
IOSR Journal of Engineering (IOSRJEN)                                                                www.iosrjen.org 

ISSN (e): 2250-3021, ISSN (p): 2278-8719 

PP 03-14 

International Conference on Innovation & Research in Engineering, Science & Technology                     3 | Page 

(ICIREST-19) 

 

Kaluza-Klein Holographic Dark Energy Cosmological models in 

Modified Theory of Gravity 
 

A.Y.Shaikh 
Department of Mathematics , Indira Gandhi Mahavidyalaya , Ralegaon-445402.(M.S.).India. 

   

Abstract: The main motive of this study is to investigate Kaluza-Klein metric within the presence of 

Holographic Dark Energy cosmological models in the framework of ),( TRf  theory of gravity. The exact 

solution of the field equations have been obtained by assuming two different volumetric expansion laws in a way 

to cover all possible expansion: namely exponential and power law expansion.  Keeping an eye on the 

accelerating nature of the universe in the present epoch, the dynamics and physical behavior of the models have 

been discussed.

 Keywords: Holographic Dark energy, f(R,T) gravity, Kaluza-Klein. 

I. Introduction 

 Red shift supernova Ia [1-7], Cosmic Microwave Background Radiation [8-9] and Large Scale 

Structure [10-15] have shown that our universe is currently accelerating.

 

After estimating various energy 

components of the Universe, the cause of its accelerated expansion has been attributed to some exotic energy 

stuff dubbed dark energy (DE).

 

DE yields an isotropic pressure and obeys a simple EoS in the form p = wρ, 

where ρ is the energy density, p is the isotropic pressure and w is the EoS parameter, which is not necessarily 

constant.

 

Several modified theories of gravity have been developed and studied, in view of the late time 

acceleration of the Universe and the existence of dark energy and dark matter. 
 Modify gravity is of great importance because it can successfully explain the rotation curve of galaxies 

and the motion of galaxy clusters in the universe. There are various modify gravity 

namely )( Rf , )(Gf , ),( GRf , )(Tf and ),( TRf theory of gravity. Harko et al. [16] developed a 

),( TRf modified theory of gravity, where the gravitational Lagrangian is given by an arbitrary function of the 

Ricci scalar R and of the trace T of the stress energy tensor. The ),( TRf gravity model depends on a supply 

term, representing the variation of the matter stress energy tensor with regard to the metric. A general expression 

for this supply term is obtained as an operate of the matter Lagrangian Lm in order that every selection of Lm 

would generate a particular set of field equations. Point like Lagrangian’s for ),( TRf gravity had been 

presented by Myrzakulov [17]. The ),( TRf gravity model that satisfies the local tests and transition of matter 

from dominated era to accelerated phase was considered by Houndjo [18]. Adhav [19] has obtained LRS 

Bianchi type I cosmological model in ),( TRf gravity. Bianchi type III cosmological model in 

),( TRf gravity have been discussed by Reddy et al. [20]. Many physicists [21-53] have investigated 

),( TRf gravity in different contexts. 

 In recent years, holographic dark energy (HDE) models have received considerable attention to 

describe dark energy cosmological models. Several aspects of holographic dark energy have been investigated 

by Cohen et al. [54] ,Hsu [55], Gao et al. [56].Granda and Olivers [57] proposed a holographic density of the 

form  HH
DE


1

2

1
   where H is the Hubble parameter and 

11
,   are constants which must satisfy 

the restrictions imposed by the current observational data. Several relativists [58-70] studied various aspects of 

Holographic Dark Energy (HDE) cosmological models in general relativity and scalar tenor theory of 

gravitation. 

 Inspiring by above investigations, we consider higher dimensional Kaluza-Klein holographic dark 

energy model ),( TRf theory of gravitation. In section 2, we present gravitational ),( TRf field equations. In 

section 3, we obtain the field equations of Kaluza-Klein metric. The solution of the field equations are dealt in 

section 4.Power law and exponential law are studied in section 5 and 6 respectively. Section 7 is referred to the 

findings of the power and exponential models. Conclusions of the obtained models are presented in section 8. 
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2. Gravitational field equations of ),( TRf  gravity 

The ),( TRf gravity is the generalization of General Relativity (GR). In this theory, the field equations are 

derived from a variation, Hilbert-Einstein type principle which is given as 

xdLgxdTRfgS
m

44
  ),( 

16

1

 


,      (1) 

where ),( TRf is an arbitrary function of the Ricci scalar )( R and trace of the stress energy tensor )(T of the 

matter 
ij

T  (
ij

ij
TgT  ) and

m
L  is the matter Lagrangian density.  

The stress energy tensor of matter is defined as 

ij

m

ij

g

Lg

g

T
 

)(2



 



 .         (2) 

Assuming that the Lagrangian density 
m

L
 
of matter depends only on the metric tensor components 

ij
g and not 

on its derivatives, in this case we obtain 

ij

m

mijij

g

L
LgT

 

)(




 .          (3) 

The ),( TRf gravity field equations are obtained by varying the action S  with respect to the metric tensor 

components
ij

g ,  

        
ijTijTijjii

i

ijRijijR
TRfTTRfTgTRfgTRfRTRf  ,-,8,,

2

1
),(  , (4) 

where 

.22

2





 gg

L
gLgT

ij

m

mijijij




         (5) 

Here
 

R

TRf
f

R



 , 
 ,

 

T

TRf
f

T



 , 


ijij

g

T
g






  and 
i

 is the covariant derivative. 

The contraction of equation (4) yields 

         TRfTTRfTRfTRfRTRf
TTRR

,-,8,2,3),(  with
ij

ij
g  .  (6) 

Equation (6) gives a relation between Ricci scalar and the trace of energy momentum tensor. 

Using matter Lagrangian
m

L  the stress energy tensor of the matter is given by 

ijjiij
pguupT  )(  ,         (7) 

where )1,0,0,0(
i

u  denotes the four velocity vector in co-moving coordinates which satisfies the 

condition 1
i

i
uu .  and p is energy density and pressure of the fluid respectively. 

The variation of stress energy of perfect fluid has the following expression 

ijijij
pgT  2 .          (8) 

On the physical nature of the matter field, the field equations also depend through the tensor
ij

 . Several 

theoretical models corresponding to different matter contributions for ),( TRf gravity are possible. However, 

Harko et al. [16] gave three classes of these models 

 

 

   

   















TfRfRf

TfRf

TfR

TRf

321

21

 )(

2

, .        (9) 
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In this paper, we have focused to the first class )(2),( TfRTRf  , where )(Tf is an arbitrary function 

of tress energy tensor of the form TTf )(  where  is constant. For this choice the gravitational field 

equations of ),( TRf gravity becomes 

     
ijijijijijij

gTfTfTTfTRgR   228
2

1
 ,     (10) 

where the dot denotes differentiation with respect to the argument. If the matter source is a perfect fluid then the 

field equations (in view of Eq. (8)) becomes 

     
ijijijijij

gTfTpfTTfTRgR ]'2['28
2

1
  .     (11) 

 

3. Field equations of Kaluza- Klein metric 

We consider five dimensional Kaluza-Klein metric  

  22222222
dBdzdydxAdtds  ,       (12) 

where A and B are functions of t only. 

We choose the function )(Tf of the trace of the stress–energy tensor of the matter so that 

TTf )(            (13) 

where   is a constant (Harko et. al.[16]).  

For matter and holographic dark energy, the energy momentum tensors are defined as                                              
 


 uuT

m
 ; ,)(


 pguupT

                                                (14) 

where 
m

  is the energy densities of matter, 


 is the holographic dark energy and 


p is the pressure of the 

holographic dark energy. 

The holographic dark energy density of the form  

),(3
2

HH  


                                                               (15) 

where H is the Hubble parameter and  ,  are constants.  

The continuity equations can be obtained as  

,0)(3 


pH
mm

                                                (16) 

.0)(3 


pH                                                         (17)                        

The barotropic equation of state is  

.


 p                                                               (18) 

From equations (15)-(18), the EoS parameter become 

.
)(3

2
1

2
HHH

HHH
















                                                   (19)              

Holographic dark energy principal should be restricted by an infrared cutoff scale L and ultraviolet cutoff scale 

  without decaying into a black hole. The quantum vacuum energy should be less than or equal to the mass of 

a black hole that is 
23

p
LML 




 
, where 


  is the vacuum energy density and 2

1

)8(


 GM
p

  is the 

reduced plank mass.                 

Using commoving coordinates and equations (14)–(15) and (13), the ),( TRf gravity field equations, (11), for 

metric (12) can be written as 

 ]4[822
2

2




m
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A

A

B
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A

A
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2
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where a dot here in after denotes ordinary differentiation with respect to cosmic time “t” only. 

 

4. Isotropization and the solution 

The isotropy of the expansion can be parametrized after defining the directional Hubble’s parameters and the 

average Hubble’s parameter of the expansion.  The directional Hubble parameters in the directions ,,, zyx  

for the Kaluza-Klein metric defined in (12) may be defined as follows: 

A

A
HHH

zyx


 and 

B

B
H





        (23) 

The mean Hubble parameter, H, is given by 









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where R is the mean scale factor and BARV
34

 is the spatial volume of the universe. 

The anisotropy parameter of the expansion  is defined as 









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4

1

2
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1
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          (25) 

in the ,,, zyx  directions, respectively. The mean anisotropic parameter of the expansion   has a very 

crucial role in deciding whether the model is isotropic or anisotropic. It is the measure of the deviation from 

isotropic expansion, the universe expands isotropically when 0 . 

Let us introduce the dynamical scalars, such as expansion parameter )(   and the shear )(
2

 as usual 

H4            (26) 
22

2 H            (27) 

Equations (20) and (21) lead to 
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.        (28) 

Let V  be the function of t  defined by  

BAV
3

 .           (29) 

Then from equation (29), we obtain 

 
V

V

B
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A
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
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Integrating the above equation, we get 










  dt

V
xd

B

A 1
exp ,          (31) 

where x  and d  are constants of integration. 

In view of BAV
3

 , equation (31) leads to 










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V

dtx
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4
exp4

1
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,         (32) 









 
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

V

dt
xVdB

4

3
exp4

1

4

3

.         (33) 

Using equations (32) and (33), A  and B  are explicitly be expressed as 
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
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where  
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4

3
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4
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The above equations become 
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where 1
2

3

1
DD  and .03

21
 XX  

Since the field equations (20)–(22) are three equations having four unknowns and are highly nonlinear, an extra 

condition is needed to solve the system completely. Here we have used two different volumetric expansion laws  
b

atV             (38) 

and 
t

eV 1

1


 ,           (39) 

where a, b, 
11

,   are constants. In this way, all possible expansion histories, the power law expansion, (28), 

and the exponential expansion, (39), have been covered. 

 

5. Model for power law 

Using (38) in (36) and (37), we obtain the scale factors as follows: 
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Metric (12) with the help of (40) and (41) can be written as 
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The directional Hubble parameters are found as 
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The mean Hubble’s parameter, H, is given by 

.
4 t

b
H 

           

(45) 
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Figure No. 1. Hubble parameter vs Time. 

 

Using the directional and mean Hubble’s parameter in (25), we obtain 
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Figure No. 2. Anisotropic parameter vs Time. 
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The dynamical scalars are given by 
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Figure No. 3. Expansion Scalar vs Time. 
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Figure No. 4. Deceleration Parameter vs b. 
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The holographic dark energy density and pressure become 

                                                  ,
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The EoS parameter yields 
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We obtain the energy density of matter as 
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The matter density parameter 
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From equations (54) and (55), we get overall density parameter  
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6. Model for exponential law 

Using (39) in (36) and (37), we obtain the scale factors as follows: 
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Metric (12) with the help of (57) and (58) can be written as 
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The directional Hubble parameters are found as 

tzyx

e

X
HHH
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4
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          

(60)
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


          (61)

  

The mean Hubble’s parameter, H, is given by 

4


H .           (62) 

The anisotropy parameter of the expansion,  , is 

2

1

2

1

22 14



 t
eX



 .          (63) 
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Figure No. 5. Anisotropic Parameter vs Time. 

The expansion scalar,  , is found as 

  .            (64) 

The shear scalar, 
2

 , is obtained as 
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Figure No. 6. Shear Scalar vs Time. 

The deceleration parameter 

1q
,            (66) 

where 
2

2

2

1

2
3 XXX  = constant . 

The holographic dark energy density and pressure become 
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                                                  ,
16
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
                                                                          (67) 

.
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3
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
p                                                                           (68) 

The EoS parameter yields 

                                                          .1


                                                     (69) 

We obtain the energy density of matter as 

                                            
tm

e

k

1

1

2




                                                     (70) 

The matter density parameter 
m

 and holographic dark energy density parameter 


 are given by 

   

                        ,
4

4 1
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                   (71)  
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From equations (71) and (72), we get overall density parameter  
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2
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t
m

e
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                       (73) 

 

7. Our findings: 

i) Power Law Model: 

 At an initial epoch, both the scale factors vanish, start evolving with time and finally as t  they 

diverge to infinity. This is consistent with the big bang model. As scale factors diverge to infinity at large time 

there will be Big rip at least as far in the future. In power law model, the scale factors vanish at  0t and hence 

the model has the initial singularity[71]. It is observed that the volume of the universe expands indefinitely for 

all positive values of b. The directional Hubble parameters are dynamical. These are diverse at 0t  and 

approach zero monotonically at t . The Hubble parameter decreases with time as shown in figure 1.We 

observe that the Hubble parameter, Expansion Scalar and Shear Scalar are very large at an initial epoch and 

finally tends to zero as t [72-75]. This suggested that at initial stage of the Universe, the expansion of the 

model is much faster and then slow down for later time this shows that the evolution of the Universe starts with 

infinite rate and with the expansion it declines. From the value of mean anisotropic parameter in Eq. (46), it is 

clear that the universe was anisotropic at early stage of evolution and approach to isotropy at large time as 

shown in figure 2. The rate of expansion of the universe decreases with time as shown in figure 3. The shear 

ratio of shear scalar to expansion scalar shows that at early epoch the universe is anisotropic and as time 

increases it tends to isotropy. The universe starts with an infinite rate of expansion and measure of anisotropy. 

This is consistent with big bang model. It is mentioned that q was supposed to be positive initially but recent 

observations from the supernova experiments suggest that it is negative. The positive deceleration parameter 

corresponds to a decelerating model while the negative value provides inflation. For 4b  the deceleration 

parameter is negative which is specified in figure 4. The model (42) represents an accelerated universe. The 

physical parameters 


p,  are decreasing functions of time. They all become infinite at 0t and vanish for 

.t The values of total energy density parameter 1,1,1   correspond to the open, flat and 

closed universe respectively. From the right hand side of Eq. (56), one can observe that the overall density 

parameter approaches to  approaches to constant quantity as t . In power law expansion of the Universe, it 

is observed that the energy density of matter is always positive and decreasing function of time t. At the initial 

stage 0t the Universe has infinitely large energy density 
m

 but with the expansion of the Universe 

it declines and at very large t  , it is null .0
m

  

ii) Exponential Law Model: 

 The scale factor are constant near 0t , afterwards start increasing with time and as t , they 

diverge to infinity. The model is free from singularity [76-78]. Hence in this case, the volume of the universe is 
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an exponential function which expands with increase in time from a constant to infinitely large. The spatial 

volume is finite at 0t . It expands exponentially as t increases and becomes infinitely large as t . We 

have obtained the deceleration parameter 1q  and 0
dt

dH
for this model. Hence, it provides the best 

values of the Hubble parameter and also the quickest rate of growth of the universe. The model may represent 

the inflationary era in the early universe and the very late time of the universe. The directional Hubble 

parameters are finite at 0t  and t . The mean Hubble parameter is constant whereas the directional 

Hubble parameters are dynamical. The expansion scalar is constant throughout the evolution of the universe 

which exhibits uniform exponential expansion. The ratio of shear scalar to expansion scalar is non zero i.e. the 

universes is anisotropic and as time increases it tends to zero i.e. at late time the universe tending to isotropy. As 

t increases, the anisotropy of the expansion (Δ) decreases exponentially to null. Thus the space approaches to 

isotropy in this model. At 0t , the anisotropy parameter is constant and decreases with time for 0
1
 . It 

means that the universe was anisotropic at early stage and approaching to isotropy as time increases which is 

shown in figure 5.The Shear Scalar 0 , as t  as shown in figure 6.The sign of q indicate whether the 

universe accelerates or decelerates. A positive sign of q corresponds to the standard decelerating model and the 

negative sign of q indicate acceleration. Cosmological observations indicated that the expansion of the universe 

is accelerating at the present and it was decelerating in the past. From Eq. (66), it is observed that the 

deceleration parameter is negative i.e. the universe is accelerating which is in agreement with current 

observations of SNe Ia and CMB[79-81]. The physical behavior of holographic dark energy density and 

pressure are constant. As pressure is negative, it indicates that the derived model is accelerating. It is interesting 

to observe that the holographic dark energy EoS parameter 


 in equation (69) behaves like cosmological 

constant, this is mathematically equivalent to cosmological constant  . From Eq. (70) it is conclude that at the 

initial stage of the Universe the energy density is approaches to constant value and with the expansion of the 

Universe it is decreases and at large expansion it is null i.e. 
0

m


. Thus, our derived Universe is free from 

big rip. The sum of the energy density parameter approaches to the value near about 4

3

 as t . So at late 

times the Universe becomes flat. 

 

II. Conclusions: 
 In this paper we have investigated the role of two fluid minimally coupled in the evolution of the 

holographic dark energy with matter in ),( TRf gravity for the five dimensional Kaluza-Klein space-

time.  

 The exact solution of the field equations have been obtained by assuming two different volumetric 

expansion laws in a way to cover all possible expansion: namely exponential and power law expansion.  

 It is observed that, in power law, the model has an initial singularity while in exponential model, it is free 

from any type of singularity.  

 In both the model the value of deceleration parameter is negative which indicates that the expansion of 

the Universe is accelerating.  

 In both the models the overall density parameter tends to one at late times i.e. the Universe becomes flat 

which is compatible with the observational results.  

 The power law model initially stable but with expansion it is unstable. 
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