Cooperative Mimo Mac Using Type2 Fuzzy Logic for Wireless Sensor Network

A.Anusuya, R.Suganya and M. Suganya

(1) PG Scholar, vlsiDesign, Surya Group Of Institution/Anna University, India
(2) PG Scholar, vlsiDesign, Surya Group Of Institution/Anna University, India
(3) Associate Professor, VlsiDesign, Surya Group Of Institution/Anna University, India

Abstract: Energy Efficiency And Enhancing The Lifetime Is Very Important Design Requirements In Wireless Sensor Network (Wsns). To Improve The Network Lifetime And To Reduce The Energy Consumption Using Clustering Scheme. Cooperative Multiple Input And Multiple Output Can Be Applied And To Hence Significantly Improve The Communication Performance. An Inefficient Medium Access Control Protocol is Incorporated To Diminish The Performance Gain Of MIMO. Hence This Paper Proposes Space Time Block Codes Using Cooperative MIMO MAC Transmission. An Idea Of Type2 Fuzzy Logic Is Used For Cluster Head (CH) And Cooperative Node Selection. Cluster Head Is Selected Based On Remaining Power, Distance To Base Station And Concentration.

Keywords: Cooperative Mimo, Energy Efficiency, MAC Protocol, STBC, Wireless Sensor Network (WSN), T2FL

I. Introduction

Wireless sensor network consist of hundreds to thousands nodes randomly in the hazardous environment for gathering a wide range of data application such as military, to measure vibration of bridges a large and other field.[1]. Due to high energy efficiency and availability of limited energy it is difficult in recharging a large number of sensor nodes and enhancing the network lifetime are the most important design goals. To design energy efficient radio channel protocol for reducing an interference and a channel fading using MIMO.

To increase the channel strength in wireless sensor network, Multi Input Multi Output (MIMO) scheme is used for wireless channel [2, 3]. MIMO scheme avoid fading and reduce the energy consumption for transmitting a data, which also enhances a capacity of a channel. To achieve some bit error rate for multi hop communication it requires a lower power transmission.[4]. It is unable to fix MIMO antenna directly because the size of the sensor node is small and also supports a single antenna.

II. System Model

In MIMO MAC transmission systems, transception and reception are achieved by using distributed manner [12-13]. Normally the sender recruits the remaining nodes for cooperative transmission based on high energy while comparing to other nodes based on type2 fuzzy logic for the value of energy analysis.

i) Broadcasting

Transmitting a data through multiple channels using low energy transmission to select the cooperative for sending and receiving the data using space time block code requirement using MIMO MAC protocol.

ii) STBC MIMO transmission

As shown in Fig.1b, the size of the data bits are assigned using Space Time Block Code. Using STBC code the source node will send the data to the destination node to achieve the MIMO diversity gain.

iii) Data Collection and Combining

All the data are collected by the receiving cluster and finally the data which is transmitted to the destination node.

Fig.2 Proposed cooperative scheme
2.1 PROPOSED COOPERATIVE MIMO MAC PROTOCOL USING T2FL
The proposed cooperative MIMO MAC transmission from multiple nodes is discussed below. Consider the function for sender that forward a packets to receiver as shown in Fig.2

![Flowchart for cooperative MIMO MAC protocol using T2FL.](image-url)

If no Acknowledgement will be received again it retransmission process begins from neighbor recruitment. The destination waits for data transmission for source cluster. Next it waits for sequential transmission of data from source to destination.

III. Performance Analysis Of Proposed Cooperative Mimo Mac Model
A mathematical model to evaluate Signal to noise ratio v_s, energy, signal to noise ratio v_e, packet delay, no of packets transmitted v_p, no of rounds, network lifetime v_n, no of rounds. Energy consumption is analyzed using probability of bit error rate.

3.1 Bit Error Probability
A network is assumed to transmit a data in the form of bits through radio channel with type 2 fuzzy logic. The relationship between the packet error probability P_p is given by

$$P_p = 1 - (1 - P_b)^L$$

where L is the frame length in bits.

Packet transmission errors are generated from two factors in cooperative MIMO MAC protocol through which helps to send a data from transmitting group to receiving group. If the data will be corrupted the cooperative sending group will not send a data to the receiving group.

3.2 ENERGY CONSUMPTION ANALYSIS
Consider a scenario with M senders and N receivers in cooperative MIMO MAC transmission attempt for unsuccessful transmission and successful transmission.

The energy consumption for unsuccessful transmission is given by

$$E_{u_{coop}} = E_{mrets} + E_{mcts} + 2E_{err} + (M - 1)E_{scts} + E_{br} + E_{data} + (N - 1)E_{col}$$

And the energy consumption for a successful transmission is given by

$$E_{s_{coop}} = E_{mrets} + E_{mcts} + 2E_{err} + (M - 1)E_{scts} + E_{br} + E_{data} + (N - 1)E_{col} + E_{ack}$$

![Type 2 Fuzzy logic for model for the proposed system](image-url)
IV. Simulation Results

The analysis of cooperative MIMO MAC protocol is carried out using MATLAB. The proposed model is simulated for MIMO MAC using STBC techniques for threshold based uncoded schemes are evaluated in terms of energy consumption and delay incurred in the transmission of data packets from source node to destination node.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total frames per packet</td>
<td>10 frames</td>
</tr>
<tr>
<td>Total bytes per packet</td>
<td>410 bytes</td>
</tr>
<tr>
<td>Time for transmitting RTS</td>
<td>35.3 ms</td>
</tr>
<tr>
<td>Time for transmitting CTS</td>
<td>30.3 ms</td>
</tr>
<tr>
<td>Time for transmitting ACK</td>
<td>32 ms</td>
</tr>
<tr>
<td>Time for transmitting data</td>
<td>0.006 s</td>
</tr>
<tr>
<td>Energy consumed for transmission of RTS,CTS and ACK</td>
<td>0.027J</td>
</tr>
<tr>
<td>Modulation type</td>
<td>QPSK</td>
</tr>
<tr>
<td>Channel</td>
<td>Wireless channel</td>
</tr>
</tbody>
</table>

It is observed from the graph that the proposed scheme outperforms with fixed group size of MIMO MAC scheme by changing the cooperative thresholding scheme based on 4x4 scheme. The delay keeps reducing with respect to SNR. It is clear that the proposed scheme which reduces the 19% lesser packet latency than without MIMO.

4.1 PERFORMANCE ANALYSIS OF STBC MIMO SCHEME

Similar graph as that of uncoded scheme are obtained shown in Fig.7 and Fig.8 for energy consumption and transmission delay. For STBC coding 4x4 group size of MIMO MAC configuration are 20% and 50% respectively.

![Average Energy Dissipation](image)

![Network Lifetime](image)
V. Conclusion

A new method of cooperative MIMO MAC using type2 fuzzy logic for wireless sensor network has been used for maximize the lifetime of the network. To achieve the minimum energy consumption and delay they expected the transmission error and delay were less. The performance of the proposed MIMO MAC protocol is evaluated for fixed group size for 4x4 uncoded and coded scheme simulation results proves that the STBC performance is 80% high while using MIMO MAC protocol. The significant reduction in delay and energy results from the diversity gain and lesser probability to achieve a coded MIMO MAC system.

Acknowledgement

Surya Group of Institution (Cooperative MIMO MAC using Type2 Fuzzy Logic For Wireless Sensor Network)

References