Intuitionistic Fuzzy Hyponormal Operator in IFH-Space

A.Radharamani¹, S. Maheswari²

¹(Department of Mathematics, Chikkanna Govt. Arts College, India. ²(Department of Mathematics, Tiruppur Kumaran College for Women, India. Received 10 June 2020; Accepted 27 June 2020

Abstract: In this work, we introduced the definition of Intuitionistic Fuzzy Hyponormal operator acting on an IFH-space, i.e. an operator $\mathbb{T} \in IFB(\mathcal{H})$ is Intuitionistic Fuzzy Hyponormalif $||\mathbb{T}^*a|| \leq ||\mathbb{T}a||, \forall a \in \mathcal{H}$ or equivalently $\mathbb{T}^*\mathbb{T} - \mathbb{T}\mathbb{T}^* \geq 0$ and given some elementary properties of Intuitionistic Fuzzy Hyponormal operator on an IFH-space. Also, we introduced some definitions like intuitionistic fuzzy invariant, eigenvalues, eigenvectors and eigenspaces which are related to Intuitionistic Fuzzy Hyponormal operator in IFH-space.

Keywords:Intuitionistic Fuzzy Adjoint operator (IFA-operator), Intuitionistic Fuzzy Hilbert space (IFH-space), Intuitionistic Fuzzy Hyponormal operator (IFHN-operator),Intuitionistic FuzzyInvariant (IF-invariant), Intuitionistic Fuzzy Normal operator (IFN-operator), IntuitionisticFuzzy Self-Adjoint operator (IFSA-operator).

I. INTRODUCTION

In 1986, Atanossov [11] introduced the notion of intuitionistic fuzzy set. Park [10] introduced the notion of intuitionistic fuzzy metric space (\mathbb{T} , M, N, *, •) with the use of continuous t-norm * and continuous t-conorm • in 2004. Saadati and Park [17] introduced modulation of the intuitionistic fuzzy metric space in IFH-space using continuous t representable in 2005. The new idea of intuitionistic fuzzy normed spaces was introduced by Goudarzi et al. [13] and introduced the modified definition of intuitionistic fuzzy inner product space (IFIP-space) with the help of continuous t-representable (\mathcal{T}) in 2009. A triplet ($\mathcal{H}, \mathcal{F}_{\mu,\nu}, \mathcal{T}$) where \mathcal{H} is a real vector space, \mathcal{T} is a continuous t -representable and $\mathcal{F}_{\mu,\nu}$ is an Intuitionistic Fuzzy set on $\mathcal{H}^2 \times \mathbb{R}$ which was introduced by Goudarzi et al. [13] in 2009, and also Majumdar and Samanta [15] gave the various definition of IFIP-space and some of their properties using(\mathcal{H}, μ, μ^*).

The definition of IFH-space first introduced by Radharamani et al. [1] in 2018, and also some properties of IFA & IFSA operators in IFH-space by Radharamani et al.[2]. Then Radharamani et al. [3] introduced the concept of Intuitionistic Fuzzy Normal operator in 2020. An operator $\mathbb{T} \in IFB(\mathcal{H})$ if it commutes with its Intuitionistic fuzzy adjoint operator.i.e, $\mathbb{TT}^* = \mathbb{T}^*\mathbb{T}$ and their properties. In 2020, Radharamani et al. [4], [5] given the definition of Intuitionistic Fuzzy Unitary operator (IFU-operator) and Intuitionistic Fuzzy Partial Isometry (IFPI-operator) on IFH-space \mathcal{H} , and gave some properties of these operators in IFH-space and also the relation with isometric isomorphism of \mathcal{H} on to itself.

In this paper, we consider an Intuitionistic fuzzy normal operator in IFH-space and introduced the definition of Intuitionistic Fuzzy hyponormal operator(IFHN- operator) and we provided some important properties of IFHN- operator on IFH-space. And also introduce intuitionistic fuzzy invariant and eigenvectors and eigenspaces which is using in Intuitionistic Fuzzy Hyponormal Operator in IFH-space, which all are discussed in detail.

The classification of this paper is as follows:

Section 2 provides some preliminary definitions and theorems which are used in this paper.

In section 3, we introduced the concept of Intuitionistic Fuzzy hyponormal operator(IFHN- operator) and prove some properties of Intuitionistic fuzzy hyponormal operator have been studied.

Definition 2.1: [13] **IFIP-space**

II. PRELIMINARIES

Let $\mu: \mathcal{H}^2 \times (0, +\infty) \to [0,1]$ and $\nu: \mathcal{H}^2 \times (0, +\infty) \to [0,1]$ be Fuzzy sets, such that $\mu(u, v, t) + \nu(u, v, t) \leq 1, \forall u, v \in \mathcal{H} \& t > 0$. An Intuitionistic Fuzzy Inner Product Space (IFIP-Space) is a triplet $(\mathcal{H}, \mathcal{F}_{\mu,v}, \mathcal{T})$, where \mathcal{H} is a real vector space, \mathcal{T} is a continuous t -representable and $\mathcal{F}_{\mu,v}$ is an Intuitionistic Fuzzy set on $\mathcal{H}^2 \times \mathbb{R}$ satisfying the following conditions for all $u, v, w \in \mathcal{H}$ and $s, r, t \in \mathbb{R}$: (IFI - 1) $\mathcal{F}_{\mu,v}(u, v, 0) = 0$ and $\mathcal{F}_{\mu,v}(u, u, t) > 0$, for every t > 0. (IFI - 2) $\mathcal{F}_{\mu,v}(u, v, t) = \mathcal{F}_{\mu,v}(v, u, t)$. (IFI - 3) $\mathcal{F}_{\mu,v}(u, u, t) \neq H(t)$ for some $t \in \mathbb{R}$ iff $u \neq 0$, where $H(t) = \begin{cases} 1, & \text{if } t > 0 \\ 0, & \text{if } t \leq 0 \end{cases}$ (IFI - 4) For any $\alpha \in \mathbb{R}$,

$$\mathcal{F}_{\mu,\nu}(\alpha u, v, t) = \begin{cases} \mathcal{F}_{\mu,\nu}\left(u, v, \frac{t}{\alpha}\right), & \alpha > 0\\ \mathrm{H}(t), & \alpha = 0\\ \mathcal{N}_{s}\left(\mathcal{F}_{\mu,\nu}\left(u, v, \frac{t}{\alpha}\right)\right), & \alpha < 0 \end{cases}$$

 $(\text{IFI} - 5) \sup \left\{ \mathcal{T} \left(\mathcal{F}_{\mu,\nu}(u, w, s), \mathcal{F}_{\mu,\nu}(v, w, r) \right) \right\} = \mathcal{F}_{\mu,\nu}(u + v, w, t).$ $(\text{IFI} - 6) \mathcal{F}_{\mu,\nu}(u, v, \cdot) : \mathbb{R} \to [0,1] \text{ is Continuous on } \mathbb{R} \setminus \{0\}.$ $(\text{IFI} - 7) \lim_{t \to 0} \mathcal{F}_{\mu,\nu}(u, v, t) = 1.$

Definition 2.2: [1], [13] IFH-space

Let $(\mathcal{H}, \mathcal{F}_{\mu, \nu}, \mathcal{T})$ be an IFIP-Space with IP: $\langle u, v \rangle = \sup\{t \in \mathbb{R}: \mathcal{F}_{\mu, \nu}(u, v, t) < 1\}, \forall u, v \in \mathcal{H}.$ If $(\mathcal{H}, \mathcal{F}_{\mu, \nu}, \mathcal{T})$ is complete in the norm $\mathcal{P}_{\mu, \nu}$, then \mathcal{H} is an Intuitionistic Fuzzy Hilbert Space (IFH-Space).

Definition 2.3: [2] IFA-operator

Let $(\mathcal{H}, \mathcal{F}_{\mu,v}, \mathcal{T})$ be an IFH-Space and let $\mathbb{P} \in \mathrm{IFB}(\mathcal{H})$. Then there exists unique $\mathbb{P}^* \in \mathrm{IFB}(\mathcal{H}) \ni \langle \mathbb{P}u, v \rangle = \langle u, \mathbb{P}^*v \rangle \forall u, v \in \mathcal{H}$.

Definition 2.4: [2] IFSA-operator

Let $(\mathcal{H}, \mathcal{F}_{\mu, v}, \mathcal{T})$ be an IFH-Space with IP: $\langle u, v \rangle = \sup\{t \in \mathbb{R}: \mathcal{F}_{\mu, v}(u, v, t) < 1\}, \forall u, v \in \mathcal{H} \text{ and let } \mathbb{P} \in \text{IFB}(\mathcal{H}).$ Then \mathbb{P} is Intuitionistic Fuzzy Self-Adjoint Operator, if $\mathbb{P} = \mathbb{P}^*$, where \mathbb{P}^* is Intuitionistic Fuzzy Self-Adjoint of \mathbb{P} .

Theorem 2.5: [2]

Let $(V, F_{\mu,\vartheta}, *)$ be an IFH – space with IP: $\langle x, y \rangle_{\alpha}^{N,M} = \sup \{ u \in \mathbb{R} : F_{\mu,\vartheta}(x, y, u) < 1 \} \forall x, y \in V$ and let S^* be the intuitionistic fuzzy adjoint operator of $S \in IFB(V)$. Then:

(i) $(S^*)^* = S$

(ii) $(\beta S)^* = \beta S^*$

- (iii) $(\beta S + \gamma T)^* = \beta S^* + \gamma T^*$ where β, γ are scalars and $S \in IFB(V)$.
- (iv) $(ST)^* = T^*S^*$.

Definition 2.6: [3] IFN-operator

Let $(\mathcal{H}, \mathcal{F}_{\mu,v}, \mathcal{T})$ be an IFH-space with an IP: $\langle u, v \rangle = \sup\{t \in \mathbb{R}: \mathcal{F}_{\mu,v}(u, v, t) < 1\}, \forall u, v \in \mathcal{H}$ and let $\mathbb{P} \in IFB(\mathcal{H})$. Then \mathbb{P} is an Intuitionistic Fuzzy Normal Operator if it commutes with its IF-Adjoint. i.e. $\mathbb{PP}^* = \mathbb{P}^*\mathbb{P}$.

Definition 2.7: [4] IFU-operator

Let $(\mathcal{H}, \mathcal{F}_{\mu,v}, \mathcal{T})$ be a IFH-space with IP: $\langle u, v \rangle = \sup\{t \in \mathbb{R}: \mathcal{F}_{\mu,v}(u, v, t) < 1\} \forall u, v \in \mathcal{H} \text{ and } \text{let} \mathbb{P} \in IFB(\mathcal{H}).$ Then \mathbb{P} is an Intuitionistic fuzzy unitary operator if it satisfies $\mathbb{PP}^* = I = \mathbb{P}^*\mathbb{P}$.

Definition 2.8: [4]Intuitionistic Fuzzy Isometric Isomorphism

Let *X* and *Y* be intuitionistic fuzzy normed linear spaces. An Intuitionistic Fuzzy isometric isomorphism of *X* into *Y* is a one to one linear transformation \mathbb{P} of *X* into *Y* such that $\mathcal{P}_{\mu,\nu}(\mathbb{P}u, t) = \mathcal{P}_{\mu,\nu}(u, t)$ for every $u \in X$.

Theorem 2.9: [4]

Let $(\mathcal{H}, \mathcal{F}_{\mu,v}, \mathcal{T})$ be an IFH-space with IP: $\langle u, v \rangle = \sup\{t \in \mathbb{R}: \mathcal{F}_{\mu,v}(u, v, t) < 1\} \forall u, v \in \mathcal{H}$ and let $\mathbb{P} \in IFB(\mathcal{H})$. If \mathbb{P} is Intuitionistic Fuzzy Unitary operator if and only if it is an isometric isomorphism of \mathcal{H} onto itself.

Definition 2.10: [13] IF-orthogonal

Let $(\mathcal{H}, \mathcal{F}_{\mu,v}, \mathcal{T})$ be an IFH-space. $u, v \in \mathcal{H}$ is said to be IF-orthogonal to each other if $\mathcal{F}_{\mu,v}(u, v, t) = H(t)$, for each $t \in \mathbb{R}$ and it is denoted by $u \perp v$.

Theorem 2.11: [13]

Let $(\mathcal{H}, \mathcal{F}_{\mu,\nu}, \mathcal{T})$ be an IFH-space. The orthogonality has the following properties:

(1) $0 \perp u, \forall u \in \mathcal{H}.$

- (2) If $u \perp v$ then $v \perp u$.
- (3) If $u \perp v$ then u = 0.
- (4) If $u \perp u_i$ (i = 1, 2, ..., n) then $u \perp (\sum_{i=1}^n u_i)$.
- (5) If $u \perp v$ then for any $a \in \mathbb{R}, u \perp av$.

(6) Let $\mathcal{F}_{u,v}$ be IF-continuous. If $u_n \xrightarrow{\tau_F} u, v \perp u_n$ (n = 1, 2, ...) then $v \perp u$.

Definition 2.12: [13]

Let $(\mathcal{H}, \mathcal{F}_{\mu, v}, \mathcal{T})$ be an IFH-space and $\mathcal{M} \subset \mathcal{H}$. \mathcal{M}^{\perp} is the set of all $v \in \mathcal{H}$ that are orthogonal to every $u \in \mathcal{M}$.

Theorem 2.13: [13]

Let $(\mathcal{H}, \mathcal{F}_{\mu,\nu}, \mathcal{T})$ be an IFH-space, $\mathcal{F}_{\mu,\nu}$ be IF-continuous and \mathcal{M} be a subset of \mathcal{H} . Then \mathcal{M}^{\perp} is a closed subspace of \mathcal{H} and $\mathcal{M} \cap \mathcal{M}^{\perp} = \{0\}$.

Theorem 2.14: [13] The Pythagorean Theorem

Let $(\mathcal{H}, \mathcal{F}_{\mu, v}, \mathcal{T})$ be an IFH-space and let $u \perp v$. Then $\mathcal{P}_{\mu, v}(u + v, t) = \mathcal{T}(\mathcal{P}_{\mu, v}(u, t), \mathcal{P}_{\mu, v}(v, t))$.

Definition 2.15: [5] Intuitionistic Fuzzy Projection operator

Let $(\mathcal{H}, \mathcal{F}_{\mu,v}, \mathcal{T})$ be an IFH-space. \mathcal{H} can be decomposed into $\mathcal{H} = \mathcal{M} \bigoplus \mathcal{M}^{\perp}$, i.e. for any $u \in \mathcal{H}$, $u = v \bigoplus w$ where $v \in \mathcal{M} \& w \in \mathcal{M}^{\perp}$. An operator \mathbb{P} from \mathcal{H} onto \mathcal{M} is said to be IF-projection if $\mathbb{P}u = v$. It is denoted by $\mathbb{P}_{\mathcal{M}}$.

Note 2.16: [5]

Let $(\mathcal{H}, \mathcal{F}_{\mu, v}, \mathcal{T})$ be an IFH-space and $\mathcal{M} \subset \mathcal{H}$ be a closed subspace. The IF-orthogonal projection (IF-Projection operator) of \mathcal{H} onto \mathcal{M} is an operator from \mathcal{H} onto itself such that for $u \in \mathcal{H}$, $\mathbb{P}_{\mathcal{M}} u$ is the unique element in \mathcal{M} , i.e. $\mathbb{P}_{\mathcal{M}} u = v, v \in \mathcal{M}$.

Definition 2.17: [5] Intuitionistic Fuzzy Partial isometry operator

An operator $\mathbb{P} \in IFB(\mathcal{H})$ is said to be Intuitionistic Fuzzy (IF) partial isometry operator if there exists a closed subspace \mathcal{M} such that $\mathcal{P}_{\mu,\nu}(\mathbb{P}u, t) = \mathcal{P}_{\mu,\nu}(u, t)$ for any $u \in \mathcal{M}$ and $\mathbb{P}u = 0$, for any $u \in \mathcal{M}^{\perp}$, here \mathcal{M} is said to be the initial space of \mathbb{P} and $\mathcal{N} = \mathcal{R}(\mathbb{P})$ is said to be the final space of \mathbb{P} .

III. MAIN RESULTS

In this section we introduced the definition of intuitionistic fuzzy hyponormal operator on IFH-space and some properties. Before that we introduced some preliminary definitions and theorems which are used to characterize intuitionistic fuzzy hyponormal operator.

Definition 3.1:

Let $(\mathcal{H}, \mathcal{F}_{\mu,\nu}, \mathcal{T})$ be an IFH-space and let $\mathbb{T} \in IFB(\mathcal{H})$. Then

(a) A scalar λ , $0 < \lambda < 1$, is called an eigenvalue of \mathbb{T} if there exists non-zero $a \in \mathcal{H}$, such that $\mathbb{T}a = \lambda a$.

(b) A non-zero vector $a \in \mathcal{H}$ is called eigenvector of \mathbb{T} , if there exists λ , $0 < \lambda < 1$, such that $\mathbb{T}a = \lambda a$.

Remark 3.2:

Corresponding to an eigenvalue λ there may correspond more than one eigenvector.

Theorem 3.3:

Let Tbe an IFN-operator on a finite dimensional IFH-space $\mathcal H$ over $\mathbb R$, then

(i) $\mathbb{T} - \lambda I$ is Intuitionistic fuzzy normal.

(ii) Every eigenvector of \mathbb{T} is also an eigenvector of \mathbb{T}^* .

Proof:

(i) Since \mathbb{T} is an IFN-operator, we have $\mathbb{TT}^* = \mathbb{T}^*\mathbb{T}$

Also, $(\mathbb{T} - \lambda I)^* = \mathbb{T}^* - (\lambda I)^* = \mathbb{T}^* - \overline{\lambda} I$.

So, $(\mathbb{T} - \lambda I)(\mathbb{T} - \lambda I)^* = (\mathbb{T} - \lambda I)(\mathbb{T}^* - \overline{\lambda} I) = \mathbb{T}\mathbb{T}^* - \overline{\lambda}\mathbb{T} - \lambda\mathbb{T}^* - \lambda\overline{\lambda}$... (3.1) And $(\mathbb{T} - \lambda I)^*(\mathbb{T} - \lambda I) = (\mathbb{T}^* - \overline{\lambda} I)(\mathbb{T} - \lambda I) = \mathbb{T}^*\mathbb{T} - \lambda\mathbb{T}^* - \overline{\lambda}\mathbb{T} - \lambda\overline{\lambda}$... (3.2) Therefore, from (3.1) and (3.2) we get

$$(\mathbb{T} - \lambda I)^* (\mathbb{T} - \lambda I) = (\mathbb{T} - \lambda I)(\mathbb{T} - \lambda I)^*$$

Thus $\mathbb{T} - \lambda I$ is an IFN-operator.

(ii) Let $a \in \mathcal{H}$ be an eigenvector of \mathbb{T} corresponding to eigenvalue λ .

Which implies that, $\mathbb{T}a = \lambda a$.

Now,

$$\sup\{s \in \mathbb{R}: \mathcal{F}_{\mu,\nu}(\mathbb{T}a, \mathbb{T}a, s) < 1\} = \sup\{s \in \mathbb{R}: \mathcal{F}_{\mu,\nu}(a, \mathbb{T}^*\mathbb{T}a, s) < 1\}$$

= sup{s $\in \mathbb{R}: \mathcal{F}_{\mu,\nu}(a, \mathbb{T}\mathbb{T}^*a, s) < 1\}$ [since, T is Fuzzy Normal operator]
= sup{s $\in \mathbb{R}: \mathcal{F}_{\mu,\nu}(\mathbb{T}^*a, \mathbb{T}^*a, s) < 1\}$

Since $\mathbb{T} - \lambda I$ is an IFN-operator, therefore $a \in \mathcal{H}$, we have

$$\begin{split} \sup \{s \in \mathbb{R}: \mathcal{F}_{\mu,\nu} \big((\mathbb{T} - \lambda I)a, (\mathbb{T} - \lambda I)a, s \big) < 1 \} &= \sup \{s \in \mathbb{R}: \mathcal{F}_{\mu,\nu} ((\mathbb{T} - \lambda I)^*a, (\mathbb{T} - \lambda I)^*a, s) < 1 \} \\ \text{Since } \mathbb{T}a &= \lambda a \implies \mathbb{T}a = \lambda Ia \implies \mathbb{T}a - \lambda Ia = 0 \implies (\mathbb{T} - \lambda I)a = 0 \\ \text{Therefore, } \mathbb{T} - \lambda I = 0. \\ \text{Then } \sup \{s \in \mathbb{R}: \mathcal{F}_{\mu,\nu} \big((\mathbb{T} - \lambda I)a, (\mathbb{T} - \lambda I)a, s \big) < 1 \} = 0 \\ \implies \sup \{s \in \mathbb{R}: \mathcal{F}_{\mu,\nu} ((\mathbb{T} - \lambda I)^*a, (\mathbb{T} - \lambda I)^*a, s) < 1 \} = 0 \\ \text{Then,} (\mathbb{T} - \lambda I)^* = 0. \\ \text{Then for each } a \in \mathcal{H}, \text{ we have } (\mathbb{T} - \lambda I)^*a = 0 \\ \implies \mathbb{T}^*a - \overline{\lambda}Ia = 0 \implies \mathbb{T}^*a = \overline{\lambda}Ia \implies \mathbb{T}^*a = \overline{\lambda}a \end{split}$$

Therefore, *a* is eigenvector of \mathbb{T} corresponding to eigenvalue $\overline{\lambda}$.

International organization of Scientific Research

Definition 3.4: Intuitionistic Fuzzy Invariant (IF-Invariant)

Let $(\mathcal{H}, \mathcal{F}_{\mu,\nu}, \mathcal{T})$ be an IFNL-space and let $\mathbb{T} \in IFB(\mathcal{H})$. A subspace \mathcal{M} of an IFNL-space \mathcal{H} is said to be IF-invariant under \mathbb{T} , if $\mathbb{T}\mathcal{M} \subset \mathcal{M}$.

Theorem 3.5:

Let \mathcal{M} be a closed subspace of an IFH-space and let $\mathbb{T} \in IFB(\mathcal{H})$. Then \mathcal{M} is IF-invariant under \mathbb{T} if and only if \mathcal{M}^{\perp} is IF-invariant under \mathbb{T}^* .

Proof:

Suppose \mathcal{M} is IF-invariant under \mathbb{T} .

Let $b \in \mathcal{M}^{\perp}$. We have to prove that $\mathbb{T}^* b \in \mathcal{M}^{\perp}$.

Let $a \in \mathcal{H}$. Since \mathcal{M} is IF-invariant under $\mathbb{T} \implies \mathbb{T}a \in \mathcal{M}$.

Since $b \in \mathcal{M}^{\perp} \implies \sup\{s \in \mathbb{R}: \mathcal{F}_{u,v}(\mathbb{T}a, b, s) < 1\} = 0$

 $\Rightarrow \sup\{s \in \mathbb{R}: \mathcal{F}_{\mu,\nu}(a, \mathbb{T}^*b, s) < 1\} = 0$

Thus, $\mathbb{T}^* b \in \mathcal{M}^{\perp}$.

Conversely, suppose that \mathcal{M}^{\perp} is IF-invariant under \mathbb{T}^* .

Since \mathcal{M}^{\perp} is closed subspace of an IFH-space \mathcal{H} by theorem (2.13) and since \mathcal{M}^{\perp} is IF-invariant under \mathbb{T}^* , therefore by above case $(\mathcal{M}^{\perp})^{\perp}$ is IF-invariant under $(\mathbb{T}^*)^*$.

But $(\mathcal{M}^{\perp})^{\perp} = \mathcal{M}$ and $(\mathbb{T}^*)^* = \mathbb{T}$.

Therefore, \mathcal{M} is IF-invariant under \mathbb{T} .

Definition 3.6:

Let \mathcal{M} be a closed subspace of an IFH-space and let $\mathbb{T} \in IFB(\mathcal{H})$. If both \mathcal{M} and \mathcal{M}^{\perp} are IF-invariant under \mathbb{T} , we say that \mathcal{M} reduces \mathbb{T} (or \mathbb{T} is reduced by \mathcal{M}).

Theorem 3.7:

A closed subspace \mathcal{M} of an IFH-space \mathcal{H} reduces an operator \mathbb{T} if and only if \mathcal{M} is IF-invariant under both \mathbb{T} and \mathbb{T}^* .

Proof:

Let us assume that \mathcal{M} reduces an operator \mathbb{T} .

By the definition of reducibility, \mathcal{M} and \mathcal{M}^{\perp} are IF-invariant under \mathbb{T} .

By theorem (3.5), if \mathcal{M}^{\perp} is IF-invariant under \mathbb{T} , then $(\mathcal{M}^{\perp})^{\perp}$ i.e. \mathcal{M} is IF-invariant under \mathbb{T}^* .

Thus, \mathcal{M} is IF-invariant under both \mathbb{T} and \mathbb{T}^* .

Conversely, suppose that \mathcal{M} is IF-invariant under both \mathbb{T} and \mathbb{T}^* .

Since \mathcal{M} is IF-invariant under \mathbb{T}^* , \mathcal{M}^{\perp} is IF-invariant under $(\mathbb{T}^*)^*$.

i.e. \mathcal{M}^{\perp} is IF-invariant under \mathbb{T} .

Therefore, both \mathcal{M} and \mathcal{M}^{\perp} are IF-invariant under \mathbb{T} .

Thus, \mathcal{M} reduces \mathbb{T} .

Definition 3.8:

Let $(\mathcal{H}, \mathcal{F}_{\mu,\nu}, \mathcal{T})$ be an IFH-space, $\mathbb{T} \in IFB(\mathcal{H})$ and let λ be an eigenvalue of \mathbb{T} . Then the set of all eigenvectors corresponding to λ together with 0 vector is called an eigenspace of \mathbb{T} corresponding to the eigenvalue λ and is denoted by \mathcal{M}_{λ} .

Note3.9:

- (1) By the definition, an eigenvector cannot be a zero vector. Therefore, \mathcal{M}_{λ} necessarily contains some non-zero vectors.
- (2) From (1), a non-zero vector $a \in \mathcal{M}_{\lambda}$ iff $\mathbb{T}a = \lambda a$. Also $0 \in \mathcal{M}_{\lambda}$, the vector 0 definitely satisfies the equation $\mathbb{T}a = \lambda a$. Therefore $\lambda f_{\lambda} = \{a \in \mathcal{A}_{\lambda}, \exists a = \lambda a\} = \{a \in \mathcal{A}_{\lambda}, \exists b = 0\}$

Therefore, $\mathcal{M}_{\lambda} = \{a \in \mathcal{H} : \mathbb{T}a = \lambda a\} = \{a \in \mathcal{H} : (\mathbb{T} - \lambda I)a = 0\}.$

- Thus, \mathcal{M}_{λ} is the Null-space of $\mathbb{T} \lambda I$ on \mathcal{H} . Hence \mathcal{M}_{λ} is a subspace of \mathcal{H} .
- (3) Let $a \in \mathcal{H}$. Since \mathcal{M}_{λ} is a subspace of \mathcal{H} and λ is a scalar, then $\lambda a \in \mathcal{M}_{\lambda}$.

Since $a \in \mathcal{M}_{\lambda} \implies \mathbb{T}a = \lambda a \implies \mathbb{T}a \in \mathcal{M}_{\lambda} \implies \mathcal{M}_{\lambda}$ is IF-invariant under \mathbb{T} .

From (1), (2) and (3), \mathcal{M}_{λ} is non-zero subspace of \mathcal{H} invariant under \mathbb{T} .

Theorem 3.10:

If \mathbb{T} be an IFN-operator on n-dimensional IFH-space \mathcal{H} , then each eigenspace reduces \mathbb{T} .

Proof:

Let $a_i \in \mathcal{M}_i$, the eigenspace of \mathbb{T} and let λ_i be the corresponding eigenvalue. Then $\mathbb{T}a_i = \lambda_i a_i$. Since \mathbb{T} is an IFN-operator, then by theorem $(3.3)\overline{\lambda}_i$ is the eigenvalue for \mathbb{T}^* (i.e. $\mathbb{T}^*a_i = \overline{\lambda}_i a_i$). Since \mathcal{M}_i is a subspace of $\mathcal{H} \Longrightarrow \overline{\lambda}_i a_i \in \mathcal{M}_i \Longrightarrow \mathbb{T}^*a_i \in \mathcal{M}_i$. Therefore, \mathcal{M}_i is IF-invariant under \mathbb{T}^* . But \mathcal{M}_i is IF-invariant under \mathbb{T} . Thus, by theorem (3.5), \mathcal{M}_i reduces \mathbb{T} .

Definition 3.11: Intuitionistic Fuzzy Hyponormal Operator (IFHN-operator)

Let $(\mathcal{H}, \mathcal{F}_{\mu,v}, \mathcal{T})$ be an IFH-space with IP: $\langle a, b \rangle = \sup\{s \in \mathbb{R}: \mathcal{F}_{\mu,v}(a, b, s) < 1\} \forall a, b \in \mathcal{H} \text{ and let}$ $\mathbb{T} \in IFB(\mathcal{H})$. Then T is an intuitionistic fuzzy hyponormal (IFHN) operator on \mathcal{H} if $\mathcal{P}_{\mu,\nu}(\mathbb{T}^*a, s) \leq \mathcal{P}_{\mu,\nu}(\mathbb{T}^*a, s)$ $\mathcal{P}_{u,v}(\mathbb{T}^a, s), a \in \mathcal{H}$ or equivalently $\mathbb{T}^*\mathbb{T} - \mathbb{T}\mathbb{T}^* \ge 0$.

Theorem 3.12:

Let $(\mathcal{H}, \mathcal{F}_{u,v}, \mathcal{T})$ be an IFH-space with IP: $\langle a, b \rangle = \sup\{s \in \mathbb{R}: \mathcal{F}_{u,v}(a, b, s) < 1\} \forall a, b \in \mathcal{H}$ and let $\mathbb{T} \in IFB(\mathcal{H})$ be an intuitionistic fuzzy hyponormal (IFHN) operator on \mathcal{H} . Then $\mathcal{P}_{\mu,\nu}((\mathbb{T} - zI)a, s) \geq 1$ $\mathcal{P}_{\mu,\nu}((\mathbb{T}^* - \bar{z}I)a, s), a \in \mathcal{H}, \text{ i.e. } \mathbb{T} - zI \text{ is an IFHN-operator.}$ **Proof:**

Given \mathbb{T} is an IFHN-operator on \mathcal{H} . Let $\mathcal{P}_{u,v}^{2}((\mathbb{T}-zI)a,s) = \langle (\mathbb{T}-zI)a, (\mathbb{T}-zI)a \rangle$ $= \sup\{s \in \mathbb{R}: \mathcal{F}_{\mu,\nu}((\mathbb{T} - zI)a, (\mathbb{T} - zI)a, s) < 1\}$ $\geq \sup\{s \in \mathbb{R}: \mathcal{F}_{\mu,\nu}(a, (\mathbb{T} - zI)^*(\mathbb{T} - zI)^*a, s) < 1\}$ [since, by def. of IFHN-operator] $=\langle (\mathbb{T}-zI)^*a, (\mathbb{T}-zI)^*a \rangle$ $\therefore \mathcal{P}_{\mu,\nu}^{2}((\mathbb{T}-zI)a,s) \geq \mathcal{P}_{\mu,\nu}^{2}((\mathbb{T}-zI)^{*}a,s)$ $\Rightarrow \mathcal{P}_{\mu,\nu}((\mathbb{T}-zI)a,s) \geq \mathcal{P}_{\mu,\nu}((\mathbb{T}-zI)^*a,s)$ i.e. $\mathcal{P}_{u,v}((\mathbb{T}-zI)a,s) \geq \mathcal{P}_{u,v}(\overline{(\mathbb{T}-zI)}a,s)$ Thus, $\mathcal{P}_{\mu,\nu}((\mathbb{T}-zI)a,s) \geq \mathcal{P}_{\mu,\nu}((\mathbb{T}^*-\bar{z}I)a,s)$

Theorem 3.13:

Let($\mathcal{H}, \mathcal{F}_{\mu,\nu}, \mathcal{T}$) be an IFH-space and let $\mathbb{T} \in IFB(\mathcal{H})$ be an IFHN-operator on \mathcal{H} . Then $\mathbb{T}a = \lambda a \Rightarrow$ $\mathbb{T}^*a = \overline{\lambda}a.$

Proof:

Let *a*be an eigenvector of \mathbb{T} corresponding to the eigenvalue λ .

$$\Rightarrow \mathbb{T}a = \lambda a$$

Now,

$$\sup\{s \in \mathbb{R}: \mathcal{F}_{\mu,\nu}(\mathbb{T}a, \mathbb{T}a, s) < 1\} = \sup\{s \in \mathbb{R}: \mathcal{F}_{\mu,\nu}(a, \mathbb{T}^*\mathbb{T}a, s) < 1\}$$
$$= \sup\{s \in \mathbb{R}: \mathcal{F}_{\mu,\nu}(a, \mathbb{T}\mathbb{T}^*a, s) < 1\} \text{ [since, T is anIFN-operator]}$$
$$= \sup\{s \in \mathbb{R}: \mathcal{F}_{\mu,\nu}(\mathbb{T}^*a, \mathbb{T}^*a, s) < 1\}$$

Since, $\mathbb{T} - zI$ is intuitionistic fuzzy hyponormal, $a \in \mathcal{H}$.

 $\sup\{s \in \mathbb{R}: \mathcal{F}_{\mu,\nu}((\mathbb{T}-\lambda I)a, (\mathbb{T}-\lambda I)a, s) < 1\} \ge \sup\{s \in \mathbb{R}: \mathcal{F}_{\mu,\nu}((\mathbb{T}-\lambda I)^*a, (\mathbb{T}-\lambda I)^*a, s) < 1\}$ Since $\mathbb{T}a = \lambda a$, which implies that

$$\mathbb{T}a = \lambda Ia \quad \Rightarrow \mathbb{T}a - \lambda Ia = 0 \quad \Rightarrow (\mathbb{T} - \lambda I)a = 0$$

 $\therefore \mathbb{T} - \lambda I = 0.$

 $\Leftrightarrow \mathbb{T}\mathbb{T}^* \leq \mathbb{T}^*\mathbb{T}$

Then $\sup\{s \in \mathbb{R}: \mathcal{F}_{\mu,v}((\mathbb{T} - \lambda I)a, (\mathbb{T} - \lambda I)a, s) < 1\} = 0, \forall a \in \mathcal{H}$... (3.1) $\Rightarrow \sup \{ s \in \mathbb{R} : \mathcal{F}_{\mu,\nu}((\mathbb{T} - \lambda I)^* a, (\mathbb{T} - \lambda I)^* a, s) < 1 \} \le 0, \quad \forall a \in \mathcal{H}$ From (3.1), $(\mathbb{T} - \lambda I)^* a = 0$. Then for each $a \in \mathcal{H}$, $(\mathbb{T} - \lambda I)^* a = 0 \implies (\mathbb{T}^* - \bar{\lambda} I) a = 0 \implies \mathbb{T}^* a - \bar{\lambda} I a = 0 \implies \mathbb{T}^* a = \bar{\lambda} a$ Therefore, *a* is an eigenvector of \mathbb{T}^* corresponding to eigenvalue $\overline{\lambda}$. **Theorem (3.14):** $\mathbb{T} \in IFB(\mathcal{H})$ is an IFHN-operator iff $\mathcal{P}_{u,v}(\mathbb{T}^*a, s) \leq \mathcal{P}_{u,v}(\mathbb{T}a, s)$, for all $a \in \mathcal{H}$. **Proof:** Assume \mathbb{T} is an IFHN-operator. Then by definition, $\mathbb{T}^*\mathbb{T} - \mathbb{T}\mathbb{T}^* \ge 0$. which implies that $\mathbb{T}^*\mathbb{T} \geq \mathbb{T}\mathbb{T}^*$. i.e. $\mathbb{T}\mathbb{T}^* \leq \mathbb{T}^*\mathbb{T}$ Let $\mathcal{P}_{\mu,v}(\mathbb{T}^*a, s) \leq \mathcal{P}_{\mu,v}(\mathbb{T} a, s)$ $\Leftrightarrow \mathcal{P}_{\mu,\nu}^{2}(\mathbb{T}^{*}a,s) \leq \mathcal{P}_{\mu,\nu}^{2}(\mathbb{T}^{*}a,s)$ $\Leftrightarrow \langle \mathbb{T}^* a, \mathbb{T}^* a \rangle \leq \langle \mathbb{T} a, \mathbb{T} a \rangle$ $\Leftrightarrow \sup\{s \in \mathbb{R}: \mathcal{F}_{\mu,\nu}(\mathbb{T}^*a, \mathbb{T}^*a, s) < 1\} \le \sup\{s \in \mathbb{R}: \mathcal{F}_{\mu,\nu}(\mathbb{T}a, \mathbb{T}a, s) < 1\}$ $\Leftrightarrow \sup\{s \in \mathbb{R}: \mathcal{F}_{u,v}(\mathbb{T}\mathbb{T}^*a, a, s) < 1\} \le \sup\{s \in \mathbb{R}: \mathcal{F}_{u,v}(\mathbb{T}^*\mathbb{T}a, a, s) < 1\}$ $\Leftrightarrow \langle \mathbb{T}\mathbb{T}^*a, a \rangle \leq \langle \mathbb{T}^*\mathbb{T}a, a \rangle$ $\Leftrightarrow \langle (\mathbb{T}\mathbb{T}^* - \mathbb{T}^*\mathbb{T})a, a \rangle \leq 0$ $\Leftrightarrow \mathbb{T}\mathbb{T}^* - \mathbb{T}^*\mathbb{T} \leq 0$

International organization of Scientific Research

Theorem (3.15):

Let $\mathbb{T} \in IFB(\mathcal{H})$ be a fuzzy hyponormal with $\mathbb{T}a_1 = \lambda_1 a_1$, $\mathbb{T}a_2 = \lambda_2 a_2$ and $\lambda_1 \neq \lambda_2$ then $\langle a_1, a_2 \rangle = 0$. **Proof:**

Since \mathbb{T} be an intuitionistic fuzzy hyponormal operator with $\mathbb{T}a_1 = \lambda_1 a_1$, $\mathbb{T}a_2 = \lambda_2 a_2$ and $\lambda_1 \neq \lambda_2$ then by theorem (3.3) $\mathbb{T}^* a_1 = \overline{\lambda_1} a_1$ and $\mathbb{T}^* a_2 = \overline{\lambda_2} a_2$. Let $\lambda_1 \langle a_1, a_2 \rangle = \langle \lambda_1 a_1, a_2 \rangle$

$$= \sup\{s \in \mathbb{R}: \mathcal{F}_{\mu,\nu}(\lambda_{1}a_{1}, a_{2}, s) < 1\} \\= \sup\{s \in \mathbb{R}: \mathcal{F}_{\mu,\nu}(\mathbb{T}a_{1}, a_{2}, s) < 1\} \\= \sup\{s \in \mathbb{R}: \mathcal{F}_{\mu,\nu}(a_{1}, \mathbb{T}^{*}a_{2}, s) < 1\} \\= \sup\{s \in \mathbb{R}: \mathcal{F}_{\mu,\nu}(a_{1}, \overline{\lambda_{2}}a_{2}, s) < 1\} \\= \sup\{s \in \mathbb{R}: \mathcal{F}_{\mu,\nu}(\lambda_{2}a_{1}, a_{2}, s) < 1\} \\= \langle \lambda_{2}a_{1}, a_{2} \rangle \\= \lambda_{2} \langle a_{1}, a_{2} \rangle$$

Hence, if $\lambda_1 \neq \lambda_2$ then $\langle a_1, a_2 \rangle = 0$. i.e. $a_1 \perp a_2$. **Theorem (3.16):**

Let $(\mathcal{H}, \mathcal{F}_{\mu,\nu}, \mathcal{T})$ be an IFH-space with IP: $\langle a, b \rangle = \sup\{s \in \mathbb{R}: \mathcal{F}_{\mu,\nu}(a, b, s) < 1\} \forall a, b \in \mathcal{H}$ and let $\mathbb{T} \in IFB(\mathcal{H})$ be an IFHN-operator on \mathcal{H} with $\mathcal{M} \subset \mathcal{H}$ IF-invariant under \mathbb{T} also let $\mathbb{T}_{\mathcal{M}}$ be intuitionistic fuzzy hyponormal. Then \mathcal{M} reduces \mathbb{T} .

Proof:

Let $a \in \mathcal{M}$, the eigenspace of Tand let the corresponding eigenvalue of T be λ .

So that $\mathbb{T}a = \lambda a$. Since \mathbb{T} is an IFN-operator then by theorem (3.3), $\mathbb{T}^*a = \overline{\lambda}a$, $a \in \mathcal{H}$.

Since \mathcal{M} is a subspace, $\overline{\lambda}a \in \mathcal{M} \Rightarrow \mathbb{T}^*a \in \mathcal{M}$.

 $\Rightarrow \mathcal{M}$ is IF-invariant under \mathbb{T}^* , but \mathcal{M} is IF-invariant under \mathbb{T} .

Hence, by theorem(3.7), \mathcal{M} reduces \mathbb{T} .

Corollary 3.17:

Let \mathbb{T} be an IFHN-operator on \mathcal{H} and $\mathcal{M} = \{a \in \mathcal{H} : \mathbb{T}a = \lambda a\}$ then \mathcal{M} reduces \mathbb{T} and $\mathbb{T}_{\mathcal{M}}$ is intuitionistic fuzzy hyponormal.

Corollary 3.18:

Let \mathbb{T} be an IFHN-operator on \mathcal{H} and let $\mathcal{M} \subset \mathcal{H}$, IF-invariant under \mathbb{T} . Then $\mathbb{T}_{\mathcal{M}}$ is intuitionistic fuzzy hyponormal.

IV. CONCLUSION

Intuitionistic Fuzzy Hyponormal operator (IFHN- operator) on IFH-space is introduced which is new idea. And also discuss classic form of theorems play the role a prototype in our discussion of this paper. These relations are very new and helpful for the further study of functional analysis on intuitionistic fuzzy concept.Some properties of IFHN- operator have been investigated which is useful for the further research in applications of functional analysis in fuzzy and intuitionistic fuzzy concept.

ACKNOWLEDGEMENT

The authors are grateful to the referees for these valuable and constructive suggestions.

REFERENCES

- [1]. A.Radharamani, S.Maheswari and A.Brindha, Intuitionistic fuzzy Hilbert space and some properties, Inter. J. Sci. Res. (IOSR-JEN), 2018;8(9): 15-21.
- [2]. A.Radharamani and S.Maheswari, Intuitionistic Fuzzy adjoint & Intuitionistic fuzzy self-adjoint operators in Intuitionistic fuzzy Hilbert space, Inter. J. Research and Analytical Reviews (IJRAR), 2018;5(4): 248-251.
- [3]. A.Radharamani, and S.Maheswari, Intuitionistic Fuzzy Normal Operator on IFH-space, International Journal of Recent Technology and Engineering(IJRTE) 2020;9(1):1920-1923.
- [4]. A.Radharamani, and S.Maheswari, Intuitionistic Fuzzy Unitary Operator on Intuitionistic Fuzzy Hilbert Space", Submitted to Malaya Journal of Matematik (MJM) in April (2020), Accepted andyet to be published.
- [5]. A.Radharamani et al., Intuitionistic Fuzzy Partial Isometry Operator, International Journal of Mathematical Archive. (IJMA), 2020;11(6):1-6.
- [6]. Balmohan V Limaye, Function Analysis, (New Delhi: New Age International), 1996: 460-469.
- [7]. G.Deschrijver et al., On the Representation of intuitionistic fuzzy t-norms and t-conorms, IEEE Trans. Fuzzy Syst., 2004;12: 45-61.

- [8]. G.Deschrijver and E. E.Kerre, On the Relationship Between Some Extensions of Fuzzy Sets and Systems, 2003;133: 227-235.
- [9]. G. F. Simmons, Introductionto Topology and Modern Analysis, (New Delhi: Tata Mc Graw-Hill),1963; 222: 273-274.
- [10]. J. H. Park, Intuitionistic fuzzy metric spaces, Chaos Sol. Fract., 2004;22: 1039-1046.
- [11]. K.Atanassov, Intuitionistic fuzzy sets, FSS, 1986;20(1): 87-96.
- [12]. M.Goudarzi et al., Intuitionistic fuzzy Inner Product space, Chaos Solitons & Fractals, 2009;41: 1105-1112.
- [13]. M.Goudarzi and S.M.Vaezpour, On the definition of fuzzy Hilbert space and its application, J. Nonlinear Sci. Applications, 2009;2(1): 46-59.
- [14]. P. Majumdar and S. K.Samanta, On intuitionistic fuzzy normed linear spaces, Far East Journal of Mathematics, 2007;1: 3-4.
- [15]. P.Majumdar and S.K.Samanta, On Intuitionistic fuzzy Inner Product Spaces, Journal of fuzzy Mathematics, 2011;19(1): 115-124.
- [16]. Rajkumar Pradhan & Madhumangal pal, Intuitionistic fuzzy linear transformations, Annals of Pure and Appl. Math., 2012;1(1): 57-68.
- [17]. R.Saadati& J. H. Park, On the Intuitionistic Fuzzy Topological Spaces, Chaos solitons & fractals, 2006;27(2): 331-344.
- [18]. S.Mukherjee and T. Bag, Some properties of fuzzy Hilbert spaces, Int. Jr. of Mat and Sci Comp, 2010;1(2): 55.
- [19]. T. K.Samanta& Iqbal H Jebril, Finite dimensional intuitionistic fuzzy normed linear space, International Journal of Open Problems in Computer Science and Mathematics, 2009;2(4): 574-591.

A.Radharamani, et. al. "Intuitionistic Fuzzy Hyponormal Operator in IFH-Space." *IOSR Journal of Engineering (IOSRJEN)*, 10(6), 2020, pp. 07-13.