
IOSR Journal of Engineering (IOSRJEN) www.iosrjen.org

ISSN (e): 2250-3021, ISSN (p): 2278-8719

PP 22-25

International Conference On Progressive Research In Applied Sciences, Engineering And Technology 22 |Page

(ICPRASET 2K18)

Securing Web Applications Against Cross Sitescripting, Injection

Attacks And Authentication Attacks

M.Newlin Rajkumar, Susithra. D, Preetha Rexlin P.L, Vickma. S

(Master Of Engineering in Computer Science, Anna University Regional Campus, Coimbatore, Tamil Nadu,

India)

Abstract: Web applications are one of the most widespread platforms for information and services delivery

over Internet today. As they are increasingly used for critical services, web applications become a popular and

valuable target for security attacks. Although a large body of techniques has been developed to fortify web

applications and mitigate the attacks toward web applications, there is little effort devoted to drawing

connections among these techniques and building a big picture of web application security research. In the

proposed system a security scheme is proposed to protect the web application from cross site scripting and

injection attacks, with the aim of regulating the existing techniques into detailed analysis that promotes future

investigation. The proposed system specifically considered 4 types of attack such as Cross Site scripting, Code,

data and SQL injection attacks. In addition, the existing research works on the three attack categories. To

improve the web application security, the proposed system utilizes the improved honey pot mechanism, Attack

Threshold calculation-token generation and web service based authentication mechanisms. The proposed work

traffic detects attacks using policy rules and expressions

Keywords: Script injection attacks, process site scripting, web application attacks.

I. Introduction
Web application has become one of the most important communication c h a n n e l s between

var ious kinds of service providers and clients. It has evolved from a static medium, with user interaction

limited to navigation between web pages, to a highly interactive dynamic medium performing concurrent

transactions and serving up personalized content. This dynamic medium application offers a wide range of

services, such as on-line stores, e-commerce, social network services, etc. As more and more services are

provided via the World Wide Web, efforts from both academia and industry are striving to create

technologies and standards that meet the sophisticated requirements of today‟s enterprise Web applications

and users. A web application can be characterized by the number of layers that information will pass through

on its journey from the data tier (where it is stored in a database typically) to the presentation tier (where it

is displayed to the client). Each layer generally runs on a different system or in a different process space on the

same system. Client and server are separated by logics. This 2-tier client-server scenario works very well

for a small business that only uses, or needs, a single data source. However, the goal of most businesses is to

grow, and this needs additional logics to meet the business demands. Unfortunately, the 2-tier approach does

not scale very well. If the business rules change then the application needs to be rebuilt and redeployed. Due

to the limitations of the 2-tier client-server architecture, distributed applications are often divided into three or

more tiers Components in each of these perform a specific type of process.

1.1 Web Functionality

Web applications employ numerous different technologies to deliver their functionality.

Reasonable functional application may employ dozens of distinct technologies with in its server and

client components.

 1.1.1 Server-Side Functionality

Whenever a user requests a resource, the server‟s response is created on the fly, and each

user may receive content that is uniquely customized for him. When a user‟s browser makes a request for a

dynamic resource, it does not normally ask for a copy of that resource. In general, it will also submit

various parameters along with its request. These parameters enable the server-side application to generate

content that is tailored to the individual user. There are three main ways in which HTTP requests can be

used to send parameters to the application, namely, the URL query string, HTTP cookies and the body of

requests using the GET / POST method.

1.1.2 Client-side functionality

In order to make the server-side application receive user input and actions, and present the results of

these back to the user, it needs to provide a client-side user interface. Since all web applications are accessed

via the web browser, all these interfaces share a common core of technologies. HTML forms are the usual

Securing Web Applications Against Cross Sitescripting, Injection Attacks And Authentication Attacks

International Conference On Progressive Research In Applied Sciences, Engineering And Technology 23 |Page

(ICPRASET 2K18)

mechanism for allowing users to enter arbitrary input via the browser. Hyperlinks and form elements can be

used to create a rich user interface capable of easily gathering most kinds of input which web

applications require. However, most applications employ a more distributed model, in which the client side is

used not simply to submit the user data and actions but also to perform the actual processing of data. A

significant development in the use of JavaScript has been the appearance of Asynchronous JavaScript

and XML (AJAX) techniques for creating a smoother user experience, which is closer to that provided by

the traditional desktop applications (Zepeda and Chapa 2007). AJAX involves issuing dynamic HTTP

requests from within the HTML page, to exchange data with the server and update the current web page

accordingly, without loading a new page altogether. These techniques can provide very rich and satisfying user

interfaces.

1.2 Sql Injection
Web applications in the World Wide Web (WWW) have user interfaces where a user can input data

to interact with the application‟s underlying relational database management system. This input becomes a

part of an SQL statement, which is then executed on the RDBMS. A code injection attack that exploits

the vulnerabilities of these interfaces is called an „„SQL Injection Attack‟‟ (SQLIA) (CERT 2007; Su and

Wassermann 2006; Howard and LeBlanc 2003; Viega and McGraw 2001).Through SQL injection attacks, an

attacker may extract undisclosed data, bypass authentication, escalate privileges, modify the content of

the database, execute a denial-of-service attack, or execute remote commands to transfer and install

software.SQL Injection could be possible through redirecting and reshaping the query, error based query,

injection through stored procedure and blind SQL injection.

1.3 Cross-Site Scripting Attack
Web developers may use the Client Script, in particular, the JavaScript to enhance their web

applications. If the attacker is able to embed a script in a web page that a valid user requests from sites, he can

take control of the entire context. Such a maliciously embedded script is called a Cross-Site Scripting

(XSS) attack (Kerschbaum 2007), since the script actually originated from a different site. In order to mount

this attack, the attacker exploits the vulnerable web applications. Interactive web applications require a user

input. If this input is used by the web application to build the response web page, it might be exploited by the

attacker. In particular, if the inputs are not sanitized well enough by the application, then they can be exploited.

This script originating in the input part of the URL of the request would be executed in the attacked user‟s

security context.The consequences can be severe like Cookie (and session) theft, Browser hijacking,

including but not limited to, User monitoring and data theft, and Request forgery and fake transactions.

1.4 Broken Authentication Attack

Session hijacking takes effect directly within the web application into which it was injected by

the XSS exploit. Therefore, the attacker possesses the same control over the application as the attacked

user. By creating HTTP requests to the exploited application, the attacker is able to execute actions on

the application using the victim‟s current authentication state.From the application‟s point of view, all

actions by the attacker executed t h r o u g h a session hijacking attack are indistinguishable from

legitimate actions of the attack‟s victim (i.e., by the authenticated user which accesses the exploited

application). Thus, a session hijacking attack empowers the attacker to temporarily overtake the victim‟s

identity in respect of the exploited application. Session hijacking attacks may either require real- time

interaction by the attacker, or be fully pre-scripted for automatic execution. The latter case is, for

instance, used by XSS worms (Livshits and Lam 2008). All currently known XSS session hijacking attack

methods can be assigned to one of the following different classes “Session fixation”, “browser hijacking” and

“background XSS propagation”.

1.4 The Common Language Runtime (Clr):

The common language runtime is the foundation of the DOTNET Framework. It manages code at

execution time, providing important services such as memory management, thread management, and removing

and also ensures more security and robustness. The concept of code management is a fundamental principle of

the runtime. Code that target the runtime is known as managed code, while code that does not target the runtime

is known as unmanaged code.

1.5 The Dot Net Frame Work Class Library:
 It is a comprehensive; object-oriented collection of reusable types used to develop applications ranging

from traditional command-line or graphical user interface (GUI) applications based on the latest innovations

provided by ASPDOT NET, such as Web Forms and XML Webs services.The Dot Net Framework can be

hosted by unmanaged components that load the common language runtime into their processes and initiate the

execution of managed code, thereby creating a software environment that can exploit both managed and

unmanaged features.

Securing Web Applications Against Cross Sitescripting, Injection Attacks And Authentication Attacks

International Conference On Progressive Research In Applied Sciences, Engineering And Technology 24 |Page

(ICPRASET 2K18)

1.6 Features Of The Common Language Runtime:

 The common language runtime manages memory; thread execution, code execution, code safety

verification, compilation, and other system services these are all run on CLR.

• Security.

• Robustness.

• Performance.

1.7 About Asp Dotnet
 ASPDOT NET is the next version of Active Server Pages (ASP); it is a unified Web development

platform that provides the services necessary for developers to build enterprise-class Webs applications. While

ASPDOT NET is largely syntax compatible, it also provides a new programming model and infrastructure for

more secure, scalable, and stable applications. ASPDOT NET is a compiled, NET-based environment; user can

author applications in any DOT NET compatible language, including Visual Basic DOT NET, C#, and JScript

DOT NET.Additionally, the entire DOT NET Framework is available to any ASPDOT NET application.

Developers can easily access the benefits of these technologies, which include the managed common language

runtime environment (CLR), type safety, inheritance, and so on. ASPDOT NET has been designed to work.

Figure 1.1

Attacks Count Description

Total XSS attack samples used 2 The system collects 10 user information along with their fake XSS related

scripts.

Total SQL samples 5 The proposed system gathered 5 more sql queries to evaluate the proposed

system performance.

Table 1.1

II. Conclusion
A new improved Security architecture based on web service model for email server application

proposed takes care of the all possible risks of hacking. Redefining the location trust metric and including

Password log history in trust metric over comes the risks encountered by the earlier trust metrics based

authorization techniques. And in case of any attacker tries to login, then the fake page will be navigated. The

model is not prone to contour analysis since parameter analysis takes place in a secured internal environment of

mail server application. The proposed authorization model will save the email server application from the hands

of hackersntly used data, or customizes your application's configuration, to name only a few possibilities.

ASPDOT NET provides a simple model that enables Webs developers to write logic that runs at the application

level. Developers can write this code in the global.aspx text file or in a compiled class deployed as an assembly.

Securing Web Applications Against Cross Sitescripting, Injection Attacks And Authentication Attacks

International Conference On Progressive Research In Applied Sciences, Engineering And Technology 25 |Page

(ICPRASET 2K18)

This logic can include application-level events, but developers can easily extend this model to suit the needs of

their Web application. ASPDOT NET provides easy-to-use application and session-state facilities that are

familiar to ASP developers and are readily compatible with all other DOT NET Framework APIs. ASPDOT

NET offers the IHttp Handler and Http Module interfaces. ASPDOT NET takes advantage of performance

enhancements found in the DOT NET Framework and common language runtime. Additionally, it has been

designed to offer significant performance improvements over ASP and other Web development platforms. All

ASPDOT NET code is compiled, rather than interpreted, which allows early binding, strong typing, and just-in-

time (JIT) compilation to native code, to name only a few of its benefits. ASPDOT NET is also easily

factorable, meaning that developers can remove modules (a session module, for instance) that are not relevant to

the application they are developing. Web Forms allows us to build powerful forms-based Web pages. When

building these pages that use ASPDOT NET server controls to create common UI elements, and program them

for common tasks. These controls allow to rapidly building a Web Form out of reusable built-in or custom

components, simplifying the code of a page. An XML Web service provides the means to access server

functionality remotely. Using Web services, businesses can expose programmatic interfaces to their data or

business logic, which in turn can be obtained and manipulated by client and server applications.

Acknowledgement
 I would like to express my gratitude to my guide Dr.M.NEWLIN RAJKUMAR.,M.E.,Ph.D, for

guiding me properly in my project work and for helping to solve the project work difficulties. I would also like

to thanks all the staff members of computer science and engineering department for supporting me and guiding

me in my project work whenever required.

References
[1]. Shrivastava, Ankit, Santosh Choudhary, and Ashish Kumar. "XSS vulnerability assessment and prevention in web

application." Next Generation Computing Technologies (NGCT), 2016 2nd International Conference on. IEEE, 2016.

[2]. Gupta, Aditi, Javid Habibi, Michael S. Kirkpatrick, and Elisa Bertino. "Marlin: Mitigating code reuse attacks using code

randomization." IEEE Transactions on Dependable and Secure Computing 12, no. 3 (2015): 326-337.
[3]. Yang, Xinyu, Jie Lin, Wei Yu, Paul-Marie Moulema, Xinwen Fu, and Wei Zhao. "A novel en-route filtering scheme against false

data injection attacks in cyber-physical networked systems." IEEE Transactions on Computers 64, no. 1 (2015): 4-18.

[4]. Miao, Fei, Quanyan Zhu, Miroslav Pajic, and George J. Pappas. "Coding schemes for securing cyber-physical systems against
stealthy data injection attacks." IEEE Transactions on Control of Network Systems 4, no. 1 (2017): 106-117.

[5]. Halfond, William G., Jeremy Viegas, and Alessandro Orso. "A classification of SQL-injection attacks and countermeasures."

Proceedings of the IEEE International Symposium on Secure Software Engineering. Vol. 1. IEEE, 2006.

[6]. Huang, Yao-Wen, et al. "Securing web application code by static analysis and runtime protection." Proceedings of the 13th

international conference on World Wide Web. ACM, 2004.
[7]. Majorczyk, Frédéric, and Jonathan-Christofer Demay. "Automated Instruction-Set Randomization for Web Applications in

Diversified Redundant Systems." Availability, Reliability and Security, 2009. ARES'09. International Conference on. IEEE,

2009.
[8]. Narayanan, Sandeep Nair, Alwyn Roshan Pais, and Radhesh Mohandas. "Detection and Prevention of SQL Injection Attacks

using Semantic Equivalence." Computer Networks and Intelligent Computing. Springer, Berlin, Heidelberg, 2011. 103-112.

[9]. Sonewar, Piyush A., and Sonali D. Thosar. "Detection of SQL injection and XSS attacks in three tier web applications."
Computing Communication Control and automation (ICCUBEA), 2016 International Conference on. IEEE, 2016.

