
IOSR Journal of Engineering 

e-ISSN: 2250-3021, p-ISSN: 2278-8719,  

Vol. 2, Issue 12 (Dec. 2012), ||V3|| PP 45-47 

www.iosrjen.org                                                    45 | P a g e  

Abstract Syntax Tree Based Clone Detection for Java 

Projects 

Tahira Khatoon, Priyansha Singh, Shikha Shukla 
(CSE, Institute Of Technology and Management, Gida Gorakhpur, India) 

 

 

Abstract-A large amount of unavoidable money is spent on the maintenance of any existing software 

systems. Software maintenance cost is generally higher than the development cost therefore reducing 

maintenance cost is a necessary task of today’s software industries. Software system includes similar bugs 

at different places which makes system inefficient n takes extra time and effort to deal with them. As a 

result the cost of software maintenance activities is increased. By detecting duplicate code fragments we 

can reduce the time and effort as well as maintenance cost. By analyzing the source code of a given 

software system, code clones can be detected. By this paper an abstract syntax tree based clone detector 

for java system is designed and implemented easily. There are various technique which can be used to 

find the clones This paper examines a software engineering process to create an abstract syntax tree 

based clone detector for java projects. 

 

Keywords: clone detection, abstract syntax tree, java, software, maintenance 

 

I. INTRODUCTION 
The presence of code clone that are similar in syntax and semantics are generally considered to be an 

indication of poor quality of software. A software system usually contains 7- 23% clone code that may be 

introduced by two ways-either intentionally or accidently. Sometimes, codes are intentionally introduced by 

programmers by copy/paste the code fragments and use it either with some modification or without any 

modification. While sometimes code clones are accidently be injected by the programmers due to the reason that 

they need to comply the to some well known solutions or best practices such as-exception handling, user 

interface design etc.   

Code clone existing in programme are of four types, that are-type 1, type 2, type 3, type 4. 

Type 1-This type includes the code clones which are exact copy of a code fragment except white spaces and 

comments. 

Type 2 – This type includes code clones which are syntactically equal with some modification like renaming 

variables and methods. 

Type 3-This type of code clones are copied code fragments with slightly syntactical   difference and that may 

contain extra statements etc. 

Type 4-Type 4 code clones are functionally equivalent but differ in implementation. 

                

The main goal of this paper is to apply the theory of clone detection and to create a prototype that can 

implement AST based code clone detection on java projects. The implementation should be able to visualise 

duplicate code fragments in such a way that it would be able to help the user to distinguish code fragments. By 

colourizing the duplicate code fragment using the same colour codes and linking the code clones which would 

make it easier to user to see the similarities. Another way to visualize the result could be by using tree maps. 

The use of tree maps is an efficient way to visualize code clones. 

 

II. PROBLEM  STATEMENT 
When software programmers implement software programme, similar code fragment may appear in 

different parts of the software system. Sometimes it is done intentionally and sometimes clone codes occur 

accidently. Most of the time, codes are reused by the programmers for the well known solutions. When clone 

code is intentionally introduced in software programme, the programmer may achieve time efficiency but loses 

control of the implemented software system. 

Apart from above mentioned problem there are some more problems that can occur due to code 

cloning. These are- 

 Probability of bug propagation is increased. If a code segment contains any bug and is reused by 

copying and pasting with or without any modification then the bug of the original segment remains in 

all the pasted segments. 



Abstract Syntax Tree Based Clone Detection for Java Projects 

www.iosrjen.org                                                    46 | P a g e  

 Introduction of new bug can also take place when the programmer only uses the structure of the 

duplicated fragment and it is his responsibility to implement the code according to the current need. 

This process can lead to introduction of new bug in the system and makes it error prone. 

 Implementation with lack of good inheritance structure and abstraction may result in bad design and 

also it makes software less maintainable. 

 The main problem related with code cloning is that it increases the maintenance. If there exist any bug 

in the cloned code segment then all other similar fragments are also investigated for the correctness of 

bug. Therefore maintaining a piece of code, duplication multiplies the work load. 

 

III. EXISTING  TECHNIQUES FOR DETECTION OF CODE CLONES 
1.1 Line based technique-This technique detect code clone by comparing source code on line before 

comparison tabs and white spaces are eliminated. This method was used in early days. The detection accuracy is 

very low because it cannot detect code clones written in different coding styles. For example-‘{’ position of if-

statement or while-statement. And also it cannot detect code clones using different variable names. 

 

1.2 Metric based techniques-In this technique, firstly the source code is divided into different functional 

units and then metrics for each unit is defined. Units with similar metric value are defined as code clones. 

Unfortunately this technique performs very poorly due to the high sensitivity of most metrics to minor edits 

therefore the partly similar units are not detected. 

 

1.3 Token based techniques-This technique came in existence after simple string matching techniques, it 

was the first approach to deal with source code similarity detection using sequence matching algorithms. In this 

technique, the source codes are firstly tokenized to provide sequence of tokens that are input to the string 

matching algorithms. After tokenization token sequences of source code are then compared, and identify the 

similar subsequences as code clones. This approach is not scalable either for the comparison of a set of projects 

(all pairs should be compared) nor for the search of similarities of a single project against a database of projects. 

 

1.4  Tree based techniques-In order to use the syntactic properties of the programs, tree based approach       

considers the syntax trees of the compilation units which are obtained through parsing. In this an abstract    

version of trees is considered so that better recall can be achieved. In this technique firstly, source code is parsed 

and after that abstract syntax tree is constructed, then the subtrees which are similar are identified as   code 

clones (differences of code style and variable names are eliminated). 

 

1.5 PDG (Programme dependency graph) based techniques-In this approach, control and data flow 

dependency of a function may be represented by a program dependency graph; clones may be identified as 

isomorphic sub graphs. The detection accuracy is very high as it can detect code clones which are not detected 

in other methods. Such as semantic clones, reordered clones. But it require complex computations therefore, it is 

very difficult to apply to large softwares. 

 

IV. PROPOSED  TECHNIQUE 
The above techniques does not provide good solution for the detection of code clones because of the 

limitations which are mentioned above so to cope up with these limitations an AST based technique was 

introduced to provide better solution. 

In order to find code clones using AST we need to compare each subtree to each other subtree in AST. 

Computing the similarities of all subtree pairs are not efficient, which complexity of computation is 

O(N
3
),where N is number of nodes in AST. To increase the scalability of the approach a hash function is used 

that partitions the AST into similar subtrees. If there are two subtrees whose similarity exceeds the threshold 

then these subtrees are called clones. Hashing function is used to hash subtrees into some buckets if the mass of 

the subtree exceeds the mass threshold(implemented by basic algorithm given below).The single subtree clone 

were detected by using hashing function but the subtree sequence clone cannot be detected. To overcome from 

this problem a list structure is built where each list is associated with a sequence in the programme and stores 

the hash codes of each subtree element of associated sequence. The algorithm for implementing this is given as 

below- 

 

4.1 Basic Algorithm 

Clones=ф 

For each subtree i 

 If mass(i)>=Threshold 

 Then hash i to bucket 



Abstract Syntax Tree Based Clone Detection for Java Projects 

www.iosrjen.org                                                    47 | P a g e  

For each subtree i and j in the same bucket 

 If Compare tree(i,h)>SimilarityThreshold 

 Then For each subtree s of i 

  If IsMember r(clone s,s) 

  Then RemoveClonePair(clone s,s) 

 For each subtree s of j 

  If IsMember r(clone s,s) 

  Then RemoveClonePair(clone s,s) 

 AddClonePair(clones,i,j) 

 

4.2 Sequence Detection Algorithm 
1. Build the list structure s describing sequences 

2. For k=MinimumSequenceLengthThreshold to MaximumSequenceLength 

3. Place all subsequences of length k into buckets according to subsequence hash 

4. For each subsequence i and j in the same bucket 

  If CompareSequences(i,j,k)>SimilarityThreshold 

  Then{ RemoveSequenceSubclonesOf(clones i,j,k) 

   AddSequenceClonePair(clones i,j,k) 

           } 

Clone detection by using abstract syntax tree and comparing each subtree or subtree sequence results in finding 

out exact and near miss clone. 

V. CONCLUSION 
In this paper, first of all problem domain is studied and discussed about the types of the clone code 

generated. According to expected benefits an implied importance of code clone detection a proper solution is 

selected from various techniques. In which we have proposed abstract syntax tree based clone detection 

technique using hashing function such that this function can hash a statement to a key which implied parse tree 

to be simple.The hashing function can hash the same type statements into the same key no matter how many 

operands they have. Therefore we can detect the clones that are larger than other techniques detected. At the end 

of this survey, all the goals are achieved and the criteria met as a result we can imply that the problem is solved. 

 

REFERENCES 
 

1). Yoshiki Higo,Toshihiro Kamiya, Shinji Kusumoto and Katsuro Inoue:”Refactoring     Support Based 

on Code Clone Analysis” 

2). Chanchal Kumar Roy and James R. Cordy:” A Survey on Software Clone Detection Research” , 

September 26, 2007 

3). Debarshi Chatterji, Jeffrey C. Carver, Nicholas A. Kraft :”Claims and Beliefs about Code Clones: Do 

We Agree as a Community?A Survey” 

4). Hoan Anh Nguyen, Tung Thanh Nguyen, Nam H. Pham, Jafar M. Al-Kofahi,and Tien N. Nguyen 

:”Accurate and Efficient Structural Characteristic Feature Extraction for Clone Detection” 

5). Rainer Koschke, Raimar Falke, Pierre Frenzel:” Clone Detection Using Abstract Syntax Suffix Trees” 

6). Toshihiro Kamiya, Shinji Kusumoto, Member, IEEE, and Katsuro Inoue, Member, IEEEE :”CCFinder: 

A Multi-Linguistic Token-based Code Clone Detection System for Large Scale Source Code” 

7).  Huiqing Li, Simon Thompson:” Clone Detection and Removal for Erlang/OTP within a Refactoring 

Environment” 

8). Randy Smith and Susan Horwitz :”Detecting and Measuring Similarity in Code Clones” 

9). Chung Yung and Che-Wei Wu :”A New Approach to Parameterized Clone Detection Using Abstract 

Syntax Tree” 

10). Peter Bulychev, Marius Minea :”Duplicate code detection using anti-unification” 

11). Miryung Kim, Vibha Sazawal, David Notkin , Gail C. Murphy :”An Empirical Study of Code Clone 

Genealogies” 

12). Denis Bogdanas And Alexandru Archip :”Code Quality Assurance By Detecting Clone Expression 

Removal Opportunities” 

13). Michel Chilowicz, Etienne Duris and Gilles Roussel :”Syntax tree fingerprinting: a foundation for 

source code similarity detection” 

14). Elmar Juergens, Florian Deissenboeck, Benjamin Hummel:” CloneDetective – A Workbench for Clone 

Detection Research” 

15). Peter Bulychev , Marius Minea :”An evaluation of duplicate code detection using anti-unification” 


