
Shweta S. Bagul, Omkar J. Kulkarni / IOSR Journal of Engineering (IOSRJEN)

www.iosrjen.org ISSN : 2250-3021

Vol. 2 Issue 2, Feb.2012, pp. 338-342

www.iosrjen.org 338 | P a g e

Survey on Parallel Algorithms

Shweta S. Bagul
Department of Computer Technology,

Veermata Jijabai Technological Institute,

Mumbai, India

Abstract-

Researchers have sought cost-effective
improvements by building “parallel” computers-
computers that perform multiple operations in a
single step. The parallel algorithms guide these
parallel computers to carry out this task. The
scalable performance and lower cost of parallel
platforms is reflected in the wide variety of
applications. In this talk, we will present various
applications of parallel algorithms, challenges
associated in designing them.

Keywords-Parallel algorithms, parallel processing

I. INTRODUCTION
Basically, parallel algorithms are those, which

perform multiple operations in a single step. There are
several different forms of parallel computing: bit
level, instruction level, data, and task parallelism.
Parallel computer programs are more difficult to write
than sequential ones, because concurrency introduces
several new classes of potential software bugs, of
which race conditions are the most
common. Communication and synchronization between
the different subtasks are typically one of the greatest
obstacles to getting good parallel program
performance.[1]

Parallel algorithm was necessary & implementable
because of substantial improvements in multiprocessing
systems & rise of multi-core processors. Performance
of a computer is decided by Time required to perform
basic operation (limited by clock cycles) & No. of these
basic operations that can be performed concurrently. eg:
splitting up the job of checking all of the numbers from
one to a hundred thousand to see which are primes
could be done by assigning a subset of the numbers to
each available processor, and then putting the list of

positive results back together. Factors Affecting
Estimation Of The Complexity/Cost Of Parallel
Algorithms:

 Time

 memory(space)

 communication between different processors

This communication is achieved by message passing &

shared memory.

The Paper Is Organized As Follows. The Very First
Part Contains The Fundamentals Of Parallel

Omkar J. Kulkarni
Department of Computer Technology,

Veermata Jijabai Technological Institute,

Mumbai, India

Algorithms. After That the Applications of Parallel

Algorithms in Various Fields are stated.
The observations regarding Time Complexities Are
Illustrated. The second last section has a algorithm
proposed by myself which finds out an array of centers
of the intervals of real line. The Last Part Contains
References.

II. LITERATURE SURVEY

2.1. Applications of Parallel Algorithms

1.1.1 In Computer Organization

 In This paper the author describes use of Parallel
Dynamic Programming Algorithm on a Multi-core
Architecture. Dynamic programming algorithms
consider the result from the available results set what is
suitable at the given moment of time. There is a data
dependency among various stages. It maybe
consecutive or non-consecutive. Here We propose a
parallel pipelined algorithm for filling dynamic
programming matrix by decomposing the computation
operators. Dynamic programming is useful in many
search and optimization problems.[2]

The author proposes given algorithm in following
way. A general strategy on a cache memory model is to
develop parallel out-of-core algorithm. In order to
facilitate the study of the methodology for designing
algorithms on such a large scale multi-core architecture,
it is necessary to build a programming/execution model.

Fig.1 The execution model of previous out of-core

model

Shweta S. Bagul, Omkar J. Kulkarni / IOSR Journal of Engineering (IOSRJEN)

www.iosrjen.org ISSN : 2250-3021

Vol. 2 Issue 2, Feb.2012, pp. 338-342

www.iosrjen.org 339 | P a g e

Fig.2. The execution model of out-of-core model on

multi-core architecture. The number of helper thread

depends on the architecture parameters such as

bandwidth
The Parallel pipelined algorithm is discussed further.
Let us assume that we have p + 2 threads, two of which
are helper threads, and the size of transformed domain
(DP matrix) is n. Because of the data dependence
between two consecutive entries in the same row and
column, we cannot get efficient parallelism. Hence use

decomposition. During computation of the second part,
the sub-matrices A(i, i) and A(j, j) are triangular. The
two operations A(i, i)⊗ A(i, j), A(i, j)⊗A(j, j) depend
on the final results of A(i, j), so A(i, i), A(j, j), A(i, j)
are integrated into one sub-matrices, where the
parallelism can be exploited along the diagonal. The
computation of one block which is divided into 4 sub-
blocks as below-

Fig.3 Execution of a single block

This model is an extension conventional out-of-core

model, therefore our proposed algorithm can be adapted

to achieve high performance on conventional out-of-

core model.

2.1.2. In Mobile Communications

The parallel algorithms can be used in Real-Time
Generation of Bit-Wise Parallel Representations of
Over-Sampled PRN Codes. A significant computational
challenge for a real-time code-division multiple access
(CDMA) software receiver are to perform baseband
mixing, Pseudo-random number (PRN) code mixing,
Accumulation of the resulting correlations. Fast
execution can be achieved by storing signals in a bit-
wise parallel format and using bit-wise logical
operations such as AND and EXCLUSIVE OR to
process multiple data samples simultaneously.[3] Such
methods increase processing speed by a factor of 2 to 4
if the raw radio-frequency (RF) data and the mixing
signals are 1- or 2-bit digital signals.

Fig. 4 An 8-bit example of bit-wise parallel storage
and mixing of a radiofrequency signal and a PRN

code replica
The Sampling Example is given as below. Eight
samples of a 1-bit digital RF signal get stored in parallel
in a single 8-bit integer word. Corresponding PRN code
replica is stored in parallel in another 8-bit integer
word. An EXCLUSIVE OR operation accomplishes
parallel 8-sample mixing of the two signals to produce
the 8-bit word at the bottom of the figure. This letter is
concerned with efficient generation of the bitwise
parallel over-sampled representation of the PRN code
in the middle word of Fig. Although not provably
optimal, its technique is practical and enables real-time
generation of such representations. Over-sampling and
translation into a bitwise parallel representation are
accomplished using tabulated functions. Over sampling
and bit wise parallel storage of prn codes is possible.

Fig.5 The CDMA code sample

CDMA PRN codes are sequences of +1 and -1 chip

values that chip at the rate

 fc = 1/Δtc

Many receivers work with prompt and early-minus-late
(EML) replicas of a PRN code. The early chips start
0.5Δteml seconds before the prompt chips, and the late
chips start 0.5Δteml seconds after the prompt chips. It
needs prompt and EML code replicas sampled at the RF
data sample times, which are depicted in Fig. as vertical
dash-dotted lines. The receiver’s sampled PRN codes

Shweta S. Bagul, Omkar J. Kulkarni / IOSR Journal of Engineering (IOSRJEN)

www.iosrjen.org ISSN : 2250-3021

Vol. 2 Issue 2, Feb.2012, pp. 338-342

www.iosrjen.org 340 | P a g e

are called over-sampled because Δts < Δtc , which
implies that fs > fc.
The sampled values of the prompt and EML PRN codes
can be represented in bit-wise parallel formats as
integer words.The prompt code is represented by a sign
bit with a 1 bit representing +1 and a 0 bit representing
-1. The representation of the prompt code at the 16
sample times of Fig. Starts with three 1s, continues
with ten 0s, and finishes with another three 1s. Its 16-bit
unsigned integer word representation is

215 + 214 + 213 + 22 + 21 + 20 = 57351.

Table construction requires knowledge of the maximum

possible number of code chips needed in order for the

early, prompt, and late codes to span an entire data

word of ns samples. This maximum is:

L = floor[ns − 1]Δts − Δt0kmin + 1/2Δteml

 Δtc

The size of each table can be determined from the

parameters kmin, kmax, and L. The Efficient Table

Look-Ups Of Over-Sampled Codes During An

Accumulation is given by following steps. A typical set

of accumulation calculations in a software receiver

starts when prompt chip C(1) starts and ends when

prompt chip C(M) ends.Timing relationship between

data sample words and the sequence of prompt code

chips that define an accumulation interval.

The accumulation interval starts Δtstart seconds past the

first sample of data word W1 and ends MΔtc seconds

later during data word WN, which implies that

N = ceil[(Δtstart + MΔtc)/(nsΔts)].

Additional zero-masking is required if the first samples

of data word W1 or the last samples of data word WN

do not lie within the accumulation interval.

 The Performance of Algorithm is given as follows-

1. Memory Requirements :

The total number of bytes required –

 Memory = 3ceil[ns/8].2
L
ktot bytes

2. Operations Count:

The critical operations count for this method is the

number Of integer operations per processed data word.

Brute-force PRN code over-sampling requires 6

operations per sample when used in integer

accumulation calculations and 9 operations per sample

if the accumulations are calculated using bitwise

parallel computations.

Approximation-Induced Code Distortion:

Fig.6 Distortion graph of Early-minus-late

correlation vs.normalised prompt correlation

The low distortion of the new method is illustrated
by the example correlation plots in fig. A new method
has been developed for use in a real-time software radio
receiver that uses bit-wise parallel operations to
perform the de-spreading correlations required to
acquire and track CDMA signals. The method tabulates
all possible PRN code chip sequences on a grid of
possible code timing offsets in order to produce all
possible versions of the sampled code within a single
data word. A recursion computes the proper indices
based on timing relationships between data samples and
PRN code chips.

2.1.3. In Routing

In this paper author suggests Parallel Routing

Algorithms for nonblocking Electronic and Photonic

Switching Networks.

To build a large IP router with capacity of 1 Tb/s

and beyond, either electronic or optical switching can

be used. The deployment of optical fibers as a

transmission medium has prompted searching for the

solution to the problem of speed mismatching between

transmissions and switching. A hybrid

approach in which optical signals are switched, but

both switch control and routing decisions are carried

out electronically is required.[4] A switching network

usually comprises a number of switching elements,

grouped into several stages interconnected by a set of

links. Any routing algorithm requiring more than linear

time would be considered too slow. A class of

multistage nonblocking switching networks has been

proposed. In this class, each network, denoted by B(N,

x, p,α) has relatively low hardware cost and short

connection diameter in terms of the number of SEs. A

B(N, x, p,α) is constructed by horizontally

concatenating x(≤ lg N-1) extra stages to an NxN

Banyan-type network, and then vertically stacking p

copies of the extended Banyan.B (N, x, p,0) and B(N, x,

Shweta S. Bagul, Omkar J. Kulkarni / IOSR Journal of Engineering (IOSRJEN)

www.iosrjen.org ISSN : 2250-3021

Vol. 2 Issue 2, Feb.2012, pp. 338-342

www.iosrjen.org 341 | P a g e

p,1) are similar in structure, but the latter does not allow

any two connections with the same wavelength passing

through the same SE at the same time while the former

does.

Fig. 7 Self-routing connection paths P0 and P1 in BLð16Þ with link

and node conflicts

Designing Parallel Switch Routing Algorithms

A trivial lower bound on the time for routing K K(0

≤K≤N) connections sequentially in B(N, x, p,1) is Ω(K

lgN). This lower bound is obtained by assuming that for

any connection it takes O(1) time to correctly guess

which plane to use without conflict and O(lgN) time to

compute the connection path in that plane.

fig. 8 (a) A (weak) edge-coloring. (b) A strong edge-coloring

The major contribution of this paper is the design and

analysis of parallel routing algorithms for a class of non

blocking switching networks, B (N, x, p,α). Although

the assumed parallel machine model is a completely

connected multiprocessor system of N PEs, the

proposed algorithms can be transformed to algorithms

for more realistic parallel computing models.

Time complexity = O (lgN lg lgN)

2.1.4. In Graph Theory

Here, author proposes a Parallel Algorithm for

Enumerating All Maximal Cliques in Complex

Network. Many Networks In Our World Are Complex

Networks Involving Massive Data. Efficient

enumeration of all maximal cliques in a given graph has

many applications in Graph Theory, Data Mining and

Bioinformatics. This enumeration can be done parallel

which takes optimum time than the sequential

algorithms. To solve the maximal clique problem in the

real-world scenarios, this paper presents a parallel

algorithm Peamc (Parallel Enumeration of All Maximal

Cliques) which exploits effective techniques to

enumerate all maximal cliques in a complex

network.[5] First we will find what is a clique.

For the graph G, V(G) and E(G) denote the set of

vertices and edges of G. A complete sub-graph of G is

called a clique. If a clique is not contained in any other

cliques, this clique is called a maximal clique. Since

that the triangle structure or 3-clique is a basic sub-

structure of any clique whose size is larger than 3.It has

a close relationship with the clustering coefficient

property of the complex network.

We could take advantage of this fact to design our

traversal policy for the vertices which are contained in

triangles by depth-first order, so that the maximal

cliques can be detected with efficiency. Because each

search tree rooted with every vertex in G will be

traversed, all the candidate cliques will thus be

identified. Peamc employs a pruning policy explained

as follows.

Fig.9. A 4-clique

In Figure, we start from node 0 and choose node 1

from τ(0). After {0,1,2,3} is detected, we continue to

choose node 2. However, we find {0,2,3} is not a

maximal clique. This traversal contributes nothing.

Consequently, we add a new set η(v0) that caches the

maximal cliques obtained from the search tree rooted

with v0. After σ(v0) is calculated, we will first merge

the current candidate clique with σ(v0) and check

whether η(v0) contains the merged set. If so, the

merged set will not be a maximal clique and the next

traversal steps starting from the current candidate clique

will be pruned.

Algorithm Peamc can be explored as below.

For the graph G, V(G) and E(G) denote the set of

vertices and edges of G. For a vertex v, set τ(v)

represents the neighbors of v.

Since v has |τ(v)| neighbors and these neighbors

could constitute α=|τ(v)|×(|τ(v)|-1)/2 triangles at most.

 Here We have assumed that,

β= the actual number of triangles

ε =(β/α) The Clustering Coefficient of v

σ(v) = To store all the vertices that could

constitute triangles with v and its neighbors.

The algorithm is given as

Input: a large sparse graph G = (V, E);

Output: the complete set of all maximal cliques;

Method:
1: Read graph G

2: Generate set τ(v) for every vertex of G

3: for each vertex v of G 4:

call recursive_find_cliques({v}, τ(v))

5: end for

Shweta S. Bagul, Omkar J. Kulkarni / IOSR Journal of Engineering (IOSRJEN)

www.iosrjen.org ISSN : 2250-3021

Vol. 2 Issue 2, Feb.2012, pp. 338-342

www.iosrjen.org 342 | P a g e

Function: recursive_find_cliques (x, τ)

7: for each vertex t∈τ by the ascending order

8: calculate set σ

9: if σ≠ Ø

10: extend x with t

11: call recursive_find_cliques (x, σ)

12: end if

13: else // Theorem 1

14: end for

III. OBSERVATIONS
The time complexity of Parallel Dynamic Programming

Algorithm on a Multi-core Architecture is found to be

O(n
3
/√p),In graph theory it is O(log N) whereas in the

application of nonblocking Electronic and Photonic

Switching Networks it is O (lgN lg lgN)

IV. PROPOSED ALGORITHM
I have taken the help of all the above studied algorithms

and proposed one algorithm which finds out the centres

of the intervals on the real line. We consider the two

end points of the interval as first(I)& last(I).I have then

divided these into no. of small intervals & found the

centre of each interval using parallel algorithm.[7]
Algorithm: Parallel-Find-Center (I);
Input: a family I = {Ii = [ai,bi] | ai ≤ bi, 1 ≤ i ≤n} of
intervals on the real line;
Output: the center of the corresponding interval graph if
the center exists

1. begin

 2. let K be the distance between first(I) & last(I) and

di1, be the distances from first(I) to Ii; for 1 ≤ i ≤n

3.if K = -1 then return(0);

4.construct the family of intervals I’ = { Ii = [-ai,bi] | ai

≤ bi, 1 ≤ i ≤n}

let di2, be the distances from first(I’) to Ii’ : for 1 ≤ i

≤n

5. for each Ii (1 ≤ i ≤n) do in parallel

6. if max{di1,di2}=[K/2] then

7.mark Ii;

8.Record all the marked intervals in the array C;

9.Return(C)

10.end; //Parallel-Find-Center

V. CONCLUSION
In this way we have studied the versatile use of parallel
algorithms in many emerging fields. The parallel
algorithms can solve the problems in various domains
such as mobile communications, routing & switching as
well as route optimization and graph theory.

VI. REFERENCES

[1] Introduction to parallel & distributed algorithms by

Carl Burch www.toves.org/books/distalg/

[2] Guangming Tan, Ninghui Sun, Guang R. Gao,” A

Parallel Dynamic Programming Algorithm on a

Multi-core Architecture”, ACM journal

[3] Mark L. Psiaki,” Real-Time Generation of Bit-

Wise Parallel Representations of Over-Sampled

PRN Codes”, IEEE journal

[4] Enyue Lu, S.Q. Zheng,” Parallel Routing

Algorithms for nonblocking Electronic and

Photonic Switching Networks”, IEEE

TRANSACTIONS

[5] Nan Du, Bin Wu, Liutong Xu, Bai Wang, Xin Pei,”

A Parallel Algorithm for Enumerating All Maximal

Cliques in Complex Network” , IEEE International

Conference on data mining

[6] www.google.com

[7] www.wikipedia.com

