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Abstract: As mobile devices evolve to be powerful and pervasive com- puting tools, their usage also continues to
increase rapidly. However, mobile device users frequently experience problems when running in- tensive
applications on the device itself, or offloading to remote clouds, due to resource shortage and connectivity
issues. Ironically, most users’ environments are saturated with devices with significant computational resources.
This paper argues that nearby mobile devices can efficiently be utilised as a crowd-powered resource cloud to
complement the remote clouds. Node heterogeneity, unknown worker capability, and dynamism are identified as
essential challenges to be addressed when scheduling work among nearby mobile devices. We present a work-
sharing model, called Honeybee, using an adaptation of the well-known work stealing method to load balance
independent jobs among hetero- geneous mobile nodes, able to accommodate nodes randomly leaving and
joining the system. The overall strategy of Honeybee is to focus on short-term goals, taking advantage of
opportunities as they arise, based on the concepts of proactive workers and opportunistic delegator. We evaluate
our model using a prototype framework built using Android and implement two applications. We report speedups
of up to 4 with seven devices and energy savings up to 71% with eight devices.

Index Terms: mobile edge-clouds, crowdsourcing, mobile crowd com- puting, offloading

I. Introduction

Todays environments are becoming embedded with mobile devices with augmented capabilities,
equipped with various sensors, wireless connectivity as well as limited computa- tional resources. Whether we
are on the move, on a train, or at an airport, in a shopping centre or on a bus, a plethora of mobile devices
surround us every day [47], thus creating aresource-saturated ecosystem of machine and human intel- ligence.
However, beyond some traditional web-based ap- plications, current technology does not facilitate exploiting
this resource rich space of machine and human resources. Collaboration among such smart mobile devices can
pave the way for greater computing opportunities [54], not just by by creating crowd-sourced computing
opportunities [29] needing a human element, but also by solving the resource limitation problem inherent to
mobile devices. While there are research projects in areas such as mobile grid computing where mobile work
sharing is centrally coordinated by a
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remote server (HTC power to give') and crowd-powered systems using mobile devices (Kamino?, Parko®) a gap

exists for supporting collective resource sharing without relying on a remote entity for connectivity and

coordination. How- ever such mobile crowds (also referred to as mobile edge- clouds [20]) are not meant to

replace the remote cloud computing model, but to complement it as given below:

- Asanalternative resource cloud in environments where connectivity to remote clouds is minimal.

- Todecrease the strain on the network.

- Toutilise machine resources of idle mobile devices [55].

- Toexploit mobile devices’ sensor capabilities which has enabled the mobile crowdsensing paradigm [27]. A
resource cloud capable of such multi-modality sensing can enable innovative applications.

- As mobile devices are usually accompanied by users, they also possess an element of human intelligence
[27] which can be leveraged to solve issues that require human intervention, such as qualitative
classification.
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A mobile crowd can be viewed as a specialized form of a mobile cloud which, in turn, can be viewed from two

main perspectives:

- migrating the computation and storage in mobile de- vices to resource-rich centralized remote servers, and

- leveraging the computational capabilities of the mo- bile devices by having them as resource nodes, as
been adopted in research such as the Mobile Device Cloud [21], [46], Hyrax [42], Mobile Edge-Clouds
[20], [2], [28], [6], MClouds [45], MMPI [19], Virtual cloud computing for mobile devices [31], and in
[55].

Moves storage/computation to external

resources - caters to mobile and stationary
obile Cloud ™ ¢lients

Computing  [Moves storage/computation to external

] resources - caters to mobile clients only
obile Crowdy

Computing [Moves storage/computation to external mobile

resources - caters to mobile clients only
Fig. 1: Classifications of Cloud Computing subsets

loud Computing

Both of these views have the same objective of mov- ing computation and/or storage away from the
resource-

1. http://www.htc.com/us/go/power-to-give/

2. http://lwww.gokamino.com/

3. http://lwww.parko.co.il/

constrained mobile device to an external entity. As illus- trated in Figure 1, the difference lies in the
nature of external resource providers used to augment the computing potential of mobile devices. The focus of
this paper is on mobile crowd (or edge-cloud). In our view, the human user of a mobile device is also a resource,
which adds an element of crowd computing [48] to the mobile cloud as well. Therefore, we refer to this
specialized mobile cloud as the Mobile Crowd. There are several unique features that differentiate mo- bile
crowd environments from a typical grid/distributed computing cluster, such as less computation power and
limited energy on nodes, node mobility resulting in frequent disconnections, and node heterogeneity [22].
Hence, solu- tions from grid/distributed computing cannot be used as they are, and need to be adapted to suit the
requirements of mobile crowd environments.

This paper presents the Honeybee model, that supports P2P work sharing among dynamic mobile
nodes. As proof of concept we present the Honeybee API, a programming framework for developing mobile
crowd computing appli- cations. We build on previous work where we initially in- vestigated static job farming
among a heterogeneous group of mobile devices in [25], which was followed by a more self adaptive approach
in [22] using the ‘work stealing’ method [8], and in [23] where three different mobile crowdsourcing
applications were implemented and evaluated. The progress of our research on work sharing for mobile edge-
clouds is illustrated in Table 1.

TABLE 1: Evolution of the Honeybee model for computing with nearby mobile devices

Phase 1 Phase IT Phase IIT

Simple work Work stealing on Enhanced work stealing
farming on Bluetooth [22], [23] on Wi-Fi Direct: current
Bluetooth [25]  econnect to workers paper - connect to
-connect to via Bluetooth workers via Wi-Fi Direct
workers via «distribute jobs «work stealing commences
Bluetooth equally without initial equal job
adistribute » load-balancing via  distribution

jobs equally work stealing after  « fault-tolerance methods
-no initial job -periodic resource
load-balancing  distribution discovery

In this phase, we have improved the work stealing algorithm of phase Il to address the bottlenecks in
the trans- mission of large job data by optimising the job distribution strategy and using Wi-Fi Direct. Phase 11l
is also able to handle random disconnections and opportunistic connec- tions. Beyond our previous work, the
main contributions of this paper are, an enhanced stealing method, evaluation of system behaviour, and
mathematical bounds for per- formance. We show considerable amounts of performance gain and energy
savings using our system. Although we recognize that incentives, security and trust mechanisms are essential for
a successful mobile crowd, these issues are not addressed in this work. For the purposes of this paper, we have
assumed that; incentive mechanisms are already in place, and Honeybee is run on a secure environment.
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Il. Related Work

Offloading computation and storage from mobile devices to an external set of resources, has been
explored in the node mobility. Honeybee, on the other hand, focuses on offering computation services rather
than storage. In most mobile task sharing systems, Wi-Fi or 3G has been the most used communication
protocols, except in the cases such as the MMPI framework [18], which is a mobile version  of the standard
MPI over Bluetooth, and uses Bluetooth exclusively for transmission, and Cuckoo[34], based on the Ibis
communication middleware [62], to offload to a remote resource, and supports Bluetooth with Wi-Fi and
cellular. Although Honeybee has used Bluetooth in previ- ous versions, the current implementation uses Wi-Fi
Direct due to better speeds and range. FemtoCloud [28] proposes an opportunistic mobile edge-cloud platform
that offloads jobs to nearby mobiles, similarly to Honeybee. However, whereas Honeybee does not require prior
information about the computational capabilities of the worker nodes to load- balance the task, FemtoCloud’s
scheduling strategy depends on periodic capability estimations of each worker node.
At the other end of the spectrum, crowd computing[48], [47], [52] has been shown to have the potential to use
mobile devices in a social context to perform large scale distributed computations, via a static farming method.
However, our results show that the work stealing method can provide better results. Social aware task farming
has been proposed as an improvement on simple task farming, and social aware algorithms show better
performance in their simulation based on real world human encounter traces [48]. In the future we hope to build
on this result (social aware task sharing) as an incentive for participation. In [26], human ex- pertise is used to
answer queries that prove too complicated for search engines and database systems, and in Crowd- Search [64],
image search on mobile devices is performed with human validation via Amazon Mechanical Turk. A generic
spatial crowdsourcing platform using smartphones is discussed in [11], where queries are based on location
information. Mobile phones are used to collect sensor data on Medusa [53], according to sensing tasks specified
by users. In Rankr [41], an online mobile service is used to ask users to rank ideas and photos. These are
primarily con- cerned with the crowdsourcing aspect, using mobile devices as tools to access an online
crowdsourcing service that is hosted on a remote server. In contrast, Honeybee defines the crowd as the
surrounding mobile devices and their users, and focuses on sharing the tasks on a crowd of local mobile devices
with performance gain and saving energy as the main goal. Indeed, results from the above research show us that
user participation is at a considerable level, and using micro payments for such ‘micro tasks’ is viable.

Our work is different from these in terms of using only

local mobile resources opportunistically, satisfying the re- quirements of a mobile device cloud of
being proactive, opportunistic and load-balanced while showing speedups and energy savings in an actual
implementation. Our focus is on a model that can be used to implement a variety of tasks, not limited to query
processing, sensing, or human validation. We compare and contrast features of Honeybee with similar work
focused on distributed mobile computation in Table 2.

I11. Model And Algorithms

We define Mobile Crowd Computing as a group of dynami- cally connected mobile devices and their
users using their combined machine and human intelligence to execute a task in a distributed manner. Such a
mobile crowd is comprised of heterogeneous devices and could be unknown to each other a priori. Participating
mobile nodes may dynamically leave or join the crowd without prior notice, and these must be accom- modated
by opportunistically seeking out new resources as they are encountered and having appropriate fault-tolerance
mechanisms to support mobility.

Honeybee accommodates the above requirements by being proactive and opportunistic, where jobs are
‘taken’ by nodes rather than ‘given to’ nodes, as the availability and resourcefulness of each node is unknown a
priori, and subject to change any time. For example, if a participating mobile device receives a call, its
resourcefulness may de- crease, or the user may move away, causing the device to be unavailable. In this work,
the device having the job queue representing the task to be completed, is called the delegator as it delegates a
portion of its task to others. The devices with whom these jobs are shared are referred to as workers.

Target applications

Target applications fall into three categories as given below:

1) Human aided computation is related to enabling collab- oration among mobile device users for tasks
demand- ing human specific skills (eg: qualitative classification).

2) Machine computation applications aim to improve the performance and/or conserving resources such as en-
ergy, for programs needing extensive computational resources such as memory, battery, and CPU.

3) Applications using Hybrid computations are the ones that are a mix of the two aforementioned categories.

Job scheduling method
The following characteristics of a mobile edge-cloud need to be considered when scheduling jobs among nodes:
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1) heterogeneity: since nodes may be of heterogeneous ca- pability and jobs may require varying amounts of
re- sources, job allocation is non-trivial. Optimally stronger nodes should do more work. An expiration
mechanism is needed so that stronger nodes can steal expired jobs taken by weaker nodes. Otherwise, if
jobs were farmed equally, weak nodes may become bottlenecks.

2) unknown capability: since the delegator is unaware of worker capability, it is not possible for the delegator
to assign more work to stronger nodes. Exchanging metadata is not effective due to node dynamism, e.g.,
the node capabilities may change randomly, thereby making the information derived from metadata invalid.

3) dynamism: due to mobility and factors such as human intervention and low battery, nodes are prone to
failure. Hence the possibility of frequently disconnections and new nodes randomly joining need to be
supported, and the overall strategy needs to focus on short term goals and take advantage of opportunities as
they arise.

Addressing heterogeneity and unknown device capability: The well-known work stealing method [8]
can accommodate the first two factors of heterogeneity and unknown capability given above. This been shown
to be an efficient and scalable load balancing method for shared and distributed memory systems [16] in
traditional distributed environments [63], and has been used in Cilk ([9], [33]), Parallel XML pro- cessing [40],
and Energy-efficient Mobile grids [56]. Further- more, it is able to achieve this without a centralized control,
and no prior information about the participating devices. As shown in [33], work stealing is efficient even with
different processors with dynamically changing speeds.

Addressing dynamism: To satisfy the third factor of dy- namism, we have included fault-tolerant mechanisms

and also opportunistically attempt to connect to new resources as they are discovered in our model. The

dynamic nature of the mobile crowd can cause the following events:

1) a worker’s capability changes (e.g., moving away from the delegator while keeping in range, or vice versa).

2) new devices appear within range.

3) awaorker device continues to be visible, but becomes non-responsive (e.g., the device stays within range,
but the user terminates participation due to low battery).

TABLE 2: Comparing Honeybee with related work

Name Objective Under ©Com- Ex- Load-balanced? Diisconmnec- Opportunis-  Job charing
Iymg mune  ter- tons et
frame- ¢ation mal supported?
work proto-  coor
cols di-
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tion?

Honevbee  Terformance gain and Tlone. TWi- o Yes viawak Yes Yes, via Tobs are
save energy. Speedupsip  Imple-  FiDdired stealing periodic proactively
to 4 when sharing with menied TES0UICE wken by
equally capable devices from discovery nodes

scratch rather than
given to

H}'ra.x[-v_], Feriormance EAITL and Eased TWi1-F1 Y a5 Tot menboned Yes, via oo TWAmE node

3] save energy. Paformance on Hadoop's assigns jobs
iscompared againstusmg  Hadoop node failure toslave
servers and not against handling nodes
monolithic execution

RRPITE] Ferformarce gain. Based Elue- Fo Totsupported, but Jor] I U=es
Maximum speedup with onMFI  tooth hasbesn suggested Master-
four nodes was 37% for Slave wor:
mairix mulliplication farming
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impla-
mented)

Zerendip- Ferformance gain and Tlone WI-FI  TIho Totmenfioned Tes yia job Tes via TWorkers ar=

ity [38] Save enerpy. gpeedups axpiration exchanging given jobs

) upto 3 when sharing with meta-data ﬁ}' Master
a stronger device
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Devica save energy. Caininboth  on tooth, given jobs
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Facial recognition at the workplace

Even a resource rich environment can sometimes be unus- able depending on the type of work and the
location of data. For example, take the case of Jane at her office equipped with many PCs. She has hundreds of
photographs on her camera phone, taken at a recent office party. Her friend Mary asks to send her all the
photographs where Mary appears. As Jane is unable to connect her phone to a computer, she considers using her
the device to run a facial recognition app that compares each of the images with a photograph of Mary and
filters the ones containing her face. How- ever facial recognition algorithms are costly, and processing a large
number of photographs could take a substantial amount of time, freeze the device and drain the battery. These
challenges can be addressed by offloading/crowd- sourcing the image processing task to external computing
resources, as explored in [59], [38], [44] and implemented in projects such as GeoTag-X6 and Galaxy Zoo7.
However, the aforementioned approaches need remote clouds and/or cloudlets, neither of which are available to
Jane. Therefore Jane employs Honeybee to share the task with mobile de- vices belonging to her colleagues as
follows:
a) The job queue has all photos taken on the specific day.
b) Each job has an image file (to be compared with Mary’s image). The job characteristics are given in Table

4.

c) ‘Workers’ would be Jane’s colleagues’ mobile devices.
4. http://geotagx.org/
5. http://lwww.galaxyzoo.org/

TABLE 5: Job Characteristics: Mandelbrot set in the class- room

Objective Obtain speedup: Delegator can do job by itself, but
will require too much time, battery and probability
of crashing is high. .. delegator does part of the job.

Worker Medium

encounters

Disconnections Low: since students and teachers tend to stay within
a classroom, school boundaries within a siven time

Job format Stringe

Result As integer arravs

sensor data processing programs, and medical data analysis. For example, use of external devices for processing
bio- signals has already been discussed in systems such as Mobi- Health [32], and remote ECG data analysis
[50] using remote servers. However, instead of transmitting sensor data from medical equipment over the
Internet, Honeybee would use the patients’ surrounding devices to analyse the data.

Strategies for efficiency optimisation

Several optimisations have been performed for efficiency, including using Wi-Fi Direct as the mode of
communication, setting the steal limit and the mechanisms of job expiry, heartbeats and periodic resource
discovery.

P2P communication using Wi-Fi Direct

Wi-Fi Direct is used as the mode of communication to achieve our objective of minimising transmission delays
(Table 1). Wi-Fi Direct allows P2P Wi-Fi connections be- tween ‘Wi-Fi CERTIFIED®R ’ devices without
the need for Wi-Fi APs [61], at Wi-Fi speeds. Its connection process has three main stages; the search and
discovery stage is the first, and is followed by the Group Ownership negotiation stage. Here, the P2P group is
formed consisting of one P2P group owner (GO) which implements AP-like functionalities, and P2P clients.
Since these roles are dynamic, devices need to negotiate their roles prior to establishing the group [10]. The
device with the highest Intent value (a number from 0 to

15) is designated as the GO. The allocation of IP addresses is the final stage, where the GO provides the
clients with 1P addresses. As long as the hardware of GO supports Wi-Fi Direct, legacy devices with upgraded
software can function as P2P clients. As shown in Table 6, Wi-Fi Direct outperforms Bluetooth in speed, range
and security.
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TABLE 6: Comparing Wi-Fi Direct with Bluetooth

Bluetooth 4.0 Wi-Fi Direct
Speed 721.2 kbps (basic), 2.1 Mbps  yp to 250Mbps

(enhanced) & high speed op-

eration up to 54 Mbps [7]

Range up to 100 m up to 200 m

Security  AES128-bit encryption WPAZ2 security

Power low-energy technology two power saving modes
Availability widely available not as widely available

Job expiry

The job expiry time is the minimum amount of time a worker would be allowed to complete a given
job. This mechanism is needed to prevent stronger devices waiting indefinitely for a weaker device attempting a
very intensive task. After a node starts running a job, it cannot be stolen. Hence the delegator needs to decide
whether or not to term the job/s as expired and add them back to the job queue, which would give a chance for
any other node to complete it. Based on the time the job/s were stolen, the oldest jobs would be Worker Medium
termed as expired. The only time a delegator expires jobs is after an unsuccessful steal attempt and it’s job
queue is exhausted. For example, the scenario in Figure 4, shows the number of jobs left in the delegator’s and a
worker’s job queues over time. For ease of illustration only one worker is shown in the figure, although other
workers exist. At TO, the delegator has m number of jobs in its queue. At time Te, workere successfully steals j
jobs from the delegator. These are received by workere at time Te + & and workere starts executing the stolen
jobs immediately. However, from the delegator’s point of view, the jobs were stolen at time Te, and therefore,
logs the jobs’ stolen time as Te. Time progresses, and the delegator finishes its own job queue at time Td. At
this point, the delegator attempts to steal some jobs from another worker (not workere) and is able to add k
stolen jobs to the queue at time Td + 6. By time To, the delegator completes the aforementioned k number of
jobs as well. Once more, the delegator attempts to steal, but receives a negative answer at time Ts. The delegator
examines the stolen job list after each unsuccessful steal and at time Ts, the delegator consults the list of jobs
that have been stolen, but whose results have not been returned. The oldest jobs left are then identified to be the
j number of jobs that were stolen by workere, are added back to delegator’s queue, and are completed by time Tf
. There may be cases when the node workere is not actually a weak node, but the j jobs are extremely intensive
such that it is more time consuming than all of the other jobs accumulated. However, even in that scenario
expiring the jobs would not harm the overall performance as the task would be finished as soon as either node
finishes the job, and the nodes in the system have no other jobs to work on.
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Fig. 4: Expiring oldest jobs

Steal limit

Each device has a preset steal limit s, and can be described as the number of jobs a nodes keeps in
reserve when it receives a steal request from another node. The steal limit is job specific and the default value
can be overridden to suit the needs of the application. As opposed to jobs simply being transferred among
devices in an unending manner, this ensures a device will not starve and computations will eventually terminate.

Worker heartbeat

The dynamic nature of mobile edge-clouds will incur fre- quent and unpredictable disconnections. If
the disconnec- tions are unidentified, the delegator may wait unnecessarily for the return of stolen jobs. To
address this, each worker sends a periodic signal to indicate that it is alive. If the worker had sent results to the
delegator, or acknowledged a job transmission, within that time period they are also counted as heartbeats. If the
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delegator cannot hear a worker heartbeat for m consecutive checks, the delegator deems that worker is dead, i.e,
either moved away or lost connec- tivity, and adds the respective stolen jobs back to the queue.

Periodic resource discovery

As much as random disconnections are an inherent attribute of a mobile resource cloud, so too are
random device en- counters leading to connections. To support opportunistic resource connections as and when
they become available, a periodic resource discovery is done by the delegator every r seconds, and carried out
till the task completes.

Conditions for speedup

The probability of speedup depends on a number of factors;

1) Parallelization overhead: the additional time spent on co-ordination (initiating the job queue by
breaking the total task down to jobs, maintaining a thread pool, synchronization, handling incoming messages
from workers, monitoring worker health) adds extra costs. Communication costs (transmitting jobs to workers
and receiving results) are not included as they are included in the workers’ job completion time (see factor 5
below).

2) The serial task running time should not be too short: for tasks with very short running times,
parallelising and job distribution only add extra costs. The time to complete a parallelised task on Honeybee
depends on the parallelisation overheads, running time of the delegator thread doing useful work, and the
running time of delegator’s communication thread handling worker transmissions. Depending on node
capability, and communication constraints, either thread may fin- ish first. To match serial performance, the
workers must make up for at least the parallelisation overheads. To gain speedups, the monolithic task time must
at least worker can do in a given time. Therefore, a worker that has a powerful CPU, but has low availability
would not be considered as possessing high capability.

From the above list, items 1 to 4 can be determined prior to job execution, and can be regarded as ‘known’.
Items 1 to 3 are job dependent and item 4 depends on the implementa- tion of the Honeybee framework. But the
last item regarding worker capability is impossible to know a priori. Worker capability can further be expressed
in terms of the amount of work a worker completes compared to the delegator.

Upper and lower bounds for speedup

Let us denote each device as ni, where the delegator would be denoted as nl1, and the time taken to complete m
jobs onnl astl. The time taken to receive, complete and send the results of m jobs on a worker device ni can
be given as ti, where i > 1. To express the ‘capability’ of worker ni in terms of nl, the relationship between t1
and ti where i > 1 needs to be examined. Let us say there exists a non negative constant ki for each ni device
such that ki is the relative power of ni compared to n1, and given as follows:

ti=k (1)

tl i

Let us say that a task consisting of | jobs were completed

on this system containing nodes from 1 to f . If the number of jobs completed by each node ni can be given by
hi, then the total number of jobs completed by the delegator node nl is hl, where | > h1 > 0. Then, the total
number of jobs completed by all the worker nodes can be given by

f

hi = I h1. Depending on the values of hl and | h1, and

i=2

assuming that all the jobs were equal, the capability of the

worker devices can be compared to the delegator. Therefore, the worst case scenario for Speedup is when the
collective capability of workers is weaker than the delegator; i.e. hl >1hl. Here, Speedup S is defined as
the comparison between the time taken to complete a task using Honeybee versus the time taken to execute the
task monolithically (the ‘monolithic version’ refers to the task without any of the parallelizing components).
Therefore, when tM is the time to complete the ‘monolithic version’ of the task on delegator node nl, and tp is
the total time to complete the parallelized version using Honeybee, S can be given as,

jobs and ignoring overheads. Since the overheads are non- negligible, and jobs are not always guaranteed to be
equal, the actual speedups would be less than this value. Here, we derive a lower bound for speedup,
considering the worst case scenario discussed above. We assume that the delegator will be doing part of the job,
although it is not always the case (e.g., the scenario in Section 3.3.1). If the delegator is unable to contribute to
the work, there could not be a comparison for Speedup anyway. In the worst case scenario, the collective
capability of worker devices s infinitely less than that of the delegator. Let us assume that in the extreme
case, the collective capability of the workers is so small compared to the delegator, that their contribution is
non-existent. This is similar to the case when
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the delegator executes the parallelised version, but fails to find any worker nodes during the entire course of the
execution. There are still overheads with no workers, such as parallelising costs and searching for workers periodically.
In this case, if the time to complete the parallelised version only using delegator n,’resources is given by t,, then t, is
greater than ty, . Since the monolithic version is devoid of the parallelisation overhead, t, is given by,

to =ty + C, C is the parallelizing overhead for n; (3) Figures 5a and 5b show the scenarios for task times ty
andt,. Asexplained in Section 3.4.2, the effect of extremely
weak nodes is dealt with by expiring the oldest jobs after the delegator exhausts its own queue. Let us say the time for
the delegator to complete the jobs, with extremely weak nodes that do not contribute to the work in any way, is time t;-
(Figure 5c), i.e.,
to =to + e, where e is the job expiration cost fornl  (4)
Hence the worst case job completion time tworst when all
workers are infinitely weaker than the delegator is,
tworst=to =tM+c+e (5)
- the lower bound for speedup can be derived as,

In summary, the collective capability must amortise the par-
ellelization cost, as experimentally illustrated in Section 5.

task time = tpy task. l'ime-tm+: task time = tM+c+e$

ob poo h poo !po!
é@ @E‘? @&31 @

{a)monalithic (b)}Parallelized, [c)Parallelized, with

o workers extremely weak workers

wn-rlue

Fig. 5: Comparing the task time for three scenarios

IV. Implementation
Honeybee is implemented on Android, using Wi-Fi Direct as the communication protocol. Application
developers can use the methods and interfaces provided by the framework for writing work sharing mobile apps.
As shown in Figure 6, the framework contains three main components responsible for the main areas of
Application interfacing, Job Handling, and Communication.

<On Task Completed>

<Read Results><Signal Termmauon
al R

Fig. 6: Main Components in the Delegator

The application component

The Application layer methods interfaces between applica- tion specific code and the core structure. At the
starting point of execution, the framework extracts the application specific parameters via the AppRequest
interface that pro- vides abstractions to represent the task as a list of jobs.

coded and assembled into jobs, and added to the

jobList.
4) Fault tolerance threads: as fault tolerance mechanisms, jobs that were already assigned to workers may
pre- sumed ‘lost” and be added back to jobList. This takes place when jobs expire (Section 3.4.2), or worker
heartbeats are missed (Section 3.4.4).
In cases (3) and (4) above, when jobs are added, new local execution threads are spawned as Runnable tasks and
added to a single thread pool, thereby ensuring that only one local execution thread is running at a given time.
These are then executed locally as described in case (1).

4.3 The communication component

Potential workers are identified by running resource discov- ery every t seconds. Whenever a new
resource is detected, the user has the choice to initiate a connection. For each successful worker connection, a
reading thread is kept alive throughout the lifetime of the connection as the delegator needs to receive various
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messages from the workers at intermittent intervals. The messages expected to be received and written by the
delegator are summarized in Table 7.

TABLE 7: Types of 1/0 messages handled by the Delegator

Read

Write

1. Steal requests by workers

2. Workers” acknowledgement
of receiving job data

3. Negative replies to steal at-
tempts by the delegator (whena
worker does not have any jobs)
4. Stolen jobs in cases of success-
ful steals

1. Jobs stolen successfully by
workers

2. Reply to unsuccessful steal
attempts by workers (when the
delegator does not have any
jobs for workers to steal)

3. Steal requests from delegator
(when the delegator attempts to
steal from others)

4. Termination signal sent to
workers once delegator verifies

all jobs have been completed.
5. Results sent by workers
6. Worker heartbeats

V. Experimental Evaluation
This section evaluates the Honeybee algorithm, focusing on speedup, and the best and worst case scenarios of
machine- centric computation. Human-centric computation with an app for collaborative photography is
discussed in our pre- vious work [23], [22].

all of the tests. Performance using Honeybee was evaluated against performance of the monolithic versions. In
particu- lar, the evaluation objectives are: 1) examine the speedups for a fixed task size for varying number of
devices; 2) examine the speedups for fixed numbers of devices for varying task sizes; 3) examine energy
consumption for a fixed task size for varying number of devices; 4) exper- imentally demonstrate the
mathematical lower bound on speedup; and 5) examine program behaviour with random disconnections.The
results were obtained from two applica- tions implemented using the Honeybee API, as given below:
Distributed face detection: Face detection requires a large amount of CPU and memory. Running face detection
on a considerable number of images is usually very slow, and can cause the application to be non-responsive, or
even cause OutOfMemoryExceptions and incur high energy costs. Us- ing Honeybee, we aim to address these
issues by sharing the resource intensive computations with other devices. In this application, Android’s native
face detection algorithms are executed on a collection of photographs. This collection contains 30 unique image
files with a total size of 8.4 MB. In order to achieve uniform comparisons for different job pool sizes, we
duplicate the same files for job pools of 120, 240, 480, 960, 1920, 3840, and 4800. These images are stored in
the delegator (a Nexus 7) at the start of execution.

Distributed Mandelbrot set generation: In the context of the Mandelbrot set, jobs represent rows of a 300 x 300
Mandelbrot image. These applications were chosen for their different characteristics, as listed in Table 8.

TABLE &: Applications’ characteristics

Name Type Inputs COutputs

Face de- Machine Imapes- String withimage name

tection centric: (PU  largedata and # faces detected,
end memory size small data size.
intensive

handelbrot Machine Strings- Integer arrays, large
centricc. CPU  Smalldata datasize
intensive size

V1. Results & Discussion
Figures 7, 8 illustrate the performance results of experiments for the Face detection app and the Mandelbrot app
using Honeybee. All tests were repeated at least three times. These are summarised in Table 9 with the average
speedup, standard deviation of speedups and the confidence (Cd) for significance value of 0.05.
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TABLE 9: Results with standard deviation and confidence

#Devices F  Avg  5Std Cd M Avg  Std Cd
5 5

- A A
2 < 1680 0082 0093 N 1621 0096 0004
3 E 2247 0074 0084 D 2145 0114 0129
4 N LH1Y Uuxs  Lubb  E LbEs  ooas  vuss
5 A 3213 0109 0123 L 3083 0117 0115
<] T 3879 0164 0186 B 3374 0056 0.049
5 C 4012 0059 0066 E 3471 0084 0074
H - - - O 3655 0095 0.094
9 - - - T 3724 0057 0.064

Performance gain

Both applications were tested for speedups for a fixed task size while varying the number of devices. Figure 7a
gives the face detection performance results for 960 images. As can be seen, the speedup is proportional to the
number of devices and the maximum average speedup observed was 4.012 for 7 devices. Results from
Mandelbrot set generation show a similar trend in Figure 7b where the maximum av- erage speedup was 3.724.
Figure 7c shows the speedups for Face detection using varying numbers of jobs versus a fixed number of
devices. Comparing the results for both 2 and 3 devices, in both cases the speedup increases proportionally to
the task size. Figures 7dand 7e show the percentage and amount of time saved for Face detection, and Figure
7f shows the percentage of time saved for Mandelbrot set generation. As can be seen from all three graphs, the
time saved is proportional to task size (total number of jobs) and amount of resources. From Figures 7a, 7b, 7d
and 7f, it is clear that the speedup plateaus after reaching the maximum speedup value. Overheads due to
maintaining connections and parallelisation could be the reason for this. From a com- munication perspective, as
the number of concurrent con- nections increase, the workers must compete for the same channel, thereby
reducing the data rate for each device. Furthermore, the delegator must manage more concurrent threads as more
and more workers connect, which can slow the delegator. This is evident from Figures 7a, 7b, and 7f, where the
rate of performance increase gradually slows down as number of devices increase (discussed further in section
5.1.6 according to data in Table 12). Implementing a hierarchical structure may help to overcome this barrier In
Figure 8a speedups are mapped against the percentage of jobs done by the delegator for Face detection. Here it
is clear that maximum speedups are obtained when the delegator does the least amount of work.

Effect of Wi-Fi Direct
When comparing these results with the results for Face detection in our previous work in Phase 11 [23] using
Blue- tooth, there is a marked improvement in communication costs. In this phase, using Wi-Fi Direct, the
average data rates of the workers and the delagator are 10.444 Mbits/s, and 14.262 Mbits/s respectively. In
contrast, using Bluetooth 3.0, the average job transfer rate of the delegator for the

(c) Avg.speedup Vs #jobs for 5 devices (Face
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Fig. 7: Experimental results on Face Detection and Mandelbrot set
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Fig. 8: Experimental results continued

same app was 2.124 Mbits/s. The Wi-Fi Direct speeds ob- served appear to be much less than its
maximum speed (Table 6). This may be caused by maintaining multiple connections. A main drawback of Wi-
Fi Direct is its long group formation time compared to Bluetooth. To amortise this, the groups need to have a
significant life time, and/or have heavy data communication. It was also found that only a maximum of 8 Wi-Fi
Direct connections were supported per each Nexus 7 device, limiting tests to a maximum of 9 devices. New
D2D technologies like LTE-Direct8 may be able to solve these problems. Compared to Wi-Fi Direct,

LTE-Direct has a greater range (up to 500m), has a faster one-step connection process, and its ‘always-
on’ discovery method enables it to discover more peers continuously. Hence using LTE-Direct for Honeybee
can give support for more workers over a greater range, thus giving more mobility and better performance.

Energy consumption

The energy consumption was measured via the Android battery API. Battery levels of the delegator
were taken just before the program start and just after program end. Our experiments with the Face detection
app for 1920 images are summarized in Figure 8b showing the battery drain of the delegator and the workers.
As can be seen, the energy usage of the delegator is almost halved from 11.67 % to 6.80% with just one worker.
The average battery usage per each worker is also reduced as the number of workers increase, and the energy
usage per worker is less than the delegator’s use. However, as the number of workers increase, the energy
saving does not increase drastically, possibly owing to costs related to parallelisation and maintaining
connections.

Lower bound

We tested the worst case scenario using Honyebee as dis- cussed in Section 3.6 and measured the cost
of job expiry. We emulated ‘weak workers’ by running an infinite loop inside the worker devices, thereby
making them infinitely slower than the delegator. In this case, although the delegator is connected to workers
and the workers have stolen some work, the workers are so slow that the delegator expires the stolen jobs and
completes all of the jobs by itself. As can be seen from Table 10, the experiments gave an average
performance loss of 9.9% for to . In contrast, the average performance loss for to (as discussed in Section 3.6,
Equation 3) was 7.8%, which gives a 2.1% difference in cost between
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TABLE 10: Speedups for worst case senario in several setups

Setup Speedup Performance loss

7 workers 0901z 1-09012)7100=98711%
4 workers 0.2906 (1-0.8906)*100=109430%
3 workers 028956 (1-0.8956)*100=104382%
2 workers 0.9096 (1-0.9096)*100=90342%
1 worker 09070 (1-09070)*100=92978%

the scenarios discussed in Figures 5b and 5c, possibly due to the cost of establishing connections and job expiry.

Random disconnections

To test the effectiveness of fault tolerance mechanisms han- dling random disconnections, the delegator
was program- matically forced to disconnect its workers at a 10 second interval until no workers remained. This
was tested with  a setup of 4 workers and the disconnection process was commenced after all 4 workers had
started working. The lost jobs were re-assigned to the delegator and the program finished with a speedup despite
the disconnections. The results of this scenario with 4 workers is similar to having 1 consistent worker as given
below in Table 11.

TABLE 11: Speedup with random disconnections

Setup Speedup | Jobs by Delegator
4 workers randomly disconnected | 1.696 B3.3337%
1 consistentworker 1673 63 880%

Device busyness

The efficiency of the system depends on minimising the idle time of the participating nodes by
keeping them busy doing useful work. However, bottlenecks in transmission and multi-threading can cause
idling. To investigate this, data gathered from the test runs of the Face detection app for 1920 jobs were
analysed. Table 12 compares data from three configurations: 1, 3, and 7 workers. Each device’s com- putation
time and reading time were measured and given as percentages of its total program time. For example, for 1
worker, the worker’s average computation time was 73.53% of its total time. As can be seen from Table 12, the
average computation time of a worker decreases significantly as the number of workers increase. Although this
trend is also evident in the delegator’s computation time, the decrease is very slight. However, the average
reading time increases for more workers, despite the decrease in the data being read by each one. As the
delegator needs to communicate with and transfer jobs to more and more workers, the time available to each
worker can be less. In the case of Face detection, the majority of transmission time is spent on transmitting the
jobs (images) from the delegator to workers. The data observed in Table 12 suggests that as the number of
workers increase, each worker needs to wait a greater length of time to receive its jobs, thereby decreasing time
spent on calculation (useful work). This behaviour is also evident in the speedups as discussed in Section 5.1.1.

Data movement
The same test results discussed in previous section 5.1.6 were examined to check the movement of data within
the

TABLE 12: Breakdown of test results for Face detection

# Aveg. delega- | Ave. worker | Avg. worker | Avg. data
work| tor compu- computa- reading read byeach
ers tation time tion time time worker

I ToYbTe 73537 8537 I90IINIE

3 Yous% by /8% 11.19% 106.13MB

7 0093% A7 31% 1292% ha 43MEB

participating nodes. The experiments were run on 1920 jobs, which translates to a set of 1920 image
files, with a total job data size of 538.4 MB. The jobs were originally on the delegator, but moved to workers
during the course of execution, as stealing occurred. Table 13 illustrates the amount of data that were
transmitted from delegator and the sum of data read by all the workers. The amount of transmitted data does not
exceed the actual job data size of 538.4 MB in any of the 3 configurations. The percentage of data transmitted
increases from 35.34% to 66.02% as workers are increased from 1 to 7, showing that a higher number of
offloading occurred with the addition of workers. Also data was not moved unnecessarily among devices.
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TABLE 13: The movement of data in Face detection app

# work- Avp, data writ- | Avp. total data | Ave. offloaded
erIs ten by delegator | read by workers data
I I90 2 NIE I90 12 NVIE 3233
3 291 e MbB 291 e MB h410%
7 355 44 MEB 355 44 MEB 06.02%
VII.  Conclusions & Future Directions

We present the following conclusions. Firstly, work sharing among an autonomous local mobile device
crowd is a viable method to achieve speedups and save energy. The addition of new resources up to an optimal
amount, can yield increased speedups and power savings. Secondly, a generalized framework can be used for
abstracting methods and enabling parameterisation for different types of tasks made of independent jobs.
Thirdly, inherent challenges of mobile computing such as random disconnections, having no prior information
on participating nodes, and frequent fluctuations in resource availability can be successfully ac- commodated via
fault tolerance methods and work stealing mechanisms.

The Honeybee model caters to tasks that can be decom- posed into independent jobs. Many crowd
computing tasks for mobile devices are suited to this model, for e.g., video transcribing (Section 3.3.1),
language translation, medical data analysis (Section 3.3.4), face detection (Section 3.3.2) and mathematical
demonstrations (Section 3.3.3). However, there are other tasks that cannot be easily decomposed into
independent jobs. Work done by Agrawal et al. shows that work stealing can be further enhanced for dependent
jobs[4] and we aim to work in this area in the future. Incentive man- agement and security are important for the
deployment of successful mobile crowd applications. However, designing a comprehensive and realistic
incentive scheme for mobile crowd computing applications requires further research in collaboration with
policy, legal and economics scholars [5], as does providing security and trust mechanisms. As the main focus of
this paper was performance gain and energy conservation, these two areas were out of scope. For this work, we
have built Honeybee with the assumption that an incentive system and a secure environment are already in
place. Future work could be possible in designing a secure platform for mobile crowd computing applications,
sup- porting incentive management. Moreover, this work focused on the evaluation of machine-centric
computation. How- ever, as discussed in Section 3.3, applications that employ human intelligence are also
feasible using the Honeybee model. For example, the face detection app in Section 5 can be modified so that
human intelligence is used to identify the faces detected by the machine. We aim to extend our evaluations to
focus on this aspect, using additional criteria such as accuracy and usability in our future work. Further- more,
as observed in our experiments, the performance gain plateaus as the number of worker nodes increase due to
the additional costs that occur when a single device (delegator as P2P group owner) maintains multiple
connections. To overcome this and scale up, we plan to extend Honeybee to support other topologies and initial
experiments in [39], where an early version of the Honeybee model was ex- tended to support hierarchical
Bluetooth connections, show consistent speedups using a linear topology, with an inter- mediate node
functioning both as a worker and a delegator. For this approach, a combination of Bluetooth and Wi-Fi Direct in
alternate hierarchical layers can be explored as Wi-Fi direct does not support multiple Wi-Fi direct groups. We
also plan to experiment with latest D2D technologies such as LTE-Direct to improve performance. In addition,
the experiments in this paper were performed in a controlled setting. We plan to extend these tests to more
realistic scenarios by using mobility patterns to simulate churn.

References

[1]. Cisco visual networking index: Global mobile data traffic forecast update. http://www.cisco.com/c/en/us/solutions/collateral/
service-provider/ip-ngn-ip-next-generation-network/white paper c11-520862.html.

[2]. DARPA Creates  Cloud Using Smartphones. http://www.informationweek.com/mobile/darpa-creates-cloud-using-
smartphones/d/d-id/1111323.

[3] The hyrax project. http://hyrax.dcc.fc.up.pt/.

[4]. K. Agrawal, C.E. Leiserson, and J. Sukha. Executing task graphs using work-stealing. In Parallel Distributed Processing (IPDPS),
2010 IEEE International Symposium on, pages 1-12, April 2010.

[5]. M. S. Bernstein. Crowd-powered systems. Kl - Ku'nstliche Intelli- genz, 27(1):69-73, 2013.

[6]. K. Bhardwaj, S. Sreepathy, A. Gavrilovska, and K. Schwan. Ecc: Edge cloud composites. In Proceedings of 2nd IEEE International
Conference on Mobile Cloud Computing, Services, and Engineering, pages 38-47, 2014.

[7]. Bluetooth. Specification of the bluetooth system version 4.1. https://www.bluetooth.org/DocMan/handlers/DownloadDoc. ashx?doc
id=282159, December 2013. Accessed: 25/06/2014.

[8]. R. Blumofe and C. Leiserson. Scheduling multithreaded computa- tions by work stealing. J. ACM, 46(5):720-748, 1999.

[9]. R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and Y. Zhou. Cilk: an efficient multithreaded runtime
system. SIGPLAN Not., 30:207-216, August 1995.

[10]. D. Camps-Mur, A. Garcia-Saavedra, and P. Serrano. Device-to- device communications with wi-fi direct: overview and experi-
mentation. Wireless Communications, IEEE, 20(3):96-104, June 2013.

[11]. Z. Chen, R. Fu, Z. Zhao, Z. Liu, L. Xia, L. Chen, P. Cheng, C. C. Cao, Y. Tong, and C. J. Zhang. gMission: a general spatial
crowdsourcing platform. Proceedings of the VLDB Endowment, 7(13):1629-1632, 2014.

Tulsiramji Gaikwad-Patil College of Engineering & Technology, Nagpur 56 | Page



Computing with Nearby Mobile Devices: a Work Sharing Algorithm for Mobile Edge-Clouds

[12].

[13].

[14].

[15].

[16].

[17].
[18].

[19].

B. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti. Clonecloud: elastic execution between mobile device and cloud. In Proc. of the
6th conference on Computer systems, EuroSys, pages 301-314, 2011.

B. Chun and P. Maniatis. Dynamically partitioning applications between weak devices and clouds. In Proc. of the 1st ACM
Workshop on Mobile Cloud Computing & Services: Social Networks and Beyond, MCS, pages 71-75, New York, USA, 2010.
ACM.

E. Cuervo, A. Balasubramanian, Dae-ki Cho, A. Wolman, S. Saroiu,R. Chandra, and P. Bahl. Maui: making smartphones last longer
with code offload. In Proc. of the 8th Intl conference on Mobile systems, applications, and services, MobiSys, pages 49-62, New
York, USA, 2010. ACM.

L. Deboosere, P. Simoens, J. De Wachter, B. Vankeirsbilck, F. De Turck, B. Dhoedt, and P. Demeester. Grid design for mobile thin
client computing. Future Generation Computer Systems, 27(6):681 — 693, 2011.

J. Dinan, D. B. Larkins, P. Sadayappan, S. Krishnamoorthy, and J. Nieplocha. Scalable work stealing. In Proceedings of the
Conference on High Performance Computing Networking, Storage and Analysis, SC ’09, pages 53:1-53:11, NY, USA, 2009.
ACM.

H. T. Dinh, C. Lee, D. Niyato, and P. Wang. A survey of mo- bile cloud computing: architecture, applications, and approaches.
Wireless Communications and Mobile Computing, 2011.

D. C. Doolan, S. Tabirca, and L. T. Yang. Mobile parallel comput- ing. In Proc. of the 5th Int’l Symposium on Parallel and
Distributed Computing, pages 161-167, 2006.

D. C. Doolan, S. Tabirca, and L. T. Yang. MMPI a message passing interface for the mobile environment. In Proceedings of the
6th International Conference on Advances in Mobile Computing and Multimedia, MoMM ’08, pages 317-321, NY, USA, 2008.
ACM.

Tulsiramji Gaikwad-Patil College of Engineering & Technology, Nagpur 57 | Page



