ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 10, Issue 1, January 2020, ||Series -III|| PP 01-12

Handling Network Security Issues Using AI

Sheetal Thakare, Dr.S.R.Gupta, Dr.M.A.Pund

Dept. of Computer Engineering, Bharati Vidyapeeths College of Engineering, Navi Mumbai, Maharashtra, India

Dept. of Computer Sci. & Engineering, Prof. Ram Meghe Institute of Tech. & Research, Badnera. Affiliated-Amravati University Maharashtra, India

Dept. of Computer Sci. & Engineering, Prof. Ram Meghe Institute of Tech. & Research, Badnera. Affiliated-Amravati University Maharashtra, India

Received 01 January 2020; Accepted 15 January 2020.

Abstract: With excessive exposure and use of internet, every system is prone to wide range of attacks. With this perspective, Network security is gathering every ones' concern. Network attackers are getting more and more innovative with designs. Exponential growth in attacker's intelligence require mitigation mechanism to be updated with same speed and level of innovation. This pans avenues for advanced technologies and methods to be employed for handling network security issues. Trending ones are artificial intelligence(AI), machine learning (ML) and deep learning(DL). AI is an umbrella covering ML and DL under it. Main features of AI making it big deal for network security are capacity to handle big data, faster detection, quick response, ability of unsupervised processing. Considering mentioned aspects, comprehensive study of AI approaches in handling network security issues is been carried out.

Keywords: network security, machine learning(ML), deep learning(DL), recommender systems, artificial intelligence(AI)

I. INTRODUCTION

Artificial Intelligence, as the name suggests, is a induced form of intelligence in any kind of entity which naturally does not possess such kind of intelligence. By inducing certain kind of intelligence the entity can act as a matter expert. This is exact concept behind use of AI, finding solution to something, as if found by subject expert. Another main feature of AI to be so popularly employable is speed with which it can analyze data. Expert will take much longer to analyze big data, but with use of AI, it will be a matter of fraction of second. Thus complex situation solution finding is done by this science stream, and as it can take decisions also, like humans, the stream is know as Artificial Intelligence. Algorithms try to model decision making power as in humans. Decision making power is possessed by brain in humans, but creating human brain like structure was found to be way too complex, so modeling decision power mechanism was concentrated upon by AI field masters. So now with availability of suitable data, maximum complex problems can be solved using AI. Using various softwares algorithms are implemented to create AI applications possessing decision making power similar to that of human expert. Such AI applications can be used in absence of experts or in places where experts are not available. AI applications can be employed to take decisions from available data. Such applications need to be trained first, using past data. Using statistical methods available data can be used to generate information. Generated information is employed for prediction or decision making. Above specified flow will be implemented by a sub domain of AI, known as Machine Learning(ML). Deep Learning(DL) will also be useful for the same. Consider case of cancer specialist doctor. Decision on cancer cells are made by him considering size, growth rate, mutation rate, enzymes secreted etc. if such data with cancer features present are used to train AI application using ML, then AI application can be used in Hospitals, in absence of cancer specialist doctor, to make decisions. Thus for every problem, to have it solved by AI application, related dataset with feature set is required.

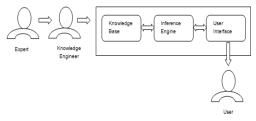


Fig. 1 AI application top view

AI Concept	Advantages	Disadvantages
Data Mining	Can handle tons of data	Privacy of user compromised
	 Finds required useful data from piles of it. 	 Personal data can be misused
	Great for decision making	
Expert	Works 24X7	 Knowledge base dependency
System	 Consistency of output maintained in case of repetitive tasks 	 A small error in knowledge base propagates higher
Fuzzy Logic	 Robust algos with less memory requirements 	 Insensitive to environmental changes
Image	 Useful when processing without human interference is 	 Initial/set-up budget is higher
Processing	required	 Optimum Input is expected
	 Less expensive 	
Neural	 Ease of use with robustness and complex function modeling 	 Initial/set-up budget is higher
Network	power	 Optimum Input is expected
	 Adaptability to changing environment and high speed 	
Pattern	 Automatic, quick and faster pattern recognition 	 Output is completely dependent on authenticity of
Recognition	 Accurate pattern classification 	input
Machine	 Automated processing without human interference is 	 Output is completely dependent on training set
Learning	achieved	
Deep	 Unsupervised -faster processing 	 Model training complexity
Learning		

TABLE I. Advantages & Disadvantages of AI Concepts

Advantages of Artificial Intelligence for network security

TABLE II. Advantages of A1 for network security				
Continuous up gradation of AI	Humans take more time for learning and up gradation, but smartness can be induced in AI			
application's Efficiency and Intelligence. applications faster. Process is continuous, unlike humans who get tired and need breaks				
No downtime for AI application AI application being non living will be up without any sort of breaks				
Quicker detection of threats	Machine learning trained model has greater detection speed as compared with humans, Faster AI			
algorithm use will generate more quicker responses by application				
System immunity scaling	In case multiple types of devices, like stationary & mobile, are used for data transfer then all devices			
	must be capable of possessing same level of resistance			

елте A .1. • 4 .

Formal Security System-

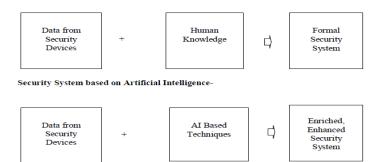


Fig. 2 Security system with AI[6]

RECENT ADVANCES IN AI FIELD II.

A. Machine Learning and Network Field

In 1959, Arthur Samuel coined the term "Machine Learning", as "the field of study that gives computers the ability to learn without being explicitly programmed" [369]. Ability is gained by use of concepts, mainly, clustering, classification, regression and rule extraction. Different learning approaches supported are-supervised, unsupervised, semi-supervised and reinforcement learning.

TABLE III. ML Learning Approa	aches
-------------------------------	-------

	Supervise d	Large labeled training datasets	Classification And regression problems	Malware Identification, Spam Detection, Denial-of-Service (DoS), User-to-Root (U2R), Root-to-Local (R2L), or probing, to predict of when a future failure will transpire
Learning approaches supported by ML	Unsuperv ised	unlabeled training datasets	Clustering problems Association rule learning	Entity classification, Anomaly detection, Data exploration (density estimation problems in networking) Entity classification, Anomaly detection, Data exploration
			Dimensionalit y reduction	
	Semi- Supervise	incomplete labels for training data or		Anomaly detection, Risk scoring
	d	missing		KISK SCOLING

	labels		
Reinforce ment Learning	agent-based iterative process, training data in RL constitutes a set of state-action pairs and rewards (or penalties)	Decision making problems	

ML Model Building

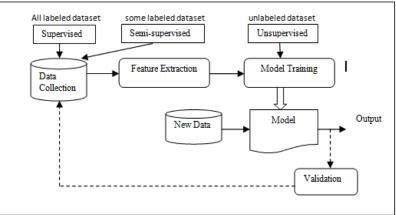


Fig. 3 Training A Model using Machine Learning

Training ML model

Training process is conducted in 3 main phases:

Phase I: Collecting data- This can be implemented in two ways, supervised or semi-supervised. Type of collection will be real time data collection and historical data collection. Historical data, being huge in amount, is a data where from model will learn. It can also act as test dataset. It is readily available with many repositories. Real time data will be input as well as feedback for model. This phase ends by dividing collected data into 3 types of subdivisions. One for train model, known as training set. One for performing validation, also known as development set and other one for testing model, known as test dataset. Training set is employed to shortlist ideal model parameters. Validation (development set) is employed to shortlist suitable ML model type. Lastly test dataset is employed to verify shortlisted model performance. Use of validation dataset is optional, as suitable ML model can be decided beforehand.

Phase II: Extracting features- before proceeding with extracting features, preprocessing of data collection is been done to clean data. Extracting features will shortlist features for training model with respect to them. This saves memory and time required for processing as collected data is huge in amount with some repetitive and some irrelevant features not contributing to result. Related to networking, features extracted can be of packet or flow or connection levels. Either use off the shelf tools (WEKA, NetMate etc.) or employ methods specialized in filter, embedding or wrapper.

Phase III: Training model- selected learning algorithm is given training dataset to learn from. Target attributes must be achieved by model during training phase. Those attributes refer to expected answer. Patterns of input relating to particular outputs are found by Learning algorithms. So when test/validate dataset is given to model, it will map new input to expected output using patterns found.

Handling Network Security Issues Using AI

TABLE IV. ML Model Building Phases							
	Collectin	Supervised,	Real-time	Training set,	Holdout,		
	g data	Semi-	data	Validation set,	k-fold		
Phase I		supervised	collection,	Testing set	cross-		
I hase I			Historical	(60/20/20)% of	validation		
			data	total dataset			
			collection				
	Processin	Preprocessin	Features	Features	Packet-	Features	Feature
	g features	g step is	with	represent	level,	selectio	selection
		used to	maximum	statistical	flow-	n and	and
		clean data	relevant	information	level,	extractio	extraction
			information	about attribute	connectio	n tools –	methods-
Phase II			are selected	of data.	n- level	WEKA,	filter,
			to train			NetMate	embedded,
			model on				and
							wrapper
							based
	Tuitui	T	T ' '	Detterme			methods
	Training model	Learning	Training	Patterns			
Phase III	model	algorithm is	dataset acts	relating input-			
		selected	as input	output are found			
	Validatio			Toulla			
	n of data						
	ii oi uata						

Types Of ML Models

ML models are classified as per the base algorithm used to develop model. Classification can be viewed as follows:

Algorithm	Model Name	Algorithm	Model Name
Regression Algorithms	 Ordinary Least Squares Regression (OLSR) Locally Estimated Scatterplot Smoothing (LOESS) Logistic Regression Stepwise Regression Multivariate Adaptive Regression Splines (MARS) Linear Regression 	Association Rule Learning Algorithms	 Eclat algorithm Apriori algorithm
Instance- based Algorithms	 k-Nearest Neighbour (kNN) Locally Weighted Learning (LWL) Learning Vector Quantization (LVQ) Self-Organizing Map (SOM) 	Artificial Neural Network Algorithms	 Perceptron Hopfield Network Radial Basis Function Network (RBFN) Back-Propagation
Regularizati on Algorithms	 Ridge Regression Least-Angle Regression (LARS) Least Absolute Shrinkage and Selection Operator (LASSO) Elastic Net 	Deep Learning Algorithms	 Deep Boltzmann Machine (DBM) Stacked Auto-Encoders Deep Belief Networks (DBN) Convolutional Neural Network (CNN)
Decision	Classification and	Dimensionali	• Linear Discriminant

Handling Network Security Issues Using AI

Tree	Regression Tree (CART)	ty Reduction	Analysis (LDA)		
Algorithms	Iterative Dichotomiser	Mixture Discriminant			
Aigoritiniis	3 (ID3)	Algorithms	Analysis (MDA)		
	Decision Stump		Principal Component		
	• M5		Analysis (PCA)		
	• C4.5 and C5.0		Sammon Mapping		
	(different versions of a powerful		 Ouadratic Discriminant 		
	approach)		Analysis (QDA)		
	Chi-squared Automatic		Flexible Discriminant		
	Interaction Detection (CHAID)		Analysis (FDA)		
	Conditional Decision		Multidimensional		
	Trees		Scaling (MDS)		
			Projection Pursuit		
			• Principal Component		
			Regression (PCR)		
			• Partial Least Squares		
			Regression (PLSR)		
			• Gradient Boosted		
	Naive Bayes		Regression Trees (GBRT)		
	Gaussian Naive Bayes	Ensemble Algorithms	Random Forest		
	• Bayesian Belief		Boosting		
Bayesian	Network (BBN)		Stacked Generalization		
Algorithms	• Bayesian Network (BN)		(blending)		
rigoritimis	• Multinomial Naive		• Gradient Boosting		
	Bayes		Machines (GBM)		
	• Averaged One-		Bootstrapped		
	Dependence Estimators (AODE)		Aggregation (Bagging)		
			AdaBoost		
			Reinforcement Learning		
			Graphical Models		
	• k-Means		• Computational		
Clustering	Hierarchical Clustering	Other	intelligence (evolutionary		
Algorithms	• k-Medians	Algorithms	algorithms, etc.)		
	• Expectation		Recommender Systems		
	Maximisation (EM)		Computer Vision (CV)		
			• Natural Language		
			Processing (NLP)		

TABLE VI. ML Model Classification

TABLE VI. WIL Wood Classification					
Broader and more generalized classification can be viewed as, based on type of output, follows:					
Binary		Binary Classification Examples			
Classification	Outputs one out of two	• Spam/non-spam email detection			
Model	classes	• Product will be bought?			
		č			
Multiclass		Multiclass Classification Examples			
Classification	Outputs one out of more	Product category detection			
Model	possible classes				
Regression		Regression Examples			
Model	Outputs a numeric value	Temperature prediction			
Broader and more	generalized classification can be vi	iewed as, based on type of input, follows:			
Logical	Tree models				
Expression	Rule models.				
Probability	Naïve Bayes				
Geometric	Linear models				
Expression	Distance-based models				

B. Deep Learning and Network Field

Deep learning is sub field of ML, which in turn is a sub domain of AI. "Deep" here indicates multiple/deep layers of neural nets. This concept increases scalability of artificial neural nets. It helps to model and learn complex concept by building it using low-medium-high level feature extraction. Thus layers of neural nets get multiple &/or deeper. Neural Nets with lesser layers are known to use shallow learning.

Fig. 4 Deep Learning Concept[4]

https://machinelearningmastery.com/what-is-deep-learning/ Deep Learning Methods Used in Cyber Security

Deep Belief		Convolutional	Generative Adversarial	Recursive
Networks	neural	Neural	Networks	Neural
	network	Networks		Networks
	(RNN)			
- class of	-Takes	-processes	- two neural networks	- apply set of
DNNs composed of	variable	input stored	compete against each	weights
multiple layers of	Lengths input	in arrays.	other	recursively
hidden units with	sequences	-Regardless of	-one network acts as a	to a series of
connections	- one element	dimensionality,	generator and another	inputs.
between the layers	a time inputs	CNNs are used	network acts as a	- output of a node
but not	processing	where there is	discriminator	is used as input
between units	- output of the	spatial or	-minator.	for the next step
within each layer	hidden unit	temporal	generator	- first two inputs
- DBNs are trained	acts as extra	ordering	-on reading input	are fed into the
in an unsupervised	input	-consists of	,generates outputs data	model together
manner	- addresses	three distinct	with real data	- output from that
- trained by	speech	types of layers	characteristics	is used
adjusting weights	problems, time	-convolution	-discriminator reads real	as an input along
in each hidden	series	layers,	data long with generator	with the next step
layer individually	problems	pooling layers,		-uses natural
to reconstruct the	along with	and the	real or fake.	language
inputs	language	classification	-thus generator can now	processing tasks,
	problems	layer	generate new data similar	image
	-more difficult	-convolution	to real data.	segmentation
	to train	layers are the	-uses are image	
	because the	core of the	enhancement, caption	
	gradients can	CNN.	generation, optical flow	
	easily vanish	-weights	estimation	
	or explode	define a		
	-holds a	convolution		
	memory	kernel applied		
	of the past	to the original		
	events in the	input		
	sequence			

TABLE VII. Deep Learning Methods[1]

DBN Sub Types→	Deep Autoencoders	Restricted Boltzmann Machines	DBNs or RBMs
Model type	Unsupervised neural networks	Two-layer, bipartite, undirected graphical models	Deep autoencoders coupled with classification layers
Class of neural networks	Unsupervised	Unsupervised	Unsupervised
Input is	Vector	Data	Data
Training way	one layer at a time	one layer at a time	trained using back propagation, layers require labels to train
Uses feature compression (encoding), denoising input, stacked autoencoder, sparse autoencoder		Stacked RBMs	Feature extractor, acoustic modeling, speech recognition, image recognition

TABLE VIII. DBN Sub-Types[1]

Activation function

TABLE IX. Details of Activation Functions[2]

Activation Functions	Method	Advantages	Disadvantages	
Binary Step	Threshold based step function	Simplicity of design	Works only with two classes, zero gradient makes it useless for back- propagation	
Linear Function	Linear function	Ideal for simple tasks	Not suitable for complicated task	
Sigmoid	f(x)=1/(1+e^-x)	Very high gradient for small interval, non-linear output, Back-propagation suitability	Asymmetric around origin, gradient small for region other than -3 to 3	
Tanh	scaled version of the sigmoid function tanh(x)=2sigmoid(2x)-1	Symmetric around origin, Back propagates errors, Better version of sigmoid	Gradient vanishes after certain interval	
Rectified linear unit (ReLU)	f(x)=max(0,x)	Non linear output, Back propagates errors, Selected neurons activation makes network sparse increasing ease and efficiency of computation.	Gradients approaching zero problem, Back propagation without updating weights	
Leaky ReLU	$f(x)=ax, x<0$ $=x, x\geq 0$	No zero gradient	Dead neurons problem unsolved	
Softmax	$\sigma(\mathbf{z})_j = \frac{e^{z_j}}{\sum_{k=1}^{K} e^{z_k}} \text{for } j = 1,, K.$	Handles multiple classes		

human

Deep learning applications

Chat &/or service bots

Medicine and pharmaceuticals

shopping

Image colorization

Facial recognition

Personalized

entertainment

TABLE X. Deep Learning Applications			
Virtual assistants	Deep learning makes understanding and comprehending		
	language easy for machines while interacting		
Translations	Helps in language translation		
Vision for driverless delivery	More input data gives more vision to devices.		
trucks, drones and autonomous			
cars			

Provide customer services in human absence

Black-white image recreation to colored one

Disease diagnosis & customized medicine formation

Used for security as well as on social media platforms to tag

TABLE XI. Cyber Security Using Deep and Shallow Learning[3]

User preference driven suggestions

people

and

		Intrusion Detection			Malware	Spam
		Network	Botnet	DGA	Analysis	Detection
Deep Learning	Supervised	RNN [8]	RNN [9]		FNN [10] CNN [11] RNN [12]	
DeepL	Unsupervised	DBN [13] SAE [14]			DBN [15] SAE [16]	DBN [17] SAE [18]
Shallow Learning	Supervised	RF [3] NB [3] SVM [3] LR [3] HMM [3] KNN [3] SNN [3]	RF [19] NB [19] SVM [19] LR [20] KNN [21] SNN [22]	RF [23] HMM [23]	RF [24] NB [24] SVM [24] LR [24] HMM [25] KNN [24] SNN [26]	RF [27] NB [28] SVM [28] LR [27] KNN [27] SNN [27]
	Unsupervised	Clustering [29] Association [30]	Clustering [5]	Clustering [31]	Clustering [24] Association [32]	Clustering [33] Association [34

III. FUTURE TRENDS

Recommender Systems and Network Field

Recommender systems are playing the pivotal role in influencing users and thereby helping ecommerce business by turning users into potential buyers or customers. The users are happy with the recommender system functionality as they are getting suggestions at their feet, derived from existing customers' experiences and trends of buying. This is very much a need of an hour as we have entered the era of big data. Same is the scenario with network traffic, which is increasing with tremendous speed every second. With the amount of traffic data, vulnerability to threats is also on rise. So if such huge amount of past network traffic data can be analyzed and used with recommender system, then the predictions can be obtained regarding the anomalous situations to be encountered in future and suggestions can be provided immediately for mitigation actions.

As the amount of available data grows, the problem of extracting useful information becomes more difficult, which can lead to information overload. Recommender systems play a major role in such situations as they minimize costs of searching and choosing products in an e-commerce environment[9]. Recommender systems have also proved to improve decision making process and quality [10]. These features of recommender systems can be employed for network security domain. The huge amount of past network traffic data will be analyzed and profiling of each node in communication will be done. Using network traffic prediction methods and similarity index check, the anomalous situations will be notified for which recommender system will suggest mitigation actions. As the job of network security analyst is been automated, MTTR will definitely be reduced, which further will be enhanced by mitigation action suggestions. In this regards researchers tried to collaborate with different recommender techniques considering the nature of domain data and requirements. Here summary of study related to some important recommender techniques and survey of employability of recommender system in network security domain is presented.

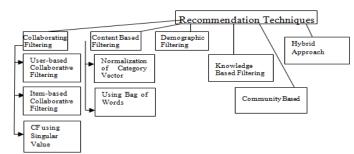


Fig.5 Recommendation Techniques

Recommendation	Process	of recommendation techniques[11]		
Technique	rrucess	Advantages	Disadvantages	
Collaborative Filtering	Finding users in U similar to u regarding their choices. So preferences of other users are used with maximum similarity index. Word-of-mouth concept is employed.	Implicit feedback sufficient, domain knowledge not required. Can be used for cross- genre, quality improves over the time.	cold start, scalability, and sparsity, insensitive to performance changes, quality depends on large historic dataset	
Content Based Filtering	Recommends items matching in contents with user profile. Each item must have content descriptor in form of words description in document.	No need of other users data, capable of recommending new & unrated item, transparency in recommendation process (results can be justified)	User are been suggested with items already rated which makes recommendations obvious, no unexpectedness in results, It is difficult to recommend if there is a limited content about the user profile Do not consider inter- dependencies or complex behavior.	
Demographic	Demographic Recommender system generates recommendations based on the user demographic attributes.	It is easy to implement and does not require user ratings.	The items not matching with demographic attributes will never be recommended.	
Knowledge Based filtering	The cases where above mentioned filtering techniques can not be used, knowledge based filtering is employed.	no cold-start problems. Suitable for complex domain with less item transactions.	Knowledge acquisition must be done often. Explicit definition of recommendation knowledge is must.	
Community Based filtering	Groups of users- items with highly matching interests are formed.	As groups are formed, group behavior pattern understanding is easy.	Some user's suggestions may get generalized.	
Hybrid Approach for filtering	Combines above mentioned approaches as per requirements.	Combines advantages of approaches merged & overcomes disadvantages of approaches merged		

TABLE XII. S	ummary of	f recommendation	techniques	111
	unnun y or	1 ccommunum	cooling acol.	** I

TABLE XIII. Survey of recommender systems in various domains					
PAPER	TECHNIQU E USED	FIELD OF APPLICATIO N	USE		
Using Collaborative Filtering in a new domain: traffic analysis CERI '16, June 14 - 16, 2016, Granada, Spain[14]	Collaborative Filtering	Computer Networks	To apply the collaborative filtering techniques to the field of troubleshooting and reducing threats in an IT infrastructure.		
CCFRS – Community based Collaborative Filtering Recommender System Journal of Intelligent & Fuzzy Systems 32 (2017) 2987– 2995[12]	Community based Collaborative Filtering	Digital Library (Books Domain)	To generating community based individual recommendations for the user.		
A Community Based Social Recommender System for Individuals & Groups, SocialCom/PASSAT/BigD ata/EconCom/BioMedCom 2013[16]	Community Based	Social Network of Movies (Movie Domain)	Movies are recommended based on their community membership, the degree utility value, adjacent nodes, and star ranking.		
A Recommender-System for Telecommunications Network Management Actions, at: https://www.researchgate.n et/publication/259785776,2 013[17]	Collaborative Filtering	Telecoms Network management system	The applicability of recommender systems as an approach toassist NOC operators to correctly respond to indications of incidents in the network they are actively managing.		
A Survey of Collaborative Filtering-Based Recommender Systems for Mobile Internet Applications, Digital Object Identifier 0.1109/ACCESS.2016.257 3314, 2169-3536 2016 IEEE. [18]	Collaborative Filtering	Mobile Internet applications.	To predict the interests of mobile users and to make proper mobile application recommendations.		
A Hybrid Trust-Based Recommender System for Online Communities of Practice IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 8, NO. 4, OCTOBER- DECEMBER 2015[19]	Hybrid Approach	Online Community of Practices (Online forums to seek answers)	To mitigate two issues, when learners face information overload and there is no knowledge authority within the learning environment, in online CoPs.		
User Profiling for University Recommender System using Automatic Information Retrieval	Collaborative Filtering	Education Domain (University/ Institute Online	User Profiling System for recommendation of various Universities/Institutions/Colleges by extracting, integrating and identifying		

TABLE XIII. Survey of recommender systems in various domains

Procedia Computer Science 78 (2016) 5 – 12, International Conference on Information Security and Privacy, 11-12 December 2015, Nagpur, INDIA[20]		Information)	the keyword based information to generate a structured Profile and then visualizing the knowledge out of these findings.
ePaper - the Personalized Mobile Newspaper, Journal of the American Society for Information Science and Technology · November 2009 [21]	Collaborative Filtering	Digital News Domain	The ePaper aggregates content (i.e., news items) from various news providers, and delivers personalized newspapers on dedicated mobile, electronic newspaper-like, devices.
TiMers: Time-based Music Recommendation System based on Social Network Services Analysis, IMECS 2015, March 18 - 20, 2015, Hong Kong[22]	Hybrid Approach	Digital Music	Extracts the general and personal tastes of music by analyzing current music playback that are collected from the popular radio stations and social network services during a specific time period and generate a list of songs for recommendation by emotion and genre.

IV. DISCUSSION AND SUMMARY

The recommender system methodology is immensely popular among the e-commerce business. The benefited users are satisfied by the results as they no more have to trawl through piles of products available at their fingertips. Similarly as network traffic data is also growing every second, the recommender system can be employed for network security domain to suggest mitigation actions in case anomalous situation is been predicted by traffic prediction module. The network analyst no more has to scroll through logs of traffic traces for suspicious traffic. As the anomalous situation is predicted beforehand, MTTR(mean time to respond) will improve drastically. The various network traffic prediction methods are listed. The survey of various literatures shows use of recommender system in various domains other than e-commerce. Concepts of AI , specifically ML, DL and recommender systems, are thus front runners to handle various network security issues effectively and efficiently.

REFERENCES

- Daniel S. Berman, Anna L. Buczak *, Jeffrey S. Chavis and Cherita L. Corbett, "A Survey of Deep Learning Methods for Cyber Security", Information 2019, 10, 122; doi:10.3390/info10040122 www.mdpi.com/journal/information
- [2]. <u>https://www.analyticsvidhya.com/blog/2017/10/fundamentals-deep-learning-activation-functions-when-to-use-them/</u>
- [3]. Giovanni Apruzzese et al., "On the Effectiveness of Machine and Deep Learning for Cyber Security", 2018 10th International Conference on Cyber Conflict CyCon X: Maximising Effects T. Minárik, R. Jakschis, L. Lindström (Eds.) 2018 © NATO CCD COE Publications, Tallinn
- [4]. <u>https://machinelearningmastery.com/what-is-deep-learning/</u>
- $[5]. \underline{https://www.datasciencecentral.com/profiles/blogs/a-tour-of-machine-learning-algorithms-1?overrideMobileRedirect=1}$
- [6]. Swapnil Ramesh Kumbhar, "An Overview on Use of Artificial IntelligenceTechniques in Effective Security Management", International Journal of Innovative Research in Computerand Communication Engineering, Vol. 2, Issue 9, September 2014
- [7]. Boutaba et al., "A comprehensive survey on machinelearning for networking: evolution, applications and research opportunities" Journal of Internet Services and Applications (2018) 9:16 <u>https://doi.org/10.1186/s13174-018-0087-2</u>
- [8]. Sheetal Thakare et al., "Artificial Advisor: Recommender System for Network Security", Proceedings of the International Conference on Inventive Computation Technologies (ICICT-2018)DVD Part Number:CFP18F70-DVD; ISBN:978-1-5386-4984-8, 978-1-5386-4985-5/18/\$31.00 ©2018 IEEE

- [9]. Hu R, Pu P, "Potential acceptance issues of personality-based recommender systems." In Proceedings of ACM conference on recommender systems (RecSys'09), New York City, NY, USA; October 2009. p. 22–5.
- [10]. B. Pathak, R. Garfinkel, R. Gopal, R. Venkatesan, F. Yin, "Empirical analysis of the impact of recommender systems on sales", Journal of Management Information Systems, 27 (2) (2010), pp. 159-188
- [11]. R. Burke, Hybrid Recommender Systems: Survey and Experiments, User Modeling and User-Adapted Interaction, vol. 12, no. 4, pp. 331-370, 2002.
- [12]. Chhavi Sharma* and PunamBedi, CCFRS Community based Collaborative Filtering Recommender System Journal of Intelligent & Fuzzy Systems 32 (2017) 2987–2995 DOI:10.3233/JIFS-169242 IOS Press
- [13]. Hybrid Web Recommendation Systems, Core Presentation Summary with Discussions, Jae-wookAhn, www.piit.edu
- [14]. Using Collaborative Filtering in a new domain: traffic analysis CERI '16, June 14 16, 2016, Granada, Spain
- [15]. CCFRS Community based Collaborative Filtering Recommender System Journal of Intelligent & Fuzzy Systems 32 (2017) 2987–2995
- [16]. A Community Based Social Recommender System for Individuals & Groups, SocialCom/PASSAT/BigData/EconCom/BioMedCom 2013
- [17]. A Recommender-System for Telecommunications Network Management Actions, at: <u>https://www.researchgate.net/publication/259785776,2013</u>
- [18]. A Survey of Collaborative Filtering-Based Recommender Systems for Mobile Internet Applications, Digital Object Identifier 0.1109/ACCESS.2016.2573314, 2169-3536 2016 IEEE.
- [19]. A Hybrid Trust-Based Recommender System for Online Communities of PracticeIEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 8, NO. 4, OCTOBER-DECEMBER 2015
- [20]. User Profiling for University Recommender System using Automatic Information RetrievalProcedia Computer Science 78 (2016) 5 – 12, International Conference on Information Security and Privacy, 11-12 December 2015, Nagpur, INDIA
- [21]. ePaper the Personalized Mobile Newspaper, Journal of the American Society for Information Science and Technology · November 2009
- [22]. TiMers: Time-based Music Recommendation System based on Social Network Services Analysis, IMECS 2015, March 18 - 20, 2015, Hong Kong
- [23]. G P Bherde, M A Pund, "Recent attack prevention techniques in web service applications", International Conference on Automatic Control and Dynamic Optimization, 2016

Sheetal Thakare, et.al. "Handling Network Security Issues Using AI." *IOSR Journal of Engineering (IOSRJEN)*, 10(1), 2020, pp. 01-12.