ℎ1
2 =   

0
0
  

To find the Eigen Vector for  𝝀 =  −𝟏 

 
−1 + 1 −

1

𝛼2 + 1

0 −𝜀 +
1

𝛼2 + 1
+ 1

  
ℎ1

1

ℎ1
2 =   

0
0
  

 
0 −

1

𝛼2 + 1

0 −𝜀 +
1

𝛼2 + 1
+ 1

  
ℎ1

1

ℎ1
2 =  

0
0
 

(𝑠𝑖𝑛𝑐𝑒  𝑡ℎ𝑒 𝑟𝑎𝑛𝑘  𝑜𝑓  𝑐𝑜−𝑒𝑓𝑓 .  𝑚𝑎𝑡𝑟𝑖𝑥  𝑖𝑠 1)
                               ℎ1

2 =  0 𝑎𝑛𝑑  ℎ1
1 = 𝑘 ∈ ℝ 

∴    ℎ1 =   
ℎ1

1

ℎ1
2 =  

𝑘
0
  

this is the eigen Vectorcorresponding to 𝝀 =  −𝟏 

 

To find the Eigen Vector for  𝝀 =  −𝜺 +  
𝟏

𝜶𝟐+ 𝟏
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−1 + 𝜺 − 

𝟏

𝜶𝟐 +  𝟏
−

1

𝛼2 + 1

0 −𝜀 +
1

𝛼2 + 1
+ 𝜺 − 

𝟏

𝜶𝟐 +  𝟏

  
ℎ2

1

ℎ2
2 =   

0
0
  

 −1 + 𝜺 − 
𝟏

𝜶𝟐 +  𝟏
−

1

𝛼2 + 1
0 0

  
ℎ2

1

ℎ2
2 =   

0
0
  

 −1 + 𝜺 − 
𝟏

𝜶𝟐 +  𝟏
 ℎ2

1 +  −
1

𝛼2 + 1
 ℎ2

2 = 0 

 −1 + 𝜺 − 
𝟏

𝜶𝟐 +  𝟏
 ℎ2

1 =  
1

𝛼2 + 1
 ℎ2

2  

𝑖𝑓  ℎ2
1 = 1, 𝑡ℎ𝑒𝑛  ℎ2

2 =   
 −1 + 𝜺 − 

𝟏
𝜶𝟐 +  𝟏

 

 
1

𝛼2 + 1
 

=  𝛼2 𝜀 − 1 +  𝜀 − 2   

∴    ℎ2 =   
ℎ2

1

ℎ2
2 =  

1
𝛼2 𝜀 − 1 +  𝜀 − 2  

  

For fixed parameters  𝜺 = 𝟏 , 𝜶 = 𝟏  we have, 

  ℎ2 =   
   1
−1

  

To determine the systems behaviour in the vicinity of the equilibrium u*. The general solution has the form: 

𝛿 𝑡 =   𝑎𝑘ℎ𝑘𝑒
𝜆𝑘𝑡

𝑛

𝑘=1

 

where and 𝜆𝑘 ,ℎ𝑘  are the eigenvalues and the eigenvectors of J (u*) and coefficients are determined from the 

initial conditions 

 

To find linearized solution   

 
𝑥(𝑡) − 1

𝑦 𝑡 − 0
 =  𝛿1  

𝑘
0
 𝑒−1𝑡 +  𝛿2  

1
𝛼2 𝜀 − 1 +  𝜀 − 2

 𝑒
(−𝜺+ 

𝟏

𝜶𝟐+ 𝟏
)𝑡

 

 
𝑥(𝑡) − 1

𝑦 𝑡 − 0
 =   

𝛿1 𝑘 𝑒−1𝑡 + 𝛿2 𝑒
(−𝜺+ 

𝟏

𝜶𝟐+ 𝟏
)𝑡

𝛿2 (𝛼
2 𝜀 − 1 +  𝜀 − 2) 𝑒

(−𝜺+ 
𝟏

𝜶𝟐+ 𝟏
)𝑡
  

𝑥 𝑡 − 1 =   𝛿1 𝑘 𝑒−1𝑡 + 𝛿2 𝑒
(−𝜺+ 

𝟏

𝜶𝟐+ 𝟏
)𝑡

 

       𝑦 𝑡  =   𝛿2 (𝛼
2 𝜀 − 1 +  𝜀 − 2) 𝑒

(−𝜺+ 
𝟏

𝜶𝟐+ 𝟏
)𝑡

 

 At t = 0, 

𝑥 0 − 1 =   𝛿1 𝑘 +  𝛿2  

       𝑦 0  =    𝛿2 (𝛼
2 𝜀 − 1 +  𝜀 − 2)  

Let us select the initial condition as  𝑥 0 =  0.5, 𝑦 0 = 0.5 , we have 

0.5 − 1 =   𝛿1 𝑘 +  𝛿2 ⟹ −0.5 =   𝛿1 𝑘 +  𝛿2  (A) 

0.5  =    𝛿2 (𝛼
2 𝜀 − 1 +  𝜀 − 2) (B) 

Multiply (A) by(𝛼2 𝜀 − 1 +  𝜀 − 2) and substract (B) from (A). and Substitute this value of  𝛿1in (A) we get 

we get 

𝛿1 =
−0.5 𝛼2 𝜀−1 + 𝜀−3 

 𝛼2 𝜀−1 + 𝜀−2 𝑘
  ,  𝛿2 = −

1

2
 

Therefore the linearised solution is given by, 

𝒙 𝒕 =  𝟏 +  
−0.5 𝛼2 𝜀 − 1 +  𝜀 − 3 

 𝛼2 𝜀 − 1 +  𝜀 − 2 𝑘
 𝒌 𝒆−𝟏𝒕 +  −

1

2
 𝒆

(−𝜺+ 
𝟏

𝜶𝟐+ 𝟏
)𝒕

 

𝒚 𝒕  =    −
1

2
 (𝜶𝟐 𝜺 − 𝟏 +  𝜺 − 𝟐) 𝒆

(−𝜺+ 
𝟏

𝜶𝟐+ 𝟏
)𝒕

 

For fixed parameters  𝜺 = 𝟏 , 𝜶 = 𝟏  we have, 

𝒙 𝒕 =  𝟏 − 𝒆−𝒕 −
𝟏

𝟐
𝒆−

𝟏

𝟐
𝒕
and 𝒚 𝒕  =   

𝟏

𝟐
𝒆−𝟏

𝟐 𝒕 

For   𝜶  
𝜺

 𝟏− 𝜺 
,

𝜶𝟐

𝟏−𝜺
− 

𝜶

 𝜺(𝟏−𝜺)
  ∵ 𝑥, 𝑦 ≥ 0 𝑎𝑛𝑑 𝛼 ≠ 0 ⟹  𝛼 > 0 𝑎𝑛𝑑 0 < 𝜀 < 1. 

Since    
𝑥2

 𝛼2+ 𝑥2 
=  𝜀 the Jacobian simplifies to 
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𝐽 =  
2𝑦𝜀 + 2𝑦𝜀2 +  𝑥 − 2𝑥2 −𝜀

2𝑦

𝑥
 𝜀 − 𝜀2 0

  

𝐽
  𝜶  

𝜺
 𝟏− 𝜺 

,
𝜶𝟐

𝟏−𝜺
− 

𝜶

 𝜺 𝟏−𝜺
 

=   

 
 
 
 
 
 
 
 
2  

𝜶𝟐

𝟏 − 𝜺
− 

𝜶

 𝜺(𝟏 − 𝜺)
 𝜀 + 2 (

𝜶𝟐

𝟏 − 𝜺
− 

𝜶

 𝜺 𝟏 − 𝜺 
) 𝜀2  + 𝜶  

𝜺

 𝟏 −  𝜺 
 – (2𝜶  

𝜺

 𝟏 −  𝜺 
)2 −𝜀

2  
𝜶𝟐

𝟏 − 𝜺
− 

𝜶

 𝜺(𝟏 − 𝜺)
 

𝜶  
𝜺

 𝟏 −  𝜺 

 𝜀 − 𝜀2 0

 
 
 
 
 
 
 
 

 

𝐽 =  

 
 
 
 
 
−2𝛼𝜀 

𝜀

 1 − 𝜀 
−

2𝛼2𝜀

(1 − 𝜀)
+

2𝛼2𝜀2

 1 − 𝜀
−𝜀

2𝛼 𝜀(1 − 𝜀) − 1 + 𝜀 0  
 
 
 
 

 

Here,  

𝑇𝑟𝐴 =  −2𝛼𝜀 
𝜀

 1 − 𝜀 
−

2𝛼2𝜀

(1 − 𝜀)
+

2𝛼2𝜀2

 1 − 𝜀
 ,    Δ =  −𝜀(2𝛼 𝜀 1 − 𝜀 − 1 + 𝜀) 

To find the values of the parameters 𝜀 𝑎𝑛𝑑 𝛼 to check the Stability of the system. 

For 𝜺 = 𝟎. 𝟓 , 𝜶 = 𝟏 

𝑇𝑟𝐴 =  −2.2929 < 0, ∆=  −.02500 < 0  𝑎𝑛𝑑 (𝑇𝑟𝐴)2 −  4∆ = 8.2574 > 0 
The Eigen values have negative signs and the stationary state is an unstable. 

For 𝜺 = 𝟎. 𝟓 , 𝜶 = 𝟐 

𝑇𝑟𝐴 =  −7.1716 < 0, ∆=  −1.7500 < 0  𝑎𝑛𝑑 (𝑇𝑟𝐴)2 −  4∆ = 58.4318 > 0 
The Eigen values have negative signs and the stationary state is an unstable. 

So the system is unstable for this stationary point for any value of 𝛼 > 0 𝑎𝑛𝑑 0 < 𝜀 < 1 

For 𝜺 = 𝟎. 𝟓 , 𝜶 = 𝟐  the point is 

  𝜶  
𝜺

 𝟏 −  𝜺 
,

𝜶𝟐

𝟏 − 𝜺
− 

𝜶

 𝜺(𝟏 − 𝜺)
 =   (𝟏, 𝟏) 

 

IV. Numerical Solution using RK 6
th

 order method for a system of D.E. and Multistep method 
 Here we investigate the given Model using numerical methods like Runge-Kutta 6

th
 order Method and 

Multistep Method etc. We use of MATLAB to write the codes for all the methods. 

Before writing the codes, we have derived the following formulae for the RK6. We find the expressions for u 

and then represent it in terms of 𝑘𝑖 ′𝑠 

𝑢1 = 𝑢 + ℎ 𝑎11   𝑓 𝑢1    
𝑢1 = 𝑢 

𝑢2 = 𝑢 + ℎ 𝑎11   𝑓 𝑢1  +  𝑎12  𝑓 𝑢2    

𝑢2 = 𝑢 +
ℎ

5
  𝑓(𝑢1 ) 

𝑢3 = 𝑢 + ℎ 𝑎11   𝑓 𝑢1  +  𝑎12  𝑓 𝑢2  + 𝑎13  𝑓 𝑢3    

𝑢3 = 𝑢 + ℎ  
3

40
 𝑓 𝑢1  +  

9

40
 𝑓 𝑢2    

𝑢4 = 𝑢 + ℎ  
3

10
 𝑓 𝑢1  +  

9

10
 𝑓 𝑢2  + 

12

10
 𝑓(𝑢3 )  

𝑢5 = 𝑢 + ℎ  
3

40
 𝑓 𝑢1  + 

27

40
 𝑓 𝑢2  − 

24

40
 𝑓 𝑢3  + 

30

40
 𝑓(𝑢4 )  

𝑢6 = 𝑢 + ℎ  
107

162
 𝑓 𝑢1  +  

5

2
 𝑓 𝑢2  − 

140

27
 𝑓 𝑢3  + 

35

9
 𝑓 𝑢4  − 

70

89
 𝑓(𝑢5 )  

To find Ki’s 

𝒌𝟏 = 𝒉𝒇(𝒖𝟏 ), 
𝑘2 = ℎ𝑓(𝑢2 ), 
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𝑘2 = ℎ𝑓  𝑢 +  
ℎ𝑓 𝑢1  

5
  

𝒌𝟐 = 𝒉𝒇  𝒖 +  
𝒌𝟏

𝟓
  

𝑘3 = ℎ𝑓(𝑢3 ) 

𝑘3 = ℎ𝑓  𝑢 + 
3

40
ℎ𝑓 𝑢1  +  

9

40
ℎ𝑓 𝑢2    

𝒌𝟑 = 𝒉𝒇  𝒖 +  
𝟑

𝟒𝟎
𝒌𝟏 +  

𝟗

𝟒𝟎
𝒌𝟐  

𝑘4 = ℎ𝑓(𝑢4 ) 

𝑘4 = ℎ𝑓  𝑢 + 
3

10
ℎ𝑓 𝑢1  − 

9

10
ℎ𝑓 𝑢2  +

12

10
ℎ𝑓 𝑢3    

𝒌𝟒 = 𝒉𝒇  𝒖 +  
𝟑

𝟏𝟎
𝒌𝟏 − 

𝟗

𝟏𝟎
𝒌𝟐 +

𝟏𝟐

𝟏𝟎
𝒌𝟑  

𝑘5 = ℎ𝑓(𝑢5 ) 

𝑘5 = ℎ𝑓  𝑢 + 
3

40
ℎ𝑓 𝑢1  +  

27

40
ℎ𝑓 𝑢2  −

24

40
ℎ𝑓 𝑢3  +

30

40
ℎ𝑓 𝑢4    

𝒌𝟓 = 𝒉𝒇  𝒖 + 
𝟑

𝟒𝟎
𝒌𝟏 +

𝟐𝟕

𝟒𝟎
𝒌𝟐 −

𝟐𝟒

𝟒𝟎
𝒌𝟑 +

𝟑𝟎

𝟒𝟎
𝒌𝟒  

𝑘6 = ℎ𝑓(𝑢6 ) 

𝑘6 = ℎ𝑓  𝑢 + 
107

162
ℎ𝑓 𝑢1  +  

5

2
ℎ𝑓 𝑢2  −

140

27
ℎ𝑓 𝑢3  +

35

9
ℎ𝑓 𝑢4  −

70

81
ℎ𝑓 𝑢5    

𝑘6 = ℎ𝑓  𝑢 +  
107

162
𝑘1 +  

5

2
𝑘2 −

140

27
𝑘3 +

35

9
𝑘4 −

70

81
𝑘5  

𝒌𝟔 = 𝒉𝒇  𝒖 + 
𝟏𝟎𝟕

𝟏𝟔𝟐
𝒌𝟏 + 

𝟓

𝟐
𝒌𝟐 −

𝟏𝟒𝟎

𝟐𝟕
𝒌𝟑 +

𝟑𝟓

𝟗
𝒌𝟒 −

𝟕𝟎

𝟖𝟏
𝒌𝟓  

a. Exploring the Numerical solution of the given system for different values of parameter  
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Figure 2: Representation of the Numerical Solution of Given Bacterial Model A, for different parameters 

(Model 3) 

 

 The system is stable if the parameters take the correct values which satisfy the conditions for the 

system. For big values of parameters, a and e the system becomes unstable. If the parameters take very big 

negative values the system looks like figure 2. For different parameters the stability of the system changes it 

becomes unstable if we select large values of the parameters.  

Fix the parameters and change the initial condition: For some fixed value of parameter(s), compare the solution 

obtained from the linear approximation to the numerical solution starting from the same initial condition in the 

vicinity of an equilibrium point. 

 
Figure 3: Representation of comparison of the Exact and Numerical Solution of Given Bacterial Model A(Model 

3 

b. MATLAB codes for the two new methods (one one-step and one multistep method) and use these 

methods to obtain numerical solutions for the given model.  

 

Code for rk6 

function unew = rk6(u, h, flow)  

k1 = h.*flow(u); 

k2 = h.*flow(u + k1/5); 
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k3 = h.*flow(u + 3*k1/40 + 9*k2/40); 

k4 = h.*flow(u + 3*k1/10 - 9*k2/10 + 12*k3/10); 

k5 = h.*flow(u + 3*k1/40 + 27*k2/40 -3*k3/5 + 3*k4/4); 

k6 = h.*flow(u + 107*k1/162 + 5*k2/2 -140*k3/27 + 35*k4/9 - 70*k5/81); 

unew = u + (8*k1/81  + 25*k3/63 + 25*k4/108 + 25*k5/81 - k6/28); 

 

Code for Numerical solution of the given system using rk6 

>> global a e 

>> a = 1 

>> e = 0.8 

>> [t, u] = ODEsolver([0.5 0.5], 0.05, 10, @Model3, @rk6) 

 
Figure 4: Representation of Numerical Solution of Given Bacterial Model A by RK6 method (Model 3) 

 

code for multistep 
clear all 

close all 

global a e 

T = 10; N = 200; h = T/N; 

a = 1; e = 1; 

u(1,1) = 0.5; u(1,2) = 0.5; t(1) = 0; 

for i = 2:5 

    u(i,:) = rk4(u(i-1,:), h, @Model3); 

    f(i,:) = Model3(u(i,:));  

    t(i) = t(i-1) + h; 

end 

for i = 6:N 

u1 = u(i-1,:)+h/720.*(1901*f(i-1,:)-2774*f(i-2,:)+2616*f(i-3,:)-

1274*f(i-4,:)+251*f(i-5,:)); 

ff = Model3(u1); 

u1 = u(i-1,:)+h/720.*(251*ff+646*f(i-1,:)-264*f(i-2,:)+106*f(i-3,:)-

19*f(i-4,:)); 

u(i,:) = u1; 

f(i,:) = Model3(u(i,:)); 

t(i) = t(i-1)+h; 

end 

plot(t, u(:,1),'g') 

hold on 

plot(t, u(:,2),'r') 

xlabel('Time'); ylabel('Function of Model 3)'); 

title('Numerical solution of Model 3 using rk6'); 
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Figure 5: Representation of Numerical Solution of Given Bacterial Model A by Multi-step method (Model 3) 

 

c. step-size-error diagrams for the two methods and determine the order of the methods. 
clear all 

close all 

global a e 

format long 

T = 10; h=0.05; N = T/h; 

a = 1; e = 1; 

u0(1) = 0.1; u0(2) = 0.1; t(1) = 0; 

h_exact = h/32; 

h_approx = [h/4 h/2 h 2*h 4*h 8*h 16*h]; 

figure(1); clf; 

[t, uexact] = ODEsolver(u0, h_exact, T, @Model3, @rk6); 

for i = 1:length(h_approx) 

    clear tuerr1 

    K = h_approx(i)/h_exact; 

    [t, u] = ODEsolver(u0, h_approx(i), T, @Model3, @rk6); 

    err(1,:) = [0 0]; 

for j = 2:length(u) 

        err1(j,:) = (abs(uexact((j-1)*K + 1,: ) - u(j,:))); 

end 

    glob_err(i,1) = max(err1(:,1)); 

    glob_err(i,2) = max(err1(:,2)); 

end 

plot(log(h_approx),log(glob_err(:,1)),'r*-'); 

hold on 

plot(log(h_approx),log(glob_err(:,2)),'g*-'); 

xlabel('log(h)'); ylabel('log(global err)'); 

grid on; 

title('Stepsize error diagram for runge-kutta method'); 

 

 
Figure 6: Representation step-size error diagram of Given Bacterial Model A by Runge-Kutta method (Model 3) 

 

The order of the above method is 5 as seen from the diagram, as the slope of the lines is 5  

 

Code for multistep method  
function [t,u] = multistep1(u0,T,h,flow) 
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N = floor(T/h); 

t = zeros(N+1,1); 

u(1,1) = u0(1);  

u(1,2) = u0(2);  

t(1) = 0; 

f = flow(u); 

for i = 2:5 

    u(i,:) = rk4(u(i-1,:), h, flow); 

    f(i,:) = flow(u(i,:));  

    t(i) = t(i-1) + h; 

end 

for i = 6:N+1 

    u1 = u(i-1,:)+h/720.*(1901*f(i-1,:)-2774*f(i-2,:)+2616*f(i-3,:)-

1274*f(i-4,:)+251*f(i-5,:)); 

    ff = flow(u1); 

    u1 = u(i-1,:)+h/720.*(251*ff+646*f(i-1,:)-264*f(i-2,:)+106*f(i-

3,:)-19*f(i-4,:)); 

    u(i,:) = u1; 

    f(i,:) = flow(u(i,:)); 

    t(i) = t(i-1)+h; 

      end 

 

Code for Step-Size Error of Predictor-Corrector Method  
clear all 

close all 

global a e 

T = 10; h=0.01; N = T/h; 

a = 1; e = 1; 

u0(1) = 0.1; u0(2) = 0.1; t(1) = 0; 

h_exact = h/32; 

h_approx = [h/4 h/2 h 2*h 4*h 8*h 16*h]; 

[t,u_exact] = multistep1(u0, T, h_exact, @Model3); 

for i = 1:length(h_approx) 

    clear tuerr1 

    K = h_approx(i)/h_exact; 

    [t,u] = multistep1(u0, T, h_approx(i), @Model3); 

    err(1,:) = [0 0]; 

for j = 2:length(u) 

        err1(j,:) = (abs(u_exact((j-1)*K + 1,: ) - u(j,:))); 

end 

    glob_err(i,1) = max(err1(:,1)); 

    glob_err(i,2) = max(err1(:,2)); 

end 

plot(log(h_approx),log(glob_err(:,1)),'r*-'); 

hold on 

plot(log(h_approx),log(glob_err(:,2)),'g*-'); 

xlabel('log(h)'); ylabel('log(global err)'); 

grid on; 

title('Step-size error diagram for predictor-corrector method'); 



Simulation and Linear Stability Analysis of Mathematical model for Bacterial Growth 

International Conference on Innovative and Advanced Technologies in Engineering (March-2018)        73 |Page  

 
Figure 7: Representation step-size error diagram of Given Bacterial Model A by Multi-step method (Model 3) 

 

The order of the above method is 5 as seen from the diagram, as the slope of the lines is 5 

 

V. Conclusions 
 The Runge-Kutta 6

th
 order method was developed to simulate model numerically and predictor-

corrector methods is used for comparison. From the above discussion it is clear that the linear stability analysis 

helps in determining the performance of the system and also the step size error diagram helps in determining the 

order of the method. In future we will investigate other mathematical models for Bacterial growth to determine 

the stability of the model. The MATLAB codes given in the paper will help the new researchers to initiate skills 

in simulation of the models. 
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