
IOSR Journal of Engineering

Apr. 2012, Vol. 2(4) pp: 908-914

ISSN: 2250-3021 www.iosrjen.org 908 | P a g e

An Analytical Approach to S-Box Generation

K. J. Jegadish Kumar
1
, K. Hariprakash

2
, A.Karunakaran

3

1(Department of ECE, SSNCE, India)
2(Department of ECE, SSNCE, India)
3(Department of ECE, SSNCE, India)

ABSTRACT
This paper presents the construction of asymmetric and symmetric substitution boxes using an analytical approach.

The objective was to generate S-Boxes that meet the Strict Avalanche Criteria (SAC), are non-linear, and have a high

degree of resistance to differential cryptanalysis. It was found that it is possible to produce S-Boxes which exhibit

robustness up to 0.96, and several were found to give above 70% compliance with the SAC.

Keywords: Cryptography, S-Box, Analytical design, Strict avalanche criteria, Robustness

I. INTRODUCTION
The concept of concealing the meaning of a message

from all but the intended recipients is the job of a

crypto system. The development of digital computers

allowed the complexity of encryption algorithms to

increase and to be used in a wide range of applications,
including civilian use. Since it is easier to handle data as

blocks most of today‟s popular encryption algorithms are

all block ciphers i.e. they work on blocks of data e.g

AES , Blowfish. These algorithms are made up of

many primitive transformations among which one of the

most vital transformations is the „substitution‟. In this step

a given value is substituted with another value by use

of a lookup table. This imparts very high non linearity,

bit dependency etc and makes the encryption algorithm

immunity to attacks such as linear and differential

cryptanalysis. In this paper we discuss about generating

these lookup tables alias S-Boxes using an analytical
method where we make use of condition hierarchies and

various filling algorithms. The discussion starts with a

brief on the different forms of cryptanalysis and move on

to the properties of S-Box which enhances its strength.

After these basic briefings the paper starts discussion

about the generation and analysis of S-Boxes.

II. CRYPTANALYSIS
Cryptanalysis refers to the process of attempting to

recover the plaintext or the key that corresponds to a

particular ciphertext by a party who is not the intended

recipient. The most obvious form of cryptanalysis is

the Brute Force Attack, also known as an exhaustive

key search. This attack is carried out with a plaintext

ciphertext pair with keys being tried until the resulting

plaintext is equal to the known plaintext. However doing

an exhaustive search is not an easy task primarily
because the key spaces are very large. It might even

take several years to figure out the key through such a

raw search. Thus before doing a brute force attack pre

analysis such as differential or linear cryptanalysis is done

to reduce the probable key space and thus reduce the

time taken to a practicable value. A brief description of

the two cryptanalysis techniques is

given below .

2.1 Differential cryptanalysis

Differential cryptanalysis is a type of attack that

involves analysing the changes that occur in the

ciphertext when different changes are made to the

plaintext. The ciphertext changes are then interpreted with

reference to certain exploitable characteristics of the
round function. Usually the round function

characteristics that are exploited relate to the S-Boxes.

Typically a very large number of plaintexts/ciphertext

pairs are required for this attack. The objective is to

reveal either the whole key or enough of the key to make

a bruteforce attack. [1]

2.2 Linear Cryptanalysis

This cryptanalysis attempts to make linear approximations

of the operations performed by an algorithm. Probabilities

are assigned to each approximation. If enough information

is gathered it may be possible to deduce some key bits to
within a certain degree of accuracy. A linear cryptanalysis

of DES is given in [2].

III. S-BOX ANALYSIS PARAMETERS
Linear and Differential cryptanalysis are very

powerful methods for attacking encryption algorithms.
Both take advantage of weaknesses found in the round

function of an algorithm, usually in the S-Box

characteristics. It is desirable that there be techniques

for generating S-Boxes that have characteristics which

endow them with a degree of resistance to differential

and linear cryptanalysis. Two of the important

characteristics which decide the strength of an S-Box

are Robustness(R) and Strict Avalanche Criteria (SAC),

both of which are derived from the Differential

Distribution Table (DDT). The construction of the DDT

and the procedure to derive the SAC and R is discussed

below.

 3.1 Differential Distribution Table (DDT)

The Differential Distribution Table (DDT) is a table that

indicates how the output of an S-Box varies as the input

is varied. The number of rows in the S-Box is equal to

IOSR Journal of Engineering

Apr. 2012, Vol. 2(4) pp: 908-914

ISSN: 2250-3021 www.iosrjen.org 909 | P a g e

the number of elements in the S-Box (2
n

where n is
the number of input bits), and the number of columns

is equal to the number of distinct output values in the

S-Box (2
m

, where m is the number of output bits). Each

row corresponds to a change in the input value, i.e., the

XOR of the input with some other value of equal bit

length. Row 1 corresponds to the trivial case of XOR

with zero, while the final row corresponds to XOR with

n 1‟s. The columns correspond to the XOR of the
original and changed output. Each element in the table

indicates how many times a given XOR at the input to the

S-Box results in a particular change at the output. The sum

of each row is equal to 2
n

and the sum of each column

2
2n

/ 2
m

. The first row of the table is all zeros except for

the first element, which is equal to the number of

elements in the S-Box. Obviously when any input to the
S-Box is XORed with zero (not changed), the output

will not change. The DDT is useful as it allows for the

assessment of how well an S-Box conforms to the criteria

under which it was generated. The compliance of an

S-Box with the Strict Avalanche Criteria (SAC), can

be checked by looking at the rows of the table that

correspond to an input change of one bit, and the columns

that correspond to an output change of half the output

bits. In an ideal situation, the sum of all such columns

in a one-bit change row would be equal to 2
n
. Dividing

this sum by 2
n

(and multiplying by100%) gives the

percentage compliance with the strict avalanche criteria

for that bit change. Averaging this value over all one-bit

changes gives an indication of the overall compliance of

an S-Box with this criterion. The DDT can also be used

to check similar properties such as how often a one-bit

input change results in only a one-bit output change.

3.2 Robustness (R)
Robustness is a measure of the resistance of an S-Box

to differential cryptanalysis. Robustness is based on two

features of the DDT. The first is the number of nonzero

elements (N), in the first column of the DDT

(excluding the first element). These denote instances

when a change in the input results in no change in the

output. Such occurrences are a weakness as they reduce

the complexity of an algorithm and play an important part

in differential cryptanalysis. The other feature is the

largest value found in the DDT (L) other than the (1, 1)

element.

The Robustness is given by

)
2

1)(
2

1(nn
LNR

where n is the number of input bits. The higher the value

of R the better is the S-Box‟s resistance to differential

cryptanalysis.

IV. DESIRABLE S-BOX CHARACTERISTICS

4.1 High level of compliance with the SAC
It is desirable that the degree to which output bits are

dependent on input bits should increase as rapidly as

possible through an encryption algorithm. This is

primarily an action of the S-Boxes. SAC requires that a

change in one input bit results in half the output bits of

the S-Box changing. The ultimate goal is that every

output bit of an encryption algorithm be dependent on

every input bit. This means that changing one of the input

bits should result in a new output that is unrelated to the

previous output. The requirement is that if 1 input bit

changes at least half the output bits must change.

4.2 Non Linearity

It should not be possible to express the operation of the S-

Box as a linear function of the inputs. This would allow

the encryption algorithm to be broken through a process

of solving a set of equations for a set of unknowns.

Typically as S-Boxes become larger the probability of

them containing any linearity decreases rapidly.

4.3 Resistance to Differential Cryptanalysis

Cryptosystems

Differential Cryptanalysis[3] is a method of breaking
encryption algorithms that are based on Feistel networks.

It is a statistical attack that uses the characteristics of an

S-Box

given by its DDT to determine either all the key bits or

enough of them to reduce the complexity of a brute force

attack to a manageable level. The two main features of an

s- box that differential cryptanalysis exploits are:

–large value entries in the DDT,

 –entries in the first column of the DDT, particularly those

that have large values.

Hence the DDT of an S-Box should have a low
maximum value (excluding the (1, 1) entry), which is

not significantly greater than the other entries, and a

low number of entries in the first column but not so few

that they have large values. These last two requirements

are conflicting. A small number of entries presents a

restricted number of opportunities for differential

cryptanalysis to be performed, while small value elements

mean that when the cryptanalysis is performed it will

be more difficult to get a conclusive result. Having

seen the various criteria than makes an S-Box strong,

we now proceed to device algorithms to generate such

quality S-Boxes using fundamental filling methods.

V. FILLING CONDITIONS
Before stepping into generating S-Boxes we have to

define certain conditions which when imposed during

generation will result in S-Boxes of desired quality.

Logically conditions can be defined as the number of

output bit change that is allowed for a particular

number change in the input bits. Since it is very difficult

to fill an S-Box in such a way that all the elements
satisfy a particular desirable condition there comes a

need to declare a hierarchy of conditions in

decreasing strictness. Filling of each position in the S-

Box starts with the search for numbers that satisfy the

condition level 1 of the hierarchy. If there is no value

IOSR Journal of Engineering

Apr. 2012, Vol. 2(4) pp: 908-914

ISSN: 2250-3021 www.iosrjen.org 910 | P a g e

existing that satisfies condition level 1, it moves on to find
a numbers that satisfy the next condition level, else it

randomly chooses a number from the set of satisfying

numbers and fills up that position. Many conditions

affect the characteristics of an S-Box, but generally it

is the one and two bit input changes that affects the

Robustness and SAC to an appreciable level. We

narrowed upon three sets of condition hierarchy among

which two of them gave good results during analysis.

These two hierarchies are tabulated in Table 1 and Table 2.

Let α be a function which takes x as the input and gives y

as output. (i.e). α(x) = y

Where
x – Number of input bits changed

y – Corresponding number of change in output bits

The Condition Hierarchy I (CH1) can be represented as

shown in Table 1. Here level 1 denotes the most desirable

condition and level 6 denotes the least desirable condition.

 Table 1 :Condition Hierarchy I

Hierarchy Level Condition

1
α(1) = 4 and 3 ≤ α(2) ≤

5

2
α(1) = 4 and 2 ≤ α(2) ≤

3

3 α(1) = 4

4 3 ≤ α(1) ≤ 5

5 2 ≤ α(1) ≤ 6

6 1 ≤ α(1) ≤ 7

These conditions were formulated primarily to increase
the SAC and Robustness of the S-Box. Importantly the

first two conditions which has the α(2) conditions

were introduces to spread the values in DDT and thus

help in decreasing the value of L which thereby increase

R.

The Condition Hierarchy II (CH2) is shown below in

Table 2.

 Table 2 Condition Hierarchy II

Hierarchy Condition

1 α(1) = 4

2 3 ≤ α(1) ≤ 5

3 2 ≤ α(1) ≤ 6

4 1 ≤ α(1) ≤ 7

This condition hierarchy is more lenient as compared to

CH1. We have made such a modification to give more

importance to the increase in SAC with a small
compromise in R. Further it also reduces the time taken to

generate these S-Boxes by a good margin. Its effect can be

observed in our analysis which is to follow.

VI. GENERATION AND ANALYSIS OF

ASYMMETRIC S-BOXES
There are many kinds of S-Boxes. Basically they are

defined as n x m where n is the number of input bits

and m is the number of output bits. For example the

Data Encryption Standard (DES) used a 6x4 S-Boxes
and the presently used standard the Advanced

Encryption Standard (AES) uses an 8x8 S-Boxes.

These S-Boxes are not symmetric i.e not invertible

S(S(x)) ≠ x. A lot of algorithms have been developed to

create such non-symmetric S-Boxes, for example the

Rijndael‟s method which uses the Affine Transforms for

generating the S-Box and its inverse. We for

generation and analysis primarily concentrate on 8x8

asymmetric S-Boxes which are presently under wide use.

6.1 Random S-Box

In this section we generate and analyze 5 purely
random S-Boxes. Values for each position were selected

randomly so that the only intentional structure in the

resulting s- box was that each S-Box contained values

between 0 and 255 without repetition. The characteristics

of these S-Boxes are basically recorded in order to

observe the improvements achieved through the

analytical approach or the conditional filling. Table 3

shows the test results that were obtained for the five

random S-Boxes.

Table 3 Results of randomly generated S-Box

S-Box

No
R N L SAC

1 0.9375 0 16 7.1484

2 0.9453 0 14 8.9063

3 0.9375 0 16 6.2695

4 0.9375 0 16 6.6602

5 0.9531 0 12 6.5625

We see that the values of L are on an average close to
16 and the SAC values are below 30. Such an S-Box

has an average resistance to differential cryptanalysis.

More over the value of L is not consistent. The poor

value of SAC indicates that it does not introduce much

interdependency between the bits which is against the

requirement of a good S-Box.

6.2 AES S-Box

Advanced Encryption Standard (AES) is a symmetric-key

encryption standard adopted by the U.S government. The

standard comprises three block ciphers, AES-128, AES-
192 and AES-256, adopted from a larger collection

originally published as Rijndael. Each of these ciphers

has a 128-bit block size, with key sizes of 128, 192and

256 bits, respectively. The AES ciphers have been

analysed extensively and are now used worldwide, as

was the case with its predecessor, [4] the Data

Encryption Standard (DES). The AES encryption has four

transformations namely the AddRoundKey, SubByte,

ShiftRow and MixColumn [5]. In the SubByte

transformation the algorithm makes use of 8x8 S-Boxes.

Here each byte of the state is passed through the S-Box

to obtain a new state which is then passes on to the
next transformation. These 8x8 S-Boxes are generated

using the Affine Transforms AT and AT
-1

(Rijndael

method) and are known for its high resistance to linear

IOSR Journal of Engineering

Apr. 2012, Vol. 2(4) pp: 908-914

ISSN: 2250-3021 www.iosrjen.org 911 | P a g e

and differential cryptanalysis. As a „control‟ against
which to compare the quality of the S-Boxes generated

using our analytical methods, 5 AES S-Boxes were

generated and tested. It was observed that all the five S-

Boxes gave the same result for all tested parameters R,

N, L and SAC. Thus only one set of values have been

shown in Table 4.

 Table 4 Analysis results of AES S-Box

S-Box

No
R N L SAC

1 0.9844 0 4 29.9805

From Table 4 it‟s seen that these S-Boxes have a less

value of L=4 and a robustness R=0.9844 which is a good

proof for its high resistance to differential cryptanalysis.
The one problem we notice here is the low value of

SAC which is near 30 and is almost comparable to the

ones generated randomly (shown in Table 3). In an

encryption algorithm it is more desirable if the degree to

which the output bits are dependent on the input bits is

higher. This dependency in introduced primarily through

the S-Box and the efficiency of an S-Box in doing this is

given by the value of SAC.

Strict Avalanche Criteria (SAC) requires that a change in

one input bit results in the change of half the number of

output bits. The ultimate goal is that every output bit of an
encryption algorithm be dependent on every input bit.

Such low values of SAC indicates that the S-Box is

introducing less bit dependency and thus the burden of

bringing about desirable bit dependency falls on other

encryption steps.

6.3 Conditional Filling

Since the random generation of an S-Box inherited

poor quality we try to find an optimum way to fill the

S-Boxes which would induce better SAC and R. During

the research we found that it was not only the conditions

imposed that decided the quality, but it was also the
filling pattern or algorithm that brought about a

difference. A detailed generation and analysis of various

fruitful filling algorithms using both the conditional

hierarchies CH1 and CH2 have been discussed in this

section. The reason behind testing all filling techniques

with both the algorithm is that different algorithms

worked well with different conditional hierarchy.

Note: all comparisons of improvement or decline in S-

Box characteristics are made in comparison to the

characteristics of the AES S-Boxes unless and otherwise

stated. We start with the generation and analysis of S-
Box using the Random Positioning algorithm and then

proceed to Linear Filling and Neighbour First Filling

algorithms.

6.3.1 Random Positioning

In order to achieve good robustness it is required

that the generated S-Box is homogenous i.e. the

elements satisfying a particular condition must be well

spread throughout the S-Box and must not get

concentrated in a particular region. This should

be strictly satisfied particularly for the higher order
conditions. It ensures that the value of L is kept low which

it turn increases the robustness. To do this we adopt the

random positioning algorithm which chooses an unfilled

element from the S-Box and fills it with the best

possible value. The S-Boxes generated using this

algorithm when analysed give the properties shown in

Table 5 and Table 6. The column named „Time(s)‟ shows

the time taken to generate the S-Box in seconds.

Table 5 Random Filling (CH1)

S-Box
No

R N L SAC Time(s)

1 0.9609 0 10 43.75 150

2 0.9609 0 10 44.82 152

3 0.9531 0 12 45.80 142

4 0.9531 0 12 45.31 154

5 0.9531 0 12 44.34 145

The conditional hierarchy CH1 was used to generate

these five S-Boxes. It‟s observed that they have an
average robustness of 0.9562 which is 2.86% lesser as

compared to AES S-Box and 1.5% better than the

randomly generated S-Box. The effects of the

conditions imposed are more evident when we look at

SAC values. It‟s observed that the average value of SAC

has gone up by 44.44% which is a positive sign.

Now we analyse the characteristics of S-Boxes generated

using CH2. As discussed earlier the CH2 was formulated

particularly to increase the value of SAC with a little

compromise in R. The analysis results of these S-Boxes

are shown in Table 6.

Table 6 Random Filling (CH2)

S-Box

No
R N L SAC Time(s)

1 0.9531 0 12 48.54 77

2 0.9531 0 12 44.73 81

3 0.9531 0 12 45.02 75

4 0.9531 0 12 47.75 71

5 0.9531 0 12 45.21 81

As expected, the values of SAC have gone up (but only

to a small extent) while the average robustness has

decreased slightly to a value of 0.9531 as compared to

the previous case shown in Table 5. Importantly the time

taken for generating the S-Box has decreased by almost

half, this is mainly due to the elimination of condition 3 ≤

α(2) ≤ 5 and 3 ≤ α(2) ≤ 5. In this algorithm the use of

CH2 in place of CH1 has not given any appreciably

improvement in the value of SAC, however from Table 5

and Table 6 it is notable that the imposed conditions
CH1 and CH2 are having a great impact on the SAC

values without much compromise on the values of R.

In Random Positioning algorithm there is no control over

choosing the next position where the value is to be filled.

IOSR Journal of Engineering

Apr. 2012, Vol. 2(4) pp: 908-914

ISSN: 2250-3021 www.iosrjen.org 912 | P a g e

Due to this the first few randomly chosen places don‟t
have any 1bit change neighbours and thus a randomly

chosen unused value is filled into each of them. Until

the S-Box is partially filled this problem keeps

degrading the maximum possible quality that can be

achieved. This basically is the prime reason which is

holding back the SAC levels.To overcome this we

device other filling algorithms, wherein the selection of

place is controlled.

6.3.2 Linear Filling
The most basic and natural way of filling the S-Box is the

linear way. Here the first cell (0, 0) is taken as the starting
place and the S-Box is filled in a linear fashion from

there. Since the next position to be filled is fixed and

not random it makes this into a controlled filling

technique. The analysis results using this algorithm are

shown in Table 7 and Table 8 respectively.

Table 7 Linear Filling (CH1)

S-Box

No
R N L SAC Time(s)

1 0.9375 0 16 70.80 97

2 0.9453 0 14 73.73 93

3 0.9375 0 16 71.78 95

4 0.9375 0 16 73.83 95

5 0.9375 0 16 72.07 96

The value of SAC in Table 7 has rocketed to an average

of 72.44, which is highly desirable. It is more than twice

the SAC value of AES S-Box. However the value of

robustness has come down to approximately 0.9391

which is a 4.6% decrease. This is quite eclipsed by the
huge increase in the SAC.

Performing the same using CH2 we expected to get a

better value of SAC. The analyse show the following

results as tabulated in Table 8.

Table 8 Linear Filling (CH2)

S-Box

No
R N L SAC Time(s)

1 0.9453 0 14 75.98 49

2 0.9453 0 14 71.00 51

3 0.9453 0 14 75.56 44

4 0.9453 0 14 74.90 41

5 0.9453 0 14 75.10 47

Table 8 shows us a little more increase in the value of

SAC as compared to Table 7 as expected. We also see

that the value of robustness has gone up to an average

of 0.9453 which was not predicted. These S-Boxes

shows a 148% increase in the SAC value with a 3.97%

decrease in R which is a great sign of overall
improvement in quality. The decrease in the value of R

can be characterised to the filling method. Since the

algorithm goes about filling linearly the better values get

accumulated in the upper half while the less desirable

values are stacked at the bottom. This happens primarily

due to the fact that lesser number of values is available to
choose from by the time the filling reaches the bottom.

However these S-Boxes can be used in cases where the

SAC plays a major roll and it also serves as an example

to show that how equally important the filling techniques

are as when compared to the condition hierarchies. In

some cases it is necessary to have a good value of

robustness and the value SAC can be compromised to a

certain extent. Such requirements are dictated wholly by

the encryption algorithm, as for example the AES

emphasis on having a greater value of R where as the

DES gives an equal emphasis on both R and SAC. We

proceed to discuss about the neighbourhood filling
algorithm which produced the best balance between R

and SAC among all the tested algorithms.

6.3.3 Neighbourhood Filling

As discussed earlier in table 8, by linear filling, the

SAC value turns out to be high with a decreased

robustness while the random filling has given a lower

value of SAC with increased robustness. This algorithm

which was formulated to strike a balance between the

previous two algorithms is explained below.

 Step1- At the start, a vacant space is chosen randomly.
Step2-The chosen place is filled with the best possible

value. After filling, the position is pushed into a queue.

Step3-The queue is popped and all its 1bit change

neighbours are found.

Step4-All these neighbours are filled one by one and

each position is pushed into the queue after being filled.

Step5-If the S-Box is partially filled GoTo Step3. Step6-

Stop

From the above steps we see that this algorithm goes on

filling the neighbours and then the neighbours of

neighbours and so on until the S-Box is completely
filled. Using this algorithm ten S-Boxes were created

and analysed. As earlier five of them were generated

using CH1 and the rest using CH2. The analysis results

obtained are shown in Table 9 and Table 10.

Table 9 Neighbours First Filling (CH1)

S-Box

No
R N L SAC Time(s)

1 0.9609 0 10 48.05 113

2 0.9609 0 10 48.54 117

3 0.9531 0 12 45.51 124

4 0.9609 0 10 48.14 109

5 0.9609 0 10 44.82 129

These results show that the average value of SAC has

increased by 56.95%. This increase is comparable to that

achieved by random positioning. However the average

value of robustness has showed a slight improvement

and is also more consistent. Its average value is seen to

be 0.9593 which is just 2.54% less as when compared to

AES S-Box. Next we see the analysis results that were

obtained when this algorithm was applied using the CH2

hierarchy. The results obtained are shown in Table 10.

Table 10 Neighbours First Filling (CH2)

S-Box R N L SAC Time(s)

IOSR Journal of Engineering

Apr. 2012, Vol. 2(4) pp: 908-914

ISSN: 2250-3021 www.iosrjen.org 913 | P a g e

No

1 0.9531 0 12 54.79 47

2 0.9609 0 10 54.00 65

3 0.9609 0 10 53.32 67

4 0.9531 0 12 54.59 59

5 0.9531 0 12 54.98 56

Finally, by neighbours first filling (CH2), we observe

to get quiet an optimized values of robustness R=0.9561

and SAC=54.336. The value of SAC has increased by

81.24% and the robustness is comparable to those values
in Table 9 and Table 6. We see that this algorithm

gives a better value of SAC without any decrease in

therobustness when compared to Random Positioning.

This is primarily due to the elimination of the few

degrading cycles which exists in the beginning of

Random Filling where the vacant places being filled

don‟t have any prefilled 1bit change neighbours. The

elimination of such cycles is ensured by the algorithm

through Step 3 and Step 4.The problem faced in Linear

Filling i.e. the lack of spreading is also overcome by

adopting to fill in the neighbours in every round.

VII. WIDE USABILITY
Since our approach of inducing quality into S-Boxes does

not depend on any geometric factors such as size of S-

Box or the number of input and output bits, it can be

widely used for generating many kinds of S-Boxes. It can

be a DES like S-Box which has a 6bit input and a 4bit
output or a symmetric S-Box which is used in involution

block ciphers or any other kind of S-Box which carries

its own special characteristics. Our algorithm just

involves a conditional hierarchy and filling technique

both of which can be modified to generate S-Boxes of

required behaviour.

As a support to our above statements, we generate

and analyse briefly 8x8 „Symmetric‟ S-Boxes i.e. S-

Boxes that satisfy the condition S(S(x))=x using the

same process which was used to generate the

Asymmetric S-Boxes in the previous section. These

symmetric S-Boxes play a major role in involutional
block ciphers where the same algorithm is used for both

encryption and decryption. These reversible algorithms

come in handy when there is a resource constraint [6].

Since the S-Boxes are symmetric we have to fill in both

the ends simultaneously. Thus both the ends have to be

tested before filling up a place i.e. before filling the value

„y‟ in position x it has to be tested whether the value „x‟

satisfies a good condition in position y. This is done by

collecting all the y‟s(„y1‟,‟y2‟,‟y3‟....‟yn‟) that are suitable

to be filled in position x and then finding out the best

position y(among y1,y2,y3....yn) where in the value „x‟

satisfies the best possible condition among all the

alternatives.

Here too various conditional hierarchies were tested with

different filling techniques. We discuss here only the two

best combinations.

7.1 Linear Filling (CH2)
In this we filled in the S-Box linearly using the CH2

conditional hierarchy. Five S-Boxes
were generated and analysed, the results are shown in

Table 11.

Table 11 Linear Filling (CH2)

S-Box

No
R N L SAC Time(s)

1 0.9453 0 14 49.22 16

2 0.9531 0 12 49.02 19

3 0.9531 0 12 44.04 16

4 0.9531 0 12 45.51 17

5 0.9375 0 16 48.82 17

 Since these S-Boxes need to be symmetric it greatly

reduces the freedom in choosing the values for a position.

This results in a drastic decrease in the maximum value

of SAC from 75% in asymmetric to 47% here. However

the time taken to generate these S-Boxes is much less as

compared to the time taken to generate an asymmetric S-

Box. This is primarily due to the filling of two values in

each step.

7.2 Alternative Filling (CH1)
Here the filling process has two cycles. It the first cycle it

starts with the first element 0 and fills up all the even

numbered positions. The second cycle starts with element

1 and fills up all the leftover odd numbered positions. By

doing this we ensure that the usable values don‟t get

exhausted in one portion of the S-Box. The first round

fills up all the even values with good quality numbers

consistently mainly due to the ensured availability.

Five S-Boxes were created using this method and its

analysis results are shown in Table12.

Table 12 Alternative Filling (CH1)

S-Box

No
R N L SAC Time(s)

1 0.9531 0 12 42.38 57

2 0.9531 0 12 44.73 37

3 0.9531 0 12 44.36 44

4 0.9531 0 12 44.04 41

5 0.9531 0 12 42.06 44

The consistency in the value of R can be clearly observed.

However this has come at the expense of a small decrease

in the value of SAC as compared to the values in Table

11.

VIII. CONCLUSION
An investigation has been conducted into the

generation of substitution boxes (S-Boxes) using an
analytical techniques. They involve randomly choosing

a value and then testing it against a set of criteria to

determine if it is suitable for inclusion in the s- box. The

objective was to generate S-Boxes that meet the strict

avalanche criteria (SAC), are non-linear, and have a high

degree of resistance to differential cryptanalysis. The main

focus was on generating 8x8 asymmetric and symmetric

IOSR Journal of Engineering

Apr. 2012, Vol. 2(4) pp: 908-914

ISSN: 2250-3021 www.iosrjen.org 914 | P a g e

S-Boxes which are under wide use presently. It was found
that the probability of obtaining an S-Box that fully

complies with the SAC using these methods is very low.

However, a method was found that produces asymmetric

S-Boxes which exhibit up to 75% compliance with the

SAC. The maximum value of robustness achieved was

0.9606 and controlling robustness was found to be

considerably more difficult compared SAC. Although

the potential influence of an individual element on S-

Box behavior can be estimated when testing for

SAC compliance, there is no easy way to determine the

cumulative effects of all the elements during the

construction process. Hence, although a large percentage
of the elements may meet the SAC it is possible that

undesirable characteristics may come about that are not

detectable until the S-Box is tested. For example, there

may be a large number of instances where if a particular

input bit is changed the same 3-bit output change will

result. Although it is desirable that a 1-bit input change

results in a 3-bit output change, if enough of these

input/output pairs group together in the same position in

the DDT, it will have a detrimental effect on robustness.

There are other desirable S-Box features that have not

been considered here, many of which are application
dependent. However this investigation has shown that

it is possible to generate S-Boxes, in a random manner,

which can meet desirable criteria to a high degree.

REFERENCES

[1] B. Schneier, Applied Cryptography, “Protocols,

Algorithms, and Source Code in C”, 2nd Ed., Wiley,

New York, 1996.

[2] M. Matsui, “Linear cryptanalysis method for

DES cipher, in Advances in Cryptology”

Eurocrypt’93, Springer-Verlag Lecture Notes in
Computer Science, 765 (1994), pp 386–397.

[3] E. Biham and A. Shamir, Differential cryptanalysis

of DES-like cryptosystems, in Advances in

Cryptology” , Crypto‘ 90, Springer-Verlag Lecture

Notes in Computer Science, 537 (1991), pp 2–21.

[4] NIST reports measurable success of Advanced

Encryption Standard.

[5] Edwin NC Mui “Practical Implementation of

Rijndael S-Box Using Combinational Logic”,

2007

[6] K. Chmiel, A. Grocholewska-Czurylo, J. Stoklosa

“Involutional Block cipher for Limited Resources”
IEEE Global Telecommunication Conference, 2008,

pp 1-5.

