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Abstract: This paper will focus on theoretical treatment of external trapping potentials which are usually used 

in experimental that lead to produced Bose-Einstein condensation BEC in ultra cold gases. Several types of 

trapping potentials such as one dimensional BEC in a harmonic oscillator potential (HOP), one dimensional 

BEC in a double well potential DWP, and one dimensional BEC in a harmonic plus optical lattice potential 

HOLP are analyze.  These analyses give us the overall view of the region of confinement that the external 

trapping potentials have employed.   
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I. Introduction 
 Bose-Einstein condensation BEC has been a widely studied research topic among physicists and 

applied mathematicians since its first experimental realization of (BEC) in ultra cold atomic gases was initially 

verified by a sequence of experiments in 1995 by Anderson et al. (vapor of rubidium) and Davis et al. (vapor of 

sodium) that those atoms were confined in magnetic traps and cooled down to low temperatures at an order of 

microkelvins [1].  For the detail discussions see also [2-3].   In these verifications, theoretical exploration of 

characteristic of trapped potential needs a mathematical model describing those potentials which are used 

experimentally to produce BEC at very low temperatures.   Many different shape of Bose-Einstein condensation 

has been achieved by using different type of trapping potential,   for example cigar-shaped BEC which has been 

considered as an interesting subject especially in the coherent atom optics [4-6]. External parabolic potential in 

(highly anisotropic) of the axial symmetry has been used to develop BEC see for example [7-12].  In some 

literatures, many authors investigated the effect of gravitation [13] by adding the gravitational potential as an 

external interaction.  In this paper, we analyze in one dimension the different form of trapping potential which 

are typically used in experiments of BEC. 

 

II. Theory 

A)  Mathematical background 

Hamiltonian of the quantum field operators  𝜓 (𝒓, 𝑡)  and 𝜓 †(𝒓, 𝑡)  which creates and annihilates a 

particle at position r at time t, can be expressed as  

𝐻 =  𝜓 † 𝒓, 𝑡  −
ℏ2

2𝑚
∇2 + 𝑉 𝒓, 𝑡  𝜓  𝒓, 𝑡 𝑑𝒓 +

1

2
 𝝍 †(𝒓, 𝒕)𝝍 †(𝒓′, 𝒕)𝑉𝒊𝒏𝒕(𝒓

′ − 𝒓)𝝍 †(𝒓, 𝒕)𝝍 †(𝒓′, 𝒕) (1) 

Where V(r,t) is the external trapping potential and Vint(r’-r) is the two-body interatomic interacting potential.  

At zero temperature, all anomalous terms and the non-condensate part can be neglected. This is equivalent to 

replacing the quantum field 𝜓 (𝒓, 𝑡)  in (1) by the classical field 𝜓(𝒓, 𝑡).  It gives rise to a nonlinear Schrodinger 

equation, the well-known Gross-Pitaevskii equation (GPE), 

𝑖ℏ
𝜕𝜓 (𝒓,𝑡)

𝜕𝑡
=  −

ℏ2

2𝑚
∇2 + 𝑉(𝒓) + 𝑔 𝜓(𝒓, 𝑡) 2 𝜓(𝒓, 𝑡)       (2) 

for the Bose-Einstein condensed system.  Here The external trapping potential V (r) is taken to be time-

independent. The GPE “which is a self-consistent mean field nonlinear Schrodinger equation (NLSE)” was first 

developed independently by Gross [14] and Pitaevskii [15] in 1961 to describe the vortex structure in superfluid. 

The macroscopic wave function/order parameter is normalized to the total number of particles in the system, 

which is conserved over time, i.e. 

  𝜓(𝒓, 𝑡 2𝑑𝒓 = 1               (3) 

For ideal (non-interacting) gas, all particles occupy the ground state at T = 0K and 𝜓(𝒓, 𝑡).   in the GPE 

describes the properties of all N particles in the system. For interacting gas, owing to the inter-particle 

interaction, not all particles condense into the lowest energy state even at zero temperature. This phenomenon is 

called the quantum depletion. In a weakly interacting dilute atomic vapor, which is the main concern in this 

thesis, the non-condensate fraction is very small. The mean field theory can be successfully applied and the 

quantum depletion can be neglected at zero temperature, assuming a pure BEC in the system. 
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B) Different external trapping potentials 

 In early BEC experiments, quadratic harmonic oscillator well was used to trap the atoms. Recently 

more advanced and complicated traps have been applied for studying BECs in laboratories [16, 17, 18, 19]. In 

this section, we will review several typical trapping potentials which are widely used in current experiments. 

I. Three-dimensional (3D) harmonic oscillator potential hop [19]: 

𝑉ℎ𝑜𝑝  𝒓 = 𝑉ℎ𝑜𝑝  𝑥 + 𝑉ℎ𝑜𝑝  𝑦 + 𝑉ℎ𝑜𝑝  𝑧            𝑉ℎ𝑜𝑝  𝒓 =
𝑚

2
𝜔𝑟

2𝑟2 ,   r=x,y,z            (5) 

Where, ωx, ωy, and ωz are the trapping frequencies in x-, y-, and z-direction respectively. 

II. 2D harmonic oscillator + 1D double well potential dwp (Type I) [18]: 

𝑉𝑑𝑤𝑝
1  𝑟 = 𝑉𝑑𝑤𝑝

1  𝑥 + 𝑉ℎ𝑜𝑝  𝑦 + 𝑉ℎ𝑜𝑝 (𝑧) 𝑉𝑑𝑤𝑝
1  𝑟 =

𝑚

2
𝜈𝑥

4 𝑥2 − 𝑎 2 2            (6) 

Where, ±a ̂ are the double well centers along the x-axis, νx is a given constant with physical dimension 1/[m 

s]
1/2

. 

III. 2D harmonic oscillator + 1D double well potential dwp (Type II) [20, 21]: 

𝑉𝑑𝑤𝑝
 2  𝑟 = 𝑉𝑑𝑤𝑝

2  𝑥 + 𝑉ℎ𝑜𝑝  𝑦 + 𝑉ℎ𝑜𝑝  𝑧   𝑉𝑑𝑤𝑝
 2  𝑟 =

𝑚

2
𝜔𝑥

2  𝑥 − 𝑎  2            (7) 

IV. 3D harmonic oscillator + optical lattice potential optlp [22,23,19]: 

𝑉ℎ𝑜𝑝 (𝑟) = 𝑉ℎ𝑜(𝑥) + 𝑉𝑜𝑝𝑡 (𝑥) + 𝑉𝑜𝑝𝑡 (𝑦) + 𝑉𝑜𝑝𝑡 (𝑧)  𝑉𝑜𝑝𝑡  𝜏 = 𝑆𝜏𝐸𝜏𝑠𝑖𝑛
2(𝑞 𝜏𝜏) (8) 

where 𝑞 𝜏 = 2𝜋/𝜆𝜏  is the angular frequency of the laser beam, with wavelength  λτ, that creates the stationary 1D 

periodic lattice, Eτ=(ℏ2
 𝑞 𝜏

2 )/2m  is the recoil energy, and Sτ is a dimensionless parameter characterizing the 

intensity of the laser beam. The optical lattice potential has periodicity Tτ=π/𝑞 𝜏  =λτ /2 along the τ-axis (τ= x; y; 

z). 

V. 3D box potential [19]:  

𝑉𝑏𝑜𝑥  𝑥 =  
0    0 < 𝑥, 𝑦, 𝑧 < 𝐿
∞   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                               (9) 

where L is the length of the box. 

 

C) Dimensionless External Potential:   

 The choices for the scaling parameters t0 and x0, the dimensionless potential V (r) with γy = t0ωy and γz = 

t0ωz, the energy unit𝐸0 = ℏ
𝑡0
 = ℏ2

𝑚𝑟0
2  , and the interaction parameter 𝛽 = 4𝜋𝑎𝑠𝑁/𝑟0 for different external 

trapping potentials are given below: 

I.  𝑡0 =
1

𝜔𝑟
, 𝑟0 =  

ℏ

𝑚𝜔𝑟
       𝑉 𝑟 =

1

2
 𝑥2 + 𝛾𝑦

2𝑦2 + 𝛾𝑧
2𝑧2 ,       

II. 2D harmonic oscillator + 1D double well potential (type I):  

 𝑡0 =  
𝑚

ℏ𝜈𝑟
4 

1 3 

,   𝑟0 =  
ℏ

𝑚𝜈𝑟
2 

1 3 

,   𝑎 =
𝑎 

𝑟0
,   𝑉 𝑟 =

1

2
  𝑥2 − 𝑎2 2 + 𝛾𝑦

2𝑦2 + 𝛾𝑧
2𝑧2    

III.  2D harmonic oscillator + 1D double well potential (type II):  

  𝑡0 =
1

𝜔𝑟
, 𝑟0 =  

ℏ

𝑚𝜔𝑟
, 𝑎 =

𝑎 

𝑟0
,       𝑉 𝑟 =

1

2
    𝑟 − 𝑎  2 + 𝛾𝑦

2𝑦2 + 𝛾𝑧
2𝑧2  

IV. 3D harmonic oscillator + optical lattice potential:  

𝑡0 =
1

𝜔𝑟

, 𝑟0 =  
ℏ

𝑚𝜔𝑟

, 𝑘𝑟 =
2𝜋2𝑟0

2𝑆𝜏
𝜆𝜏

2
, 𝑞𝜏 =

2𝜋𝑟0

𝜆𝜏
    𝜏 = 𝑥, 𝑦, 𝑧   

𝑉 𝑟 =
1

2
 𝑥2 + 𝛾𝑦

2𝑦2 + 𝛾𝑧
2𝑧2 + 𝑘𝑥𝑠𝑖𝑛

2 𝑞𝑥𝑥 + 𝑘𝑥𝑦 𝑠𝑖𝑛
2 𝑞𝑦𝑦 + 𝑘𝑧𝑠𝑖𝑛

2(𝑞𝑧𝑧). 

V. 3D box potential: 

𝑟0 =
𝑚𝐿2

ℏ
, 𝑟0 = 𝐿   𝑉 𝑥 =  

0    0 < 𝑥, 𝑦, 𝑧 < 1
∞          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

 

III. Result And Discussion: 
For simplicity we shall discuss the trapping potential in one dimension as follow: 

a)   Under external potentials I-IV For a 1D BEC in a harmonic oscillator potential,  

𝑉 𝑥 =
1

2
 𝛾𝑥

2𝑥2 ,   𝜸𝒙 > 0 the shape of this potential for different values of  𝜸𝒙 (0.5, 1, 1.5, 2) is shown in figure 

(1). The influences of 𝜸𝒙 on the shape of harmonic oscillator potential are clear were the potential will 

broadening as 𝜸𝒙   decrease.  More study of the harmonic oscillator potential is carried out at specific point along 

the axis of propagation, these points are (2., 4., 6., 8., 10.) as   shown in figure (2).  One can conclude from this 

figure that the 1D HOP depends on both the position along the propagation axis and the value of 𝜸𝒙.   The 1D 
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HOP is nearly a straight line at low value of x-axis, and the shape of this potential become parabola as the axis of 

propagation increase from 2., to 10.  

 

 

b)  The Double well potential Type I 

𝑉 𝑥 =
1

2
 𝛾𝑥

4 𝑥2 − 𝑎2 2 ,𝜸 > 0, 𝑎 ≥ 0   

where 𝜸 > 0 measures the height of the well and  ±a are the centers of the double well  
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This type of potentials are used for the dynamics of attractively interacting condensate in the double well it is 

known that they exhibit the self-trapping property, in spite of the symmetry of the trap.  Figure (3) the centre of 

the Double well potential is ±2 and the high of the well are taken to be 0.5 and 1.0 respectively.  Figure (4) are 

plotted with centre at ±1 and high of the well are taken to be 0.5, 1.0, 2.0, 3.0, and 5.0.  

[Remark] In physics literature [24, 25], another type of double well potential, Type II is used 

𝑉 𝑥 =
1

2
 𝛾𝑥

2  𝑥 − 𝑎 2 ,𝜸 > 0, 𝑎 ≥ 0   

In figures (5-6) shown type II of double well potential are plot as a function of propagation axis for centre of the 

well at ±1 and for different values of potential high. 

 

c) Optical lattice potential:  For a 1D BEC in a harmonic plus optical lattice potential, 

𝑉 𝑥 =
1

2
 𝛾𝑥

2𝑥2 + 𝑘𝑥𝑠𝑖𝑛
2 𝑞𝑥𝑥 , 𝑘𝑥 = 25, 𝑞𝑥 = 𝜋/4     

 

Figure (7) shows the OLP as a function of x-axis for γx = 1 and kx= 25 where qx take the values (π/4, π/3, π/6, 

and π/12).  One can conclude from this figures that qx play a major part in developing the trapping potential used 

in experimental of BEC.  The effect of qx becomes more clearly in figure (8) where the values of kx in this case 

vary from 5-30. The relation between OPL and kx are linear as shown in figure (9) for different values of qx.  As 

a conclusion to this work one can say that the trapping potential used in experimental of BEC in term of shape 

and values can be understood from the above figures.  To developed a comprehensive pictures about these 

potential more Analysis should be carried out in 2D and 3D.     
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