I0SR Journal Of Engineering (IOSRJEN)
E-ISSN: 2250-3021, P-ISSN: 2278-8719, Www.losrjen.Org
Volume 2, Issue 10 (October 2012), PP 23-30

Common Fixed Point Theorems in Random Probabilistic Metric
Spaces

Rajesh Shrivastava’& Richa Gupta®
1. Prof. & Head, Department of Mathematics, Govt. Science & Commerce college Benazir Bhopal,India
2. Head, Department of Mathematics, RKDF institute of Science & Technology Bhopal, India

Abstract: We prove some Common Fixed Point theorems for Random Operator in Probabilistic metric spaces,
by using some new type of contractive conditions taking self mappings.

Key Words: - Probabilistic metric spaces, Random Operator, Random Fixed Point, Measurable Mapping,
AMS Subject Classification: - 47H10, 54H25.

l. Introduction

In 1942, Menger [5] was first who thought about distance distribution function in metric space and
introduced the concept of probabilistic metric space. He replaced distance function d(x, y), the distance between
two point x,y by distance distribution function Fx,y(t) where the value of Fx,y(t) is interpreted as probability that
the distance between X, y is less than t, t > 0. The study of fixed point theorem in probabilistic metrics space is
useful in the study of existence of solution of operator equation in probabilistic metric space probabilistic
functional analysis.

PM space has a nice topological properties. Many different topological structures may be defined on a
PM space. The one That has received the most attention to date is the strong topology and it is the principle tool
of this study. The convergence with respect to this topology is called strong convergence.

Schweizer and Sklar [1], developed the study of fixed point theory in probabilistic metric spaces. In
1966, Sehgal [12] initiated the study of contraction mapping theorem in probabilistic metric spaces. Several
interesting and elegant result have been proved by various author in probabilistic metric spaces.

In 2005, Mihet [2] proved a fixed point theorem concerning probabilistic contractions satisfying an
implicit relation. The purpose of the present paper is to prove a common fixed point theorem for six mappings
via pointwise R-weakly commuting mappings in probabilistic metric spaces satisfying contractive type implicit
relations. This generalizes several known results in the literature including those of Kumar and Pant [8], Kumar
and Chugh [7] and others.

Definition 2.1.1: Let R denote the set of reals and R* the non-negative reals. A mapping F: R — R is called a
distribution function if it is non decreasing left continuous with inf.cg F(t) = 0 and sup.eg F(t) =1

Definition 2.1.2: A probabilistic metric space is an ordered pair (X, F) where X is a nonempty set, L be set of all
distribution function and F: X X X — L. We shall denote the distribution function by F (p,q) or F, 4; p,q € X
and F, o (x) will represents the value of F (p,q) at x € R. The function F(p,q) is assumed to satisfy the
following conditions:

2.12(a) Fpq(x) =1forallx > 0if and only if p = q

2.1.2(b)F, 4(0) = O foreveryp,q € X

2.1.2(c)F, 4 = Fy, foreveryp,q € X

21.2(d)F,q(x) =1 and Fy,(y) =1 thenF, (x+y) =1

forevery p,q,r € X.

In metric space (X, d), the metric d induces a mapping F : X x X — Lsuch thatF,,(x) =F,q =

H (x - d(p,q)) forevery p,q € Xand x € R, where H is the distribution function defined as
H(x) = {O,ifx <0
T 1,ifx>0

Definition 2.1.3: A mapping A: [0,1] & [0,1] — [0, 1] is called t-norm if

2.1.3(a)A(a,1) = ava € [0,1]
2.1.3(b) A (0,0) = 0,
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2.1.3(c) A (a,b) = A (b,a),
2.1.3(d) A(c,d) = A(a,b)forc = a,d = b,and
2.1.3(e) A(A(a,b),c) = A(aA(b,c))
Example:
(i) A(a,b) = ab,
(i) A(a,b) = min (a,b)
(iii) A (a,b) =max (a+ b —1;0)

Definition 2.1.4: A Menger space is a triplet (X, F,A) where (X, F)a PM-space and A is is a t-norm with the
following condition

l:u,w (X + Y) 2 A( l:u,v (X)' FV,w (Y)

The above inequality is called Menger’s triangle inequality.

Definition 2.1.5: Let (X, F,A) be a Menger space. Ifu € X,e > 0,4 € (0,1), then an (g, A) neighbourhood of
u, denoted by U, (g, A) is defined as
Uy(e W) ={vEX;Fy,(e) >1— A}
If (X,F,A) be a Menger space with the continuous t-norm t, then the familyU,(g,A);u € X;e > 0,1 €
(0,1) of neighbourhood induces a hausdorff topology on X and if sup,.; A(a,a) = 1, it is metrizable.

Definition 2.1.6: A sequence {p,} in (X, F,A) is said to be convergent to a point p € X if for every e > 0 and
A > 0, there exists an integer N = N(g, 1) such that p, € U, (g, 1) for alln > N or equivalently F, .(e) >
1—Aforalln > N.

Definition 2.1.7: A sequence {p,} in (X,F,A) is said to be Cauchy sequence if for everye > 0and A > 0,
there exists an integer N = N(g,A) such thatF, ; (¢) >1—Aforall n,m > N.

Definition 2.1.8: A Menger space (X, F, A) with the continuous t-norm A is said to be complete if every Cauchy
sequence in X converges to a point in X.

Definition 2.1.9: A coincidence point (or simply coincidence) of two mappings is a point in their domain having
the same image point under both mappings.
Formally, given two mappings f,g : X — Y we say that a point x in X is a coincidence point of f and g if

fG) = g0.

Definition 2.1.10: Let (X, F,A) be a Menger space. Two mappings f,g : X — X are said to be weakly compatible
if they commute at the coincidence point, i.e., the pair {f, g} is weakly compatible pair if and only if fx = gx
implies that fgx = gfx.

Lemma 2.1.11: Let {p,} be a sequence in Menger space (X, F, A) where A is continuous and A(x,x) = x for
all x € [0, 1]. If there exists a constantk € (0,1) suchthatx > 0Oandn €N F, , . (kx) =F, ., (x),then
{p,} is a Cauchy sequence.

Lemma 2.1.12: If (X,d) is a metric space, then the metric d induces a mapping F: X x X — L, defined by
F(p,q) = H(x-d(p,q), p,q€Xandx € R. Further more if A:[0,1] x [0,1] - [0,1] is defined by
A(a,b) = min(a,b), then (X,F,A) is a Menger space. It is complete if (X,d) is complete. The space (X, F,A)
so obtained is called the induced Menger space.

Lemma2.1.13: Let (X, F,A) be a Menger space. ]. If there exists a constantk € (0, 1) such that F, (kt) =
Fyy(©), forallx,y € Xandt > 0thenx =y.
Now we give some definition which are used in this chapter.
Throughout this chapter, (£2, 2) denotes a measurable space.¢ : 2 — X is a measurable selector. X is any non
empty set.
Definition2.1.14: A random probabilistic metric space is an ordered pair (X, F, 2) where X is a nonempty set, L
be set of all distribution function and F: X x X — L. We shall denote the distribution function by F (&p, £q) or
Fepiqs €p EQ € X and Fep g (%) Will represents the value of F (Ep,&q) at x € R . The function F(ép,&q) is
assumed to satisfy the following conditions:

2.1.14(a) Fyp zq(x) = 1forallx > 0 if and only if &p = &q
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2.1.14(b)Fy, ;4 (0) = 0 for every &p,&q € X

2.1.14(c)Fspeq = Feqep forevery Ep,&q € X

2.1.14(d)Fepeq(x) = 1 and Fyq e (y) = 1 then Fe o (x +y) = 1
for every &p, £q, &r € X.

Definition 2.1.15: A Random Menger space is a triplet (X, F, Q, A) where (X, F, Q)a RPM-space and A is is a t-
norm with the following condition

Féu,éw (X + Y) 2 A( Féu,év (X), ng,éw (Y)

The above inequality is called Menger’s triangle inequality.

Definition 2.1.16: Let (X,F,Q,A) be a random menger space. If E&u € X,e > 0,4 € (0,1), then an (g,A)
neighbourhood of u, denoted by Uy, (¢, 1) is defined as
Up(e,)) = {&v € X3 Frypy () > 1— 2}
If (X,F,Q,A) be a random menger space with the continuous t-norm t, then the familyU, (e, 1), &u €

X,e > 0,1 € (0,1) of neighbourhood induces a hausdorff topology on X and if sup,.;A(a,a) =1, it is
metrizable.

Definition 2.1.17: A sequence {Ep, } in (X, F,Q, A) is said to be convergent to a point Ep € X if foreverye > 0
and A > 0, there exists an integer N = N(g,A) such that Ep, € U,(g,A) for all n = N or equivalently
Fey ex(€©) >1—Aforalln = N.

Definition2.1.18: A sequence {Ep,} in (X, F,A) is said to be Cauchy sequence if for every ¢ > 0and A > 0,
there exists an integer N = N(g,A) such that F;p, ., () >1—Aforall n,m > N.

Definition 2.1.19: A random menger space (X, F, Q, A) with the continuous t-norm A is said to be complete if
every Cauchy sequence in X converges to a point in X.

Definition 2.1.20: A coincidence point of two mappings is a point in their domain having the same image point
under both mappings.
Formally, given two mappings f,g : X — Y we say that a point x in X is a coincidence point of f and g if

(&) = g(&0).

Definition 2.1.21: Let (X,F,Q,A) be a Menger space. Two mappings f,g: X — X are said to be weakly
compatible if they commute at the coincidence point, i.e., the pair {f, g} is weakly compatible pair if and only if

f(Ex) = g(&x) implies that fg(éx) = gf(€x).

Lemma?2.1.22: Let {&p, } be a sequence in Menger space (X, F,Q, A) where A is continuous and A(x,x) = x for
all xe[0,1]. If there exists a constant k€ (0,1) such that x > 0 and n €N Feep pniq (KX) =
Fep, 1ep, (), then {Ep,, } is a Cauchy sequence.

Lemma 2.1.23: If (X,d, Q) is a random metric space, then the metric d induces a mapping F: X x X — L,
defined by F (ép,&q) = H (x- d (§p,£q)), p,q € Xand x € R. Further more if A:[0,1] x [0,1] - [0,1] is
defined by A(a,b) = min(a,b), then (X,F,Q, A) isa Menger space. It is complete if (X, d, Q) is complete. The
space (X, F,Q, A) so obtained is called the induced Menger space.

Lemma 2.1.24: Let (X,F,Q,A) be a random menger space. If there exists a constant k € (0,1) such that
Feq ey (Kt) = Fee gy (1), forall &x, &y € Xand t > O thenx =y .

2.2 COMMON FIXED POIONT THEOREMS IN RANDOM PROBABILISTIC METRIC SPACES
Theorem 2.2.1: Let (X,F,Q,A) be a complete random menger space where A is continuous and
A(t,t) = tforallt€[0,1]. Let A, B, T and S be mappings from X into itself such that
2.2.1.(a) S(X) € A(X) and T(X) c B(X)
2.2.1.2. AB = BA, ST = TS weakly commuting
2.2.1.3. The pair (S, A) and (T, B) are weakly compatible
2.2.1.4. There exists a number k € (0,1) such that

Faex,sex (B)
Fsexrey (kt) = A (FAgx,Bgy(t1)+Fsgx,Bgy(tz) s A(Fpey ey (0, A(F ey ey (D,
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A(FBey sex (BY))

A(Fsexpey () A (FA@X'T@’((Z - B)t)))»
forall &x, &y € X, € (0,2) and t > 0;t; + t, =t. Then, A,B,S and T have a unique common fixed point
in X.
Proof: Since S(X) c A(X) for any &x, € X there exists a point £x; € X such thatS&x, = A&x;. Since T(X) c
B(X) for this point &x; we can choose a point &x, € X such that Téx; = BEx,.
Inductively we can find a sequence {&y,} as follows &y,, = S&xy, = AéXynyq  and Eyyn4q = TéXppp1 =

B&X2n+2 )
Forn = 0,1,2,3......... forallt > 0and p =1 —q with q € (0,1), we have

Feypns18v2042 (kt) = FStxon i1 Texonsz (kt)
A FAtxan41 Sexzns1 ®
ACPatxon+1 Bexan+2 C1)+Fsexon 11 Bexon iz t2))

AFBexyn 42 Stxgns1 (BD)
A(FA?;X211+1 BEx2n+2 (t)’ A(FSEXZrHrl Béxania @)’ A (FA§X2n+1 JTEXon +2 (Zt - Bt)))))

> A ( F‘iYZn'iYZn+1 ®
A(Fé}’ané}’Zn-ﬂ (t) + F§y2n+1.éy2n +1 (tZ))

AFeypn 41872041 BY)
A(Fé}’Zn-é}’Znﬂ ®, A(Fiy2n:1.~iyzn:1 )’ A(FEYZn.‘inmz((l + q)t)))))

F@Zn'gy2n+l(t)
= A (A(F?;yzn.éyznﬂ )’ A( Féy2n +1.8Y2n 42 ®, A(F§y2n.§y2n+1 ®,

Ay on 11872041 (A—0)D)
A(F 1
AFeygnsityanar®) ( &YZnniYZnJrz(( + q)t)))))

= A(l' A( FéYZn+1véY2n+2 (®, A(FéYZn.iyzml ®,
AL, A(Fénn.iym +1 ®, Fiy2n+1.éy2n+z (qt)))))

= A (F§y2n.éy2n+1 ®, Feyan +1,8Y2n+2 (qt))

Feyn +1,8Y2n+2 (kt) = A (Fénn.iyzml ®, Fiy2n+1.§y2n +2 (qt))
Since A is continuous and the distribution function is left continuous, making q — 1 we have

F§Y2n+1.i}’2n+z kt) = A (F'EYZn.&YZnH ®, FéYzmlinzmz (t))
Similarly

Feyonsztyanss k) = A (F§Y2n+1.§y2n+2 ®, Feyons2iyanss (t))
Therefore

F%ani}’n+1 (kt) = A (F§Yn—1v§Yn (t)’ FiYnéYn+1 (t)) foralln €N
Consequently

Fé}’nné}’n+l (t) = A (F‘\;Yn—lté}’n (k_lt)’ FéYn:éYn-#l (k_lt)) foralln € N
Repeated application of this inequality will imply that

-1 -1
FéYn:éYn-#l (t) = A (F‘\;Yn—lté}’n (k t)’ FéYn:fSYr\+1 (k t)) Z e e

= A (Fé}’n—li‘KsYn (k_lt)’ FéYn:éYn-#l (k_lt)) JAEN
Since Fey sy ., (kK7't) = Lasi — oo, it follows that

Faniynn® 2 A(Fy, 5, (k7'0) foralln € N
Consequently

F@nré}/n+1 (kt) =>A (F§Yn—1v§Yn (t)) foralln € N
Therefore {€y,} is a Cauchy sequence in X.
Since X is complete, {Ey, }converges to a point z € X.
Since {S&xyn} {TEXon41 1 {AEX, 1} and {BEx,, ., } are subsequences of {&y,} , they also converge to the
point &z,
Le. asn — oo, S8y, TEXon 41, AlXon+1 BEXon42 = &2

A(FBEXZn +2,T&2n 42 ®,

A( Fiy2n+1.éy2n +2 ®,

SinceS(X) < A(X), there exists a point u € X such that Au = z.
By putting x =&uandy = 2n— 1withp=1

we have,

Fseurexy,_; (KO
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Faguseu ()
- ,A( Fgg . t),
(A(FAgu,B§x2n,1 (t1)+Fseu Bexgn 1 (t2)) (Feexzy s 1exzn1 ()

A(FBexg, 1 ,5eu (BY)
AFagupen 1 Oy e MFacure, ©))

Proceeding limit as n — oo, we have
Fsey . (k)
l:"Z,Su (t) A(Fﬁz,Séu (1)
=4 (A(ng,gz () +Fsz 2 (t2) A(Fepe, (), A(Fey 2, (O, A Frenn©)’ A(Fee, (t)))))

Fasa® ), Al )
> A (A(ngsgu ©)’ A(Fer (0, A(Fer e (0, 7 Fsnry ()’ A(Fy, (t)))))

> A(Fes0(0,A(1,ALLAD))

Consequently
FS&U,&Z (t) = Fsguéz(k_lt) =t = FSéu,éz(k_jt)
which tends to 1 and j tends to « (j € N)
Therefore SEu = &z and thus A&u = Séu = &z.
SinceT(X) < B(X), there exists a point &v € X such that B&v = &z.
Then by putting &x = &u and &y = &v with B = 1 in we have
Fseu ey (k)

Fazu,seu(t)
> A( - ;A F ev (D),
A(Fagu,Bey (t1)+Fsey Bey (t2)) ( BéV'TQV( )
A(Fgey seu (BY))

A(Fpzu ey (D, AFszape®) A(FAgu,Tgv (t)))))
( Faeu,seu(®)

A(FBey seu (BY))
= A AFazusa®)’ A(Fpeyrev (0, A(Fpgu ey (t)'—A(Fsgu,Bgv(t)) s A(Fazu ey (t)))))
Using above we have we have
Fiz,gz (t) A(Féz,“z (1)
Fseyrev(kt) = A (m: A(Feprey (0, A(Fe 6, (0), m. A(ng,Tgv (t)))))
Feprey (kt) = A (ng,T.:v (t))
As above we have T&v = &z.
Therefore A&u = S&u = T&v = B&v = &z.

Since pair of maps S and A are weakly compatible, then Su = Au implies S(A)éu = (A)S&u,
i.e. S&z = Aéz.
Now to show that z is a fixed point of P so by putting &x = &z and &y = &x,, with =1
Fse,mex,, (KO
Fagzsez (D)

A(Fatz Bexpy (t1)+FsezBexgy, (t2)) A( FBexan Toxn OF
A(FBexq, 52z ()
AFazpenn Oy, o) Ao, ©)))
Using above, we have
FSéz,éz (kt)
Fsez,562(0) A(Fez 562 (D)
=z A <A(FSE_Z.E_Z gy M Fes (©; AFserz(0) AFszz 2 ()’ A(Fser (t)))))
Fsez5e2(t) A(Fez 587 (1))
= A (A(FSQZ,SQZ )’ AP (0), AFser 0 (), A5z, (1) A(Fséz'éz (t)))))
Thus we have S&z = &z. Hence Séz = &z = Aéz.
Similarly, pair of maps T and B is weakly compatible, then TEu = B&u.
Now we show that z is a fixed point of T so by putting &x = &x,, and &y = &z withp = 1

Fatxan Sexgn (O
>
Bz raa (k) 2 A (A(FA§X2n.BéZ(t1)+FSéx2n.B§z(t2)) APz e, (0),
A(Faex,, ez (D),

A(FBez,5exp, (BE))
Y .A(FAaxZn,ng(t)))))

> A( Fagxpn sexan () ’
A(FAéXZnyS§X2n (t))

APz sexyy (BY)

AF 1’ A F t

A(Fsixy Bez ) ( A§X2n.T§z( )))))

Proceeding limit as n — oo, we have

A(Fper e, (), AF pexonB2 (D,
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APy, -, (Bt
Fsexon ez (KD = A < A(Fé;é;(g)) y A(Fre e (0, A(Fe 1, (D, A((FZ%;(([L)))' A(Feyres (t)))))
Thus we haveTéz = &z. Hence Téz = & = Béz.
By combining the above results, we have
Sé&z = A&z = Té&z = B&z = &z
That is z is a common fixed point of S, T, A and B.
For uniqueness, let Ew (Ew # &z) be another common fixed point of S,T,Aand Bandp = 1, then we
write

Fsez,ew (KD

Faczsez® AFgey,se2)
2A< 22 ,A(F t), A(Fac ), ——— A(F t
A(FAgz,ng(tl) +Fsgz,ng(12)) ( BéW,Téw( ) ( Agz,BéW( ) A(FS§Z,B§W(0) ( Aéz,Téw( )))))
Fsez,ew (KD
> A ( Fazz,sez(t)
T \AFagsz®)

AFgaw,se20)

» ACFgewrew (D, A(Faez 8w (D e
Z,BEwW

s A(FaczTaw (t)))))
It follows that
AFguz (B0

Féz,éz(t)
ng,gw(kt) = A (A(Féz.éz(t)) A F&W,,gw(t)r A(Féz,éw(t) A, (t)) A(ng gw(t)))))

> A(LA (L AFW®,1,A(F,u®))))

2 F&z,&w(t)
Thus we have & = &w. This completes the proof of the theorem.

COROLLARY 3.1: Let (X,F,Q,A) be a complete random menger space where A is continuous and A (t,t) >
tforall t € [0,1]. Let T and S be mappings from X into itself such that
3.1.1. ST = TS weakly commuting
3.1.2. There exists a number k € (0,1) such that
Fouy(kt) = A (Fx,y(gixF(sti.y(tz) ACFyry(0, ARy @, A(Fy SX(([i)))) AFry(@ = PED))
forallx,ye X,pe€ (0,2) andt > 0; t; + t, =t
Then S and T have a unique common fixed point in X.
Proof: Put A = B = I in the proof of theorem

COROLLARY 3.2: Let (X,F,Q,A) be a complete Menger space where A is continuous and A (t,t) >
tforallt € [0,1]. Let A,B, T and S be mappings from X into itself such that

3.2.1.S(X) c B(X)

3.2.2. The pair (S, B) is weakly compatible

3.2.3. There exists a number k € (0,1) such that

FSX,Sy(kt)

> ( FBX,SX(t)

- FBX,By(t1)+FSx,By(t2)

A(F t

Aoy (0, AlFonny O, 3200 A Fas, (2= BD)))
forallx,y e X,p€ (0,2)andt>0;t; +t, =t.

Then S and B have a unique common fixed point in X.

Proof: Put T = Sand A = B in the proof of above theorem

Theorem 4.1 Let A, B, P and Q are self maps on a complete random probabilistic metric space (X, F, Q)
satisfying:

4.1.(a)P(X) © B(X),Q(X) c A(X);

4.1(b) Fogy ey (kt) > max {FAEX,Bg’y ®), Fpgx agx () ZFQfx Bex (kt) };

forall éx,éy e X, t>0,ke (0,1)

4.1(c)If one of P(X), B(X), Q(X), A(X) is complete subset of X then

(i) P and A have a coincidence point and

(ii) Q and B have a coincidence point and

if the pair (P,A) and (Q,B) are weakly compatible, then A,B, P and Q have a unique common fixed point in
X.

Proof: Since P(X) < B(X)and Q(X) < A(X) so we can define sequences

($x,) and (§y,) in X such thatforalln=0,1,2,3, ..

EYVone1 = Péxon = BéXoni1,$Vone2 = Q€Xoni1 = AéXonar

www.iosrjen.org 28|Page



Common Fixed Point Theoems In Random Probabilistic Metric Spaces

Now we have,

Fpexpn 06 xana (kt) 2 max {FA{XZn,BfXZnH ®),

FPfxzn,Aé'xzn )+ FQ§x2an§X2n (kt)}

2
Fey ane16v2n O Fey pn 1.8y 20 K1)
Fey pnireyane (kt) 2 max {nyzn,s‘nnn ®, 2 }
Ff}’Zn+1r§Y2n+2 (kt) = Ff}’an{YZrHl (t)
Similarly,
FfY2n+2’§YZn+3 (kt) = FfY2n+1,f)’2n+2 ().
In general for any n and t,
we have

Ff}’nf}’rﬁl (kt) 2 Ff}’nflrf)’n (t)
Hence £y, is a Cauchy sequence in X. By compleness, {y, — &z € X.Thus the subsequence

{€y2n }; {€y2n+1} and {€y2n+2} also converses to fZ. Therefore {B§x2n+1},
{ Péxy, ), {Q&x5,.,1} and {A&x,,} also converses to £z. Now suppose A(X) is complete. Note that the

subsequence {y, ., contained in A(X) and has a limit in A(X) say §z. Let {w € (A)7! (éz). Then Afw =
&z.

now consider

Fpsw A (t)+FQ B (kt)
FP{W:Q§x2n+1(kt) 2 max {FAfva§x2n+1(t)' e 2 Bt

Fpew aew O+ Fogay paw (kt)
Frew gyannn(k0) 2 max {Freu gy (0, . }

taking limit n—oo, we have

Fpew, 2 (O+F w ,Béw (kt)
Fpey ¢, (kt) 2 max {F;Z‘& (t), 2ws zof ¢ }

Fpew g2 (kt) 2 Fp e, (8) = 1
Fpewes(kt) = 1 = Péw = §z.
Since Aéw = &z so éw is a coincidence point of P and A.
Since P(X) © B(X)ans Péw = &z implies that £z € B(X).Let v € (B) ¢z,
then Bév = &z.
now consider

Fpex nASx n(t)*' Foex BEx n(kt)
Frgsn, 060 (kE) 2 max {FAExZn,Bsu (t), —renaa 0

Fey ans149 20 O Fey gn14y 20 0
FfYZrHanfV(kt) = max{Ff}’Zn'BSV(t)’ s 2 B }

Taking limit n—oo, we have

Fey 060 (kE) 2 max {Ffzfz ®),
Fep e (kt) 2 Fep g, (0) = 1
Feoa(kt) = 1 = Qév = &z

Since Bév = £z so v is a coincidence point of Q and B.

Since the pair (P,A) is weakly compatible therefore P and A commute at their coincidence point that is

PAéw = APéw or Péz = A&z and the pair (Q,B)

is weakly compatible therefore Q and B commute at their coincidence point that is

QBév = BQ&vor Qéz = Béz.

Now we will prove that Pz = z. By (b), we have

Fpes 0exon.q (KE) 2 max {FAez,ngz,Hl(t).

Ffz,fz )+ F{z,fz (kt)}
2

FPEZ A&z )+ FQ{Z ,B¢z (kt)

Fpey aez )+ Fog, pey (kt)
Fpes gyons, (k) 2 max {FAEZ,Ey aner (), - }

Taking limit n — oo, we have

Fpgz agz 0)+ Foez ey (kt)
Fpgs g, (kt) 2 max{FAfz‘EZ(t), Pz Ag 2@5 B¢ }

Fpgy e, (kt) 2 max{FAi’Z‘El (v), 1}
since Aéz = Pézand Q¢z = B¢z
Fpgs ¢, (kt) = 1then P§z = &z.
Similarly we will prove that Qéz = &z. By (b), we have

Fpex p Aex gy O+ Foex s, Bex,, (KE)
Frexa, e (K1) = max {F 46 xgp Bz (), — Bt }

Fey 2n+15Y 2n (O)+Fy 2n+14Y 2n (kt)
Feypnn52 (k) 2 max {FEyZn,Bsz ®, ; }

Taking limit n — oo, we have
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szz(t)+F Z, 2 (kt)
Fez 06, (kt) 2 max {F&‘B& ®, %}
Fez ¢ (kt) 2 max{F; g, (), 1}
F{’Z,Qéz (kt) = 1then Qéz = &z.

Hence z is a common fixed point of A,B, P and Q.
Uniqueness Let w is an another common fixed point of A,B, P and Q.
then we have

Fpgw agw (€)* Fosy pew (kt)
FP{W’Q& (kt) = max {FAfw,Bé’w (D), Fow Af ZQf B }

Few ew) @ Few gw)(ke)
F{w,fz(kt) 2 max{FgwlsaZ(t), 4 d 2 4 t}

F{w,fz (kt) 2 max{FEw,{z (t): 1}
F{w,fz(kt) =1>= fW = fZ
Hence ¢z is unique common fixed point of A,B, P and Q.
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