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Abstract: Top-k spatial preference queries arrival a ranked set of the k best data objects based on the scores of 

mark objects in their spatial neighborhood. Despite the wide assortment of location-based applications that rely 
on spatial predilection queries, existing algorithms incur non-negligible processing cost resulting in high retort 

time. The reason is that computing the score of an information object requires examining its spatial locality to 

find the feature object with the highest score. In this paper, we suggest a novel technique to speed up the 

performance of top-k spatial predilection queries. To this end, we propose a mapping of pairs of information 

and feature objects to a distance-score space, which in rotate allows us to identify and materialize the minimal 

subset of pairs that is adequate to answer any spatial preference query. Furthermore, we present a novel 

algorithm that improves uncertainty processing performance by avoiding examining the spatial neighborhood of 

the information objects during query execution. In addition, we recommend an efficient algorithm for 

materialization and we express useful properties that reduce the cost of maintenance. We show through wide 

experiments that our approach significantly reduces the number of I/Os and completing time compared to the 

state-of-the-art algorithms for dissimilar setups. 
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I. Introduction 
With the popularization of geotagging in sequence, there has been an increasing number of Web 

information systems dedicated to providing interesting results through location-based queries. However, most of 

the accessible systems are limited to plain spatial queried that arrival the objects present in a given region of the 

space. In this paper, we cram a more sophisticated query that returns the best spatial objects based on the 

features (facilities) in their spatial neighborhood [16,17]. Given a set of information objects of interest, a top-k 

spatial preference query returns a ranked set of the k best information objects. The score of a data object is 

defined based on the non-spatial gain (quality) of feature objects in its spatial neighborhood. On the other hand, 

the score of an attribute object does not depend on its spatial location, but on the quality of the attributes object. 
Such quality values can be obtained by a rating provider (e.g. www.zagat.com). 

 

 
Figure 1: Spatial area containing data and feature objects. 

 

For example, Figure 1 presents a spatial area containing information objects p (hotels) together with 

feature objects t (restaurants) and v (cafes) with their particular scores (e.g. rating). Consider a tourist concerned 

in hotels with good restaurants and cafes in their spatial neighborhood. The tourist specifies a spatial constraint 

(in the figure depicted as an assortment around each hotel) to restrict the distance of the eligible feature objects 
for each hotel. Thus, if the tourist wants to rank the hotels based on the gain of restaurants, the top-1 hotel is 

p3(0.8) whose score 0.8 is determined by t4. However, if the tourist wants to rank the hotels based on cafes, the 

top-1 hotel is pi (0.9) firm by v2. Finally, if the tourist is interested in equally restaurants and cafes (e.g. 

summing the scores), the top-1 hotel is P2(1.2). 
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Top-k spatial preference queries are intuitive and include a useful tool for novel location-based applications. 

Unfortunately, processing top-k spatial predilection queries is complex, because it may need to search the spatial 

neighborhood of all data objects previously to reporting the top-k. Due to this complexity, existing solutions are 
costly in terms of both I/Os and effecting time [16,17]. 

In this paper, we offer a novel approach for processing spatial preference queries efficiently. The main 

dissimilarity compared to traditional top-k queries is that the score of each information object is defined by the 

feature objects that assure a spatial constraint (for example range constraint). Therefore, pairs of information and 

feature objects need to be examined to decide the score of an object. Our approach relies on mapping of pairs of 

information and feature objects to a distance-score space, which in turn allows us to identify the negligible 

subset of pairs that is sufficient to answer all spatial predilection queries. Capitalizing on the materialization of 

this subset of pairs, we here an efficient algorithm that improves query processing concert by avoiding 

examining the spatial neighborhood of information objects during query execution. In addition, we suggest an 

efficient algorithm for materialization and describe useful properties that diminish the cost of maintaining the 

materialized information. In précis, the main contributions of this paper are: 
We define a mapping of pairs of information and feature objects in the distance-score space that enables pruning 

of attribute objects that do not affect the score of any information object. 

• We prove that there exists a negligible subset of pairs that is sufficient to answer all top-k spatial predilection 

queries. 

• We suggest an efficient algorithm for processing top-fc spatial predilection queries that exploit the 

materialized separation of points. 

• In addition, we suggest an effective algorithm for materialization, and we recognize useful properties for cost-

efficient continuation of the materialized information. 

• We show through a wider experimental evaluation that our algorithm outperforms the state-of-the-art 

algorithms in terms of equality  I/Os and execution time. 

The rest of this manuscript is organized as follows: In Section 2, we near an overview of the related 

work. In Section 3, we offer the necessary preliminaries and definitions. In Section 4, we illustrate the distance-
score space and define the minimal set of relevant information and feature objects. Our algorithm for processing 

spatial predilection queries is presented in Section 5. In Section 6, we illustrate the process of materialization 

and discuss how continuance is performed. Finally, in Section 7, we present the experimental assessment and we 

conclude in Section 8. 

 

II. Related Work 
Several approaches have been projected for ranking spatial data objects. The reverse adjoining 

neighbor (RNN) query was first projected by Korn and Muthukrishnan [8]. Then, Xia et al. studied the difficulty 

of retrieving the top-fc most influential spatial objects [15], where the score of each spatial information object p 
is defined as the sum of the scores of all characteristic objects that have p as their adjacent neighbor. Yang et al. 

Studied the problem of finding an optimal location [4]. The main dissimilarity compared to [15] is that the 

optimal position can be any point in the data space and not necessarily a purpose of the dataset, while the score 

is computed in a similar way to [15]. 

The aforementioned approaches describe the score of a spatial data object p based on the scores of 

feature objects that have p as their adjacent neighbor and are limited to a single feature set. Differently, Yiu et al. 

First measured computing the score of a data object p based on feature objects in its spatial neighborhood from 

multiple feature sets [16,17]. To this end, three dissimilar spatial scores were defined: range, nearest neighbor, 

and influence score; and dissimilar algorithms were developed to compute top-fc spatial preference queries for 

these scores. 

The algorithms developed by Yiu et al. Assume that the information objects are stored in an R-tree [6] 
based on spatial attributes, while the characteristic objects of each feature set are stored in a part aggregate R-

tree (air-tree) [11]. The proposed algorithms can be divided into three categories. The first category is calm by 

probing algorithms, namely Simple (SP) and Group (GP) probing. These algorithms require to compute the 

score of all data objects before reporting the top-fc result set. The second category is composed by Branch and 

Bound (BB) and Branch and Bound Star (BB ) algorithms. These algorithms avoid computing the achievements 

of some information objects. The ideas is computing an upper bound for each entry of the R-tree of the 

information objects, and prune the entries whose upper bound is smaller or equal to the score of the fc-th 

information object already found. The third category comprises the feature join (FJ) algorithm. FJ performs a 

multi-way spatial join on the feature sets to gain combinations of feature objects of high scores. Then, the 

http://www.iosrjen.org/
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Figure 2: Examples of partial scores and spatial constraints. 

 

The aim is to find information objects having the corresponding feature grouping with high score in their spatial 

neighborhood. A more exhaustive description of the algorithms can be found in Appendix A. 

In this paper, we study the problem that was originally projected in [16]. Differently than [16,17], we suggest a 

materialization technique that leads to significant savings in together computational and I/O cost during query 

processing. 

 

III. Preliminaries 
Given an object dataset O and a set of c feature datasets {F; | i G [1, c]}, the top-k spatial predilection 

query [16,17] returns the k data objects {pi,... , pk } from O with the highest score. The score of an information 

object p G O is defined by the scores of feature objects t G F; in its spatial neighborhood. Each attribute object t 

is associated with a non-spatial score w(t) that indicates the goodness (quality) of t and its domain of values is 

the range [0,1]. 

The score t(p) of a data object p is determined by aggregating the partial scores tf (p) with deference to 

neighborhood condition 0 and the i-th feature dataset F;: t(p) = agg{Tf (p) | i G [1,c]}. The aggregate purpose 

agg can be any monotone function (such as sum, max, min), but we use sum in the following discussion for ease 

of appearance. The partial score Tf (p) of p is resolute by feature objects that belong to the i-th feature dataset Fi 

only, and in calculation satisfy the user-specified spatial limitation 0. More specifically, the partial score rf (p) is 
defined by the non-spatial score w(t*) of a single feature object t* G Fi. This feature purpose t* is the feature 

object with the highest score that satisfies the distressed condition 0. The following list provides intuitive 

definitions of partial score for dissimilar neighborhood conditions 0 (where d () denotes the distance function): 

EXAMPLE 1. Figure 2 depicts an example of a set of spatial information objects. The points of feature datasets 

F1 and F2 are symbols with white and black dots respectively, while the information object p G O is represented 

with a cross mark. We assume that d () is the Euclidean detachment without loss of generality, i.e., Any other 

detachment function can be applied. In Figure 2 (a), for each F;, the range score of p is the maximum non-spatial 

score w (t) of the feature objects within distance r from p. Thus, T [U9 (p) = 0.7, T2,"9 (p) = 0.8, and the score 

of p is T (p) = ^2=1 t™9 (p) = 1.5. In Figure 2(b), for a given dataset F;, the adjacent neighbor score of p is the 

non-spatial score of the nearest characteristic object t G Fi to p. Thus, Tin (p) = 0.2, r2nn (p) = 0.8, and r (p) = 

1.0. In Figure 2 (c), the manipulate score of p is the maximum influence score of all feature objects in Fi. The 
influence score is computed taking into explaining the non-spatial score oft that is reduced depending on the 

distance between t and p. The radius r controls how rapidly the score decreases with detachment and in our 

example we set r = 1.7. 

 

 

 
Figure 3: Mapping to the distance-score space M. 

http://www.iosrjen.org/
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EXAMPLE 2. Figure 3 (a) depicts the spatial neighborhood of information objects p1 and p2, as well as the 

feature Fi, (black dots), while Figure 3 (b) depicts the mapping to the distance-score space M. In fastidious, the 

set M? 1 consists of pairs (p1, t1) ... (p1, t4) and is depicted with circles, whereas the set M? 2 consists of pairs 
(p2, t1) ... (p2, t4) and is depicted with black squares. Notice that smaller values are preferable for the reserve 

d(p, t), while higher values are preferable for the non-spatial score w(t). Therefore, the skyline sets of p1 andp2 

with admiration to Fi, are S?1 ={(p1, t1), (p1 ,t2), (p1,t4)} and S?2 ={(p2, 11), (p2,t3)} respectively. Also notice 

that pairs that belong to dissimilar objects, i.e., p1, p2, are incomparable. 

 

Algorithm 1 NextObject (Max Heap H) 

1: INPUT: Max-heap H with entries in sliding order of non-spatial score and radius r. 

2: OUTPUT: The next data object in H with maximum partial score. 

3: Entry e ^ remove entry from top of the H 

4: while e is not a data point do 

5: for each entry e' that is child of e do 
6: if d(e') < r then 

7: insert e' into H 

8: end if 

9: end for 

1000: e ^ remove entry from top of the H 

11: end while 

12: return e 

 

 
Figure 4: Example showing the contents of RiO. 

 

Notice that the range constraint is posed only to the detachment independently of the score of the 

feature objects. The number of pairs E is an upper clear of the objects that are accessed during a spatial 

predilection range query, assuming uniform distribution of the data and the feature objects. In perform, 
our approach indexes only the set S?, Which is a subset of M;, and our algorithm takes into account the 

score of the characteristic objects to reduce the number of accessed pairs still further. The details on 

efficient materialization and maintenance of S? are presented in Section 6, while in the sequel we near the 

proposed top-k spatial preference uncertainty processing algorithm. 

 

IV. Query Processing 

In this section, we here the Skyline Feature Algorithm (SFA) for processing top-k spatial 

predilection queries. First, we present an algorithm that exploits the distance-score space and returns the 

information objects in descending order of their partial scores. Then, we here the algorithmic details of 

SFA, which produces the consequence of the top-k spatial preference query by coordinating access to the 

partial scores of information objects. For ease of presentation, in the following, we refer to a pair (p, t), 
where p G O and t G F;, as a data point indexed by R?. 

Access to Partial Scores. During query processing, the information points in R? are retrieved 

sorted in descending order of their fractional scores. Furthermore, only node entries of the R-tree R? that 

satisfy the spatial limitation are processed. First, we present in details our algorithm for retrieving 
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information points sorted based on the range score (Algorithm 1). Then, we describe the necessary 

modifications for supporting the manipulate and nearest neighbor scores. 

Next Object takes as input the radius r that defines the assortment constraint and a heap H that 
contains node entries and information points in descending order of partial score T ;

f (). Initially, the heap H 

contains the root of R?. Each time, the ingress e at the top of the heap H, i.e., with maximum partial score, 

is retrieved (lines 3,10). As long as e is not a information point (line 4), Next Object inserts in the heap H 

(line 7) the children entries of e whose detachment is smaller or equal to the radius r (line 6).  

NextObject can be adapted with minor modifications for the influence and nearest neighbor scores. 

For influence score, the radius is only used to calculate the score, therefore even feature objects whose 

detachment from a data object is larger than r may supply to the result set. Thus, line 6 of the algorithm has 

to be removed for manipulating score. Notice that H maintains the node entries in descending organize of 

partial score Tf (), which in this case is defined by the influence score. For adjacent neighbor score, 

NextObject has to be modified to prune pairs (p, t) such that t is not the nearest neighbor of p. For this 

principle, during the construction of R?, such data points are flagged to indicate if t is the adjacent 
neighbor of p in F; (by a bit 1-if nearest neighbor, 0-otherwise). Similarly, an entry e of Ri

? is flagged, if at 

least one of its children entries is flagged. This enables proficient processing, as entries that do not contain 

an adjacent neighbor are immediately pruned. Then, lines 6-8 of Algorithm 1 are modified to first check if 

the child entry e' is a nearest neighbor entry, and only then e' is inserted in H. After these modifications, 

NextObject is readily employed for a range, adjacent neighbor and influence score. 

The SFA Algorithm. SFA (Algorithm 2) computes the top-k spatial preference information objects 

progressively, by aggregating the incomplete scores of the information objects retrieved from each R-tree 

R? using NextObject algorithm. We use sum as the aggregate function in the following explanation and in 

the pseudocode. 

Each time NextObject is invoked, the information object p with highest partial score Tf (p) is 

retrieved from R?, thus any unseen information object p' in R? has a smaller partial score than p (Tf (p') < tf 

(p)). Therefore, we can calculate an upper bound on the score t (p) of any information object p based on the 
highest partial scores Tf (p) of seen information objects in each Ri

? . 

SFA employs an upper bound U; on the score of some unseen object in each heap H;. Also, for 

each H;, a list L; of seen objects is maintained. Moreover, each time an object p is retrieved from H; for the 

first time, p’s lower bound to score (p-) can be updated using the aggregate purpose (in this case sum). In 

addition, SFA maintains a list C of candidate information objects that may eventually become top-k results. 

C is sorted based on descending lower bound to score. 

In each iteration (line 6), SFA selects one heap Hi (line 7) to retrieve the next information object p 

(line 8). The upper bound Ui on the score of H; is set (line 9) based on p’s partial score Tf (p). Then, if p has 

not been seen before in H;, its lower bound p- is updated based on the partial score Tf (p) and p is added to L; 

(lines 10-13). Notice that although p may be retrieved over from H;, 

 
Algorithm 2 SFA(MaxHeap H1,..., Hc) 

1: INPUT: Heaps H; containing the root of R?. 

2: OUTPUT: Top-k spatial preference objects. 

3: C — 0 // List of seen objects p sorted by lower bound on score p-  

4: L; — 0 //List of seen objects p from heap H; 

5: U; — <^ // Upper bound on score for each heap H; 

6: while 3H; such that H; = 0 do  

7: i — index of the next input 

8: (p,t) — NextObject(H;) //Next unseen object of H; 

9: U; — rf (p) 

10: ifp ^ L; then 

11: p- — p- + Tf (p) 
12: L; —— L; U p 

13: end if 

14: if p ^ C then 15: C — C U p 

16: end if 

17: q — C.peek() // Object with the best lower bound 

18: max — maxVpeo,p=q(p- + E Vj-p^Lj U;) //Upper bound 

19: while q- > max do 

20: q — C.pop() 

21: report q as next top-k, halt if k objects have been reported 

22: q — C.peek() // Object with the best lower bound 

http://www.iosrjen.org/
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23: max — maxvpeo,p=q(p- + EVj:p/Lj U;) 

24: end while 25: end while 

26: while fewer than k objects have been reported do 27: q — C.pop() 
28: report q as next top-k  

29: end while 

the maximum Tf (p) is encountered at the first time, because H; is admission in descending order of 

score. In addition, p is added to the list C of candidate objects (lines 14-16). Then, the upper bound (denoted as 

max) on the score of any purpose is computed in line 18. 

We can safely report as next top-k consequence, any object q in the top of the list C whose lower bound q- is 

greater than or equal to max (lines 19-24). SFA continues in the same fashion, until k objects have been reported, 

or until all heaps are exhausted. In the latter case, if fewer than k objects have been reported, the objects in C are 

returned based on the sorting of C (because the lower bound now equals to the real score), until we have k 

objects (lines 26-29). 

The problem of combining incomplete scores for top-k spatial preference queries is comparable to the 
problem of aggregating ranked inputs [5,9]. For ease of appearance, we omitted from Algorithm 2 

implementation details that consequence in reducing the number of data objects in the list C and, therefore, also 

the essential number of comparisons (see [9]). 

 

V. Materializationand Maintenance 
SFA processes top-k spatial preference queries efficiently, when each set of points S? is stored in an R-

tree R?. The remaining 

challenge is to computefficiently and materialize the set S;
? in a preprocessing phase and to maintain S;

? when 

updates occur. The proofs of the theorems and the lemmas of this section can be found in Appendix B. 

 

Materialization: The straightforward loom for computing the set S;
? is to combine each information object p G 

O with each feature object t G F; to construct pairs (p,t), and then execute a skyline algorithm to compute the set 

S?. This approach is correspondent to first computing the entire set M;
p and then computing its skyline, which is 

prohibitively exclusive for large datasets. An alternative approach is for each information object p G O and F; to 

execute a dynamic skyline query [12] on the dynamic coordinates d(p, t) and w(t), in regulate to compute Sp. 

For each data object, some feature objects can be pruned, but one dynamic skyline query is still obligatory for 

each information object. Hence, this approach also has a high I/O cost, especially when the cardinality |O| of the 

object dataset is high. 

Nevertheless, data objects that are close in space, i.e., their distance is small, have comparable 

distances to any feature object. Therefore, the skyline sets of such objects are also comparable with high prob-

ability. In order to condense the number of required dynamic skyline queries (and, in consequence, the I/O cost 
induced by accessing F;), the information objects are partitioned into groups, so that the distances of information 

objects that are in the same group are small. Then, for each group of information points, a dynamic region 

skyline query is posed (that will be defined in the following) and we will show that the result set is a superset of 

all skyline sets of information points that belong to the group. 

Let us assume a grouping of points and let the region A be the minimum bounding rectangle that 

encloses all information points of the group. We denote as maxDist(A, t) and minDist(A, t) the maximum and the 

minim distance among t and any data object enclosed in A respectively. For the case that t is enclosed in A, the 

minimum reserve is zero. 

 

Maintenance: In the following, we discuss the issue of index preservation in the presence of insertions, 

deletions and updates of information or feature objects. Insertions and deletions of a data object p G O are 
relatively straight forward and cost-efficient. When p is inserted in O, each index should be updated by inserting 

the skyline points S? of the mapping M? of p based on Fi. If p is deleted, any occurrence of p in an index must 

also be deleted. Updates of the spatial location of p are handled as a removal followed by an insertion. 

The most frequent maintenance process is update of the score of a feature object. Usually, the score of 

feature objects (e.g. user ratings) adjust dynamically, in comparison to the spatial location of a feature object 

which is additional static. In practice, such updates of score are expected to occur more often than updates of the 

geographic location. The confront of handling updates of the score of a feature object t G Fi is that such an 

update can potentially influence all materialized skyline sets SO. However, we show that we can utilize useful 

properties of the mapping to distance-score space to drastically decrease the cost of updates. 

For ease of presentation, we first suppose that all feature objects t G Fi have distinct score values. We 

will drop this restraint later. We define a total ordering T of the feature objects t G Fi based on their scores w(t), 

such that t head t' if w(t) > w(t'). The following lemmas decide when an update of a feature object’s score causes 
an update to the materialized skyline sets and, hence, to the indicator. 

http://www.iosrjen.org/
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VI. Experimental Study 
In this section, we evaluate our proposed algorithm (SFA) and we compare SFA against the algorithms 

developed by Yiu et al. [16, 17], denoted as GP, BB, BB*, and FJ. All algorithms were implemented in Java and 

executed on a PC with 3GHz Dual Core AMD Processor with 2GB RAM. The datasets were indexed by an R-

tree (aR-tree for [16,17]) with block size of 4KB. We used an LRU memory buffer with a fixed size of 0.2% of 

the size of the total number of objects stored in O and F;. We report the average values of 20 experiments, and in 

each experiment we recreate all datasets and indexes to factor out the effects of randomization. In all 

experiments, we measured the total execution time (referred to as response time) and number of I/Os. All charts 

are plotted using a logarithmic scale on the y-axis. 

 

6.1 Experimental Settings 
We conduct experiments using both synthetic and real datasets. First, we perform experiments using 

uniform distribution (UN) for the spatial locations of data and feature objects and for the score of the feature 

objects (within the range [0,1]). We also generate a synthetic dataset (CN) that resembles the real world: (1) 

there exist multiple city centers (centroids) with higher occurrences of data objects, (2) there exists a higher 

probability of finding feature objects nearby the city centers (centroids). Appendix C.1 provides a detailed 

description of CN including a plot of a generated dataset. We use the synthetic dataset (CN) as our default 

dataset. By default, the non-spatial score of the feature objects is a uniformly generated value within the range 

[0,1]. In addition, we evaluate also score values that follow the exponential distribution (Appendix C.3). In 

Appendix C, we provide a table that contains the parameters and values used in the experimental evaluation, the 

description and more experimental results of the real dataset, and we evaluate the cost of materialization. 
 

 

 
Figure 5: Effect of different data distributions {UN,CN,RL} on I/O and response time (range score). 

 

7.2 Query Processing Performance 

Range Score. In Figure 5, we use our default setup and study the number of I/Os and the response time 

for all datasets, while varying k. Figure 5(a) presents the I/O cost using the UN dataset. The performance of GP 

is stable because it always computes the score of all data objects. FJ requires a much higher number of I/Os, as it 

needs to access many leaf entries of the feature R-trees in order to report the correct top-k result set. The branch-

and-bound algorithms (BB and BB*) perform slightly better than GP for this setup. However, SFA results in one 

order of magnitude fewer I/Os than the best of its competitors. In Figure 5(b), we plot the number of I/Os for the 
CN dataset. BB* performs better than GP, BB, and FJ due to the employed pruning. However, SFA reduces 

even further the number of required I/Os compared to BB* and scales better than BB* for increasing value of k. 

In Figure 5(c), the I/O cost for the real dataset (RL) is presented. Again, SFA outperforms all other algorithms 

(in terms of I/Os) by at least one order of magnitude. This experiment indicates that SFA performs efficiently 

for a wide range of different datasets. Figures 5(d), 5(e) and 5(f) depict the response time for the same 

experimental setups respectively. In general, we observe that the gain of SFA compared to the other algorithms 

in terms of response time is even higher than the gain in I/Os (between one and two orders of magnitude). The 

fast response time of SFA indicates that SFA is suitable for applications involving Web information systems, 

where the main challenge is to minimize the response time for the user. 

In the next experiment, we vary the number of features c and evaluate the performance of our algorithm. 

SFA outperforms all other algorithms both in terms of I/Os (Figure 6(a)) and response time (Figure 6(b)). For a 

single feature dataset, SFA requires only few I/Os in order to retrieve the top-10 objects. Also, notice that SFA 
results in very small response time (under one second) even in the case of c=5 feature datasets. On the other 

hand, FJ does not scale with increasing values of c and has the worst performance of all algorithms for higher 

values of c. In the following, due to space limitations, we report only the response time, however we observed 

that the relative trends in I/Os are similar. 

In Figure 7, we vary different parameters and evaluate the response time of queries with range score. 

Figure 7(a) depicts the response time with varying radius r. SFA is always faster than all 
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Figure 6: Effect of c on I/O and response time (range score). 

 

other algorithms, irrespective of the value of radius. Notice that FJ and BB* perform worse for small radius and 

improve their performance with increasing radius until a certain point, because for very small radius many 
objects (or combinations of feature objects) have to be examined in order to identify an object with non-zero 

score, which can then be used for pruning. This is because most objects have zero score as there exist no feature 

objects in their neighborhood. Next, we study the scalability of SFA by varying the cardinality of the feature 

datasets |F;| (Figure 7(b)) and the cardinality of the object dataset |O| (Figure 7(c)). In Figure 7(b), we notice that 

increasing |F;| affects the performance of all algorithms, but not SFA. The main reason is that increasing the size 

of |F;| has a small impact on the cardinality of skyline sets S?. Since SFA materializes pairs that are not 

dominated, the number of such pairs is not affected significantly by increasing |Fi|. In Figure 7(c), SFA 

outperforms all algorithms, even though FJ is more stable with increasing |O| than SFA. This is mainly because 

FJ is sensitive to the cardinality of Fi and not to the size of O. 

Influence Score. In the following, we evaluate the performance of SFA for processing queries with 

influence score (Figure 8). We compare our approach against BB and BB*, which support queries with 

influence score. In Figure 8(a), we vary the number of features c. Notice that computing queries with influence 
score is very costly for BB and BB*. The main reason is that the influence score limits the pruning capabilities 

of BB and BB*, therefore they have to search a large area of the space for computing the score of the data 

objects. SFA, on the contrary, accesses the data objects in decreasing order of influence score, without any 

significant additional cost compared to the range score. Thus, SFA is more than two orders of 

 

 
Figure 7: Response time varying different parameters using the CN dataset (range score). 

magnitude faster than its competitors. In Figure 8(b), we evaluate the effect of varying k. All algorithms show 

stable performance for varying k and SFA always performs best. 

 

Nearest Neighbor Score. In Figure 9, we compare our approach against GP and BB algorithms for 

processing nearest neighbor queries. There is no implementation of BB* for nearest neighbor queries, and it is 

not trivial to adapt BB* for these queries. In Figure 9(a), we evaluate the effect of increasing the number of 

features c. Similar to other experiments where we evaluated the impact of varying c, SFA performs more 

efficiently. In Figure 9(b), we evaluate the effect of increasing values of k. Again, SFA is two orders of 

magnitude better than BB and GP regardless of the exact value of k. 

 
Figure 8: Effect of c and k on response time (influence score). 
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Figure 9: Effect of c and k on response time (NN score). 

 

 

VII. Conclusions 
In this paper, we here a novel approach for boosting the presentation of top-k spatial preference query 

processing. At the heart of our framework lies a mapping of pairs of information and feature objects to a 

distance-score space, which enables us to recognize the minimal subset of pairs necessary to answer any ranked 

spatial predilection query. By materializing this subset of pairs, we here efficient algorithms for query 

processing that result in better performance. Furthermore, we describe an capable algorithm for materialization 

and elaborate on useful properties that condense the cost of maintenance. Our experimental assessment 

demonstrates that our approach reduces I/Os and response time by more than one order of extent compared to 

the state-of-the-art algorithms in most of the setups. 
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