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Abstract: — This paper presents the applications of computational intelligence techniques to economic load 

dispatch problems. The fuel cost equation of a thermal plant is generally expressed as continuous quadratic 
equation. In real situations the fuel cost equations can be discontinuous. In view of the above, both continuous 

and discontinuous fuel cost equations are considered in the present paper. First, genetic algorithm optimization 

technique is applied to a 6-generator 26-bus test system having continuous fuel cost equations. Results are 

compared to conventional quadratic programming method to show the superiority of the proposed 

computational intelligence technique. Further, a 10-generator system each with three fuel options distributed in 

three areas is considered and particle swarm optimization algorithm is employed to minimize the cost of 

generation. To show the superiority of the proposed approach, the results are compared with other published 

methods 
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I. INTRODUCTION 
ECOMONIC load dispatch is defined as the process of allocating generation levels to the generating 

units in the mix, so that the system load is supplied entirely and most economically [1]. The objective of the 

economic dispatch problem is to calculate the output power of every generating unit so that all demands are 

satisfied at minimum cost, while satisfying different technical constraints of the network and the generators. In 

this problem, the generation costs are represented as curves and the overall calculation minimizes the operating 

cost by finding the point where the total output of the generators equals the total power that must be delivered. It 

is an important daily optimization task in the operation of a power system [2]. 
Several optimization techniques have been applied to solve the ED problem. To solve economic 

dispatch problem effectively, most algorithms require the incremental cost curves to be of monotonically 

smooth increasing nature and continuous [3-6]. For the generating units, which actually having non-

monotonically incremental cost curves, the conventional method ignores or flattens out the portions of the 

incremental cost curve that are not continuous or monotonically increasing. Hence, inaccurate dispatch result 

may be obtained. To obtain accurate dispatch results, the approaches without restriction on the shape of fuel cost 

functions are necessary [7-8]. Most of conventional methods suffer from the convergence problem, and always 

get trap in the local minimum. Moreover, some techniques face the dimensionality problem especially when 

solving the large-scale system. 

In recent years, one of the most promising research fields has been ―Evolutionary Techniques‖, an area 

utilizing analogies with nature or social systems. Evolutionary techniques are finding popularity within research 
community as design tools and problem solvers because of their versatility and ability to optimize in complex 

multimodal search spaces applied to non-differentiable objective functions. Several modern heuristic tools have 

evolved in the last two decades that facilitate solving optimization problems that were previously difficult or 

impossible to solve. These tools include evolutionary computation, simulated annealing, tabu search, particle 

swarm, etc. Recently, genetic algorithm (GA) and particle swarm optimization (PSO) techniques appeared as 

promising algorithms for handling the optimization problems [9]. These techniques are finding popularity within 

research community as design tools and problem solvers because of their versatility and ability to optimize in 

complex multimodal search spaces applied to non-differentiable cost functions. 

II. PROBLEM STATEMENT 
The basic economic dispatch problem can described mathematically as a minimization of problem of 

minimizing the total fuel cost of all committed plants subject to the constraints [1]. 
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Where 

F = Total operating cost 

N = Number of generating units 

Pi = Power output of i th generating unit 

Fi (Pi) = Fuel cost function of i th generating unit 
PD = Total load demand 

PL = Total losses 

Pi min = Minimum out put power limit of i th generating unit 

Pi max = Maximum out put power limit of i th generating unit 

The total fuel cost is to be minimized subject to the constraints. The transmission loss can be determined form 

Bmn coefficients.  

 The conditions for optimality can be obtained by using Lagrangian multipliers method and Kuhn tucker 

conditions as follows: 
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The following steps are followed to solve the economic load dispatch problem with the constraints: 

Step-1: 

Allocate lower limit of each plant as generation, evaluate the transmission loss and incremental loss 

coefficients and update the demand. 
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Step-2: 

Apply quadratic programming to determine the allocation 
new

iP of each plant. 

If the generation hits the limit, it should be fixed to that limit and the remaining plants only should be 

considered for next iteration. 

Step-3: 

Check for the convergence 
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Where   is the tolerance. Repeat until the convergence criteria is meet. 

A brief description about the quadratic programming method is presented in the next section. 

III. PARTICLE SWARM OPTIMIZATION APPROACH 

A. Overview of Particle Swarm Optimization 

The PSO method is a member of wide category of swarm intelligence methods for solving the 

optimization problems. It is a population based search algorithm where each individual is referred to as particle 

and represents a candidate solution. Each particle in PSO flies through the search space with an adaptable 

velocity that is dynamically modified according to its own flying experience and also to the flying experience of 
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the other particles. In PSO each particles strive to improve themselves by imitating traits from their successful 

peers. Further, each particle has a memory and hence it is capable of remembering the best position in the search 

space ever visited by it. The position corresponding to the best fitness is known as pbest and the overall best out 

of all the particles in the population is called gbest [15-16]. 

The modified velocity and position of each particle can be calculated using the current velocity and the 

distances from the pbestj,g to gbestg as shown in the following formulas [11, 17-20]: 
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 With nj ,...,2,1   and mg ,...,2,1  

where, 

 n = number of particles in the swarm 

 m  = number of components for the vectors vj and xj  

 t  = number of iterations (generations) 

    
)(

,
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gjv = the g-th component of the velocity of particle j at iteration t  ,
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 w  = inertia weight factor 

     21 , cc = cognitive and social acceleration factors respectively 

21, rr = random numbers uniformly distributed in the range (0, 1) 

)(
,
t
gjx  = the g-th component of the position of particle j at iteration t 

 jpbest  = pbest of particle j 

 gbest  = gbest of the group 

The j-th particle in the swarm is represented by a d-dimensional vector xj = (xj,1, xj,2, ……,xj,d) and its 

rate of position change (velocity) is denoted by another d-dimensional vector vj = (vj,1, vj,2, ……, vj,d). The best 

previous position of the j-th particle is represented as pbestj =(pbestj,1, pbestj,2, ……, pbestj,d). The index of best 

particle among all of the particles in the swarm is represented by the gbestg. In PSO, each particle moves in the 
search space with a velocity according to its own previous best solution and its group’s previous best solution. 

The velocity update in a PSO consists of three parts; namely momentum, cognitive and social parts. The balance 

among these parts determines the performance of a PSO algorithm. The parameters c1 and c2 determine the 

relative pull of pbest and gbest and the parameters r1 and r2 help in stochastically varying these pulls. In the 

above equations, superscripts denote the iteration number. 

 

 

B. Parameter Selection for PSO 

TABLE II: PARAMETERS USED IN PSO 

Parameter Value/Type 

Maximum generations 150 

Swarm size 10 

Cognitive factors (c1) & social 

acceleration factors (c2) 

c1 =2.0  

 c2=2.0 

Inertia weights wstart, =0.8  

 

 

For the implementation of PSO, several parameters are required to be specified, such as c1 and c2 

(cognitive and social acceleration factors, respectively), initial inertia weights, swarm size, and stopping criteria. 

These parameters should be selected carefully for efficient performance of PSO. The constants c1 and c2 

represent the weighting of the stochastic acceleration terms that pull each particle toward pbest and gbest 

positions. Low values allow particles to roam far from the target regions before being tugged back. On the other 
hand, high values result in abrupt movement toward, or past, target regions. Hence, the acceleration constants 
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were often set to be 2.0 according to past experiences. Suitable selection of inertia weight, w , provides a 

balance between global and local explorations, thus requiring less iteration on average to find a sufficiently 

optimal solution. As originally developed, w  often decreases linearly from about 0.9 to 0.4 during a run [11, 

15-20]. The parameters employed for the implementations of PSO in the present study are given in Table II. 

IV. RESULTS AND DISCUSSIONS  

A. Numerical Example 1 

First, continuous quadratic cost curve for the plants is considered. The system consists of 26 bus, 6 

units, and the demand of the system was divided into 12 small intervals as shown in Fig. 1. Generating units’ 

data are given in Table 3.1. The cost function coefficients along with minimum and maximum generation 
capacity for each fuel option are given in Table III. Table IV, shows the optimal generators’ power outputs for 

each hour including their corresponding fuel costs using quadratic programming method. Total production cost 

of 12 intervals is $156065.8. Table V, shows the same using RCGA method. Total production cost of 12 

intervals is $151008. It is clear from Table IV and V that RCGA gives better solutions. 

 

TABLE III: DATA FOR EXAMPLE - 1: 26-BUS 6-UNIT TEST SYSTEM 

 

Unit/Cost a 

($/MW2h) 

b 

($/MWh) 

c 

($/h) 

Pmin 

 (MW) 

Pmax 

 (MW) 

Unit-1 0.007 7 240 100 500 

Unit-2 0.0095 10 200 50 200 

Unit-3 0.009 8.5 220 80 300 

Unit-4 0.009 11 200 50 150 

Unit-5 0.008 10.5 220 50 200 

Unit-6 0.0075 12 120 50 120 
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V. CONCLUSION  
This paper presents the applications of computational intelligence techniques to economic load dispatch 

problems considering both continuous and discontinuous fuel cost functions. First, a continuous fuel cost 

function is considered for a 26 bus, 6 unit test system and both conventional (quadratic programming method) 

and computational intelligence (real coded genetic algorithm) methods are applied to find the optimum 

generator allocation. It is seen that the results obtained by the computational intelligence method is better 
compared to the quadratic programming method. Further, a discontinuous fuel cost function is considered for a 

10 unit New England test system and another computational intelligence technique (particle swarm 

optimization) is applied to find the optimum generator allocations. The results are compared with other 

published methods to show its superiority. 

 



Implementation of Artificial Intelligence Techniques for Economic Load Dispatch 

ISSN: 2250-3021 www.iosrjen.org 1461 | P a g e  

 

REFERENCE 
[1.] J. Wood and B. F. Wollenberg, ―Power Generation Operation and Control,‖ 2nd edition, New York: Willey, 1996. 

[2.] B. H. Chowdhury and S. Rahman, ―A review of recent advances in economic dispatch,‖ IEEE Transactions on Power Systems, vol. 5, 

no. 4, pp. 1248-1259, November 1990. 

[3.] A. Jiang and S. Ertem, ―Economic dispatch with non-monotonically increasing incremental cost units and transmission system 

losses‖,IEEE Transactions on Power Systems, vol. 10, no. 2, pp. 891-897, May 1995. 

[4.] H.W. Dommel, ―Optimal power dispatch‖, IEEE Transactions on Power Apparatus and Systems, PAS93 No. 3, pp. 820–830, 1974. 

[5.] C.O. Alsac, J. Bright, M. Paris, and Stott, ―Developments in LP-based optimal power flow, IEEE Transaction of Power Systems‖, Vol. 

5 No. 3, pp. 697–711, 1990. 

[6.] J. Nanda, D.P. Kothari, S.C. Srivastava, ―New optimal power-dispatch algorithm using fletcher’s quadratic programming method‖, 

IEE Proceedings, Vol. 136 No. 3, pp. 153–161, 1989. 

[7.] H. T. Yang, P. C. Yang and C. L. Huang, ―Evolutionary Programming Based Economic Dispatch For Units With Non-smooth Fuel 

Cost Functions,‖ IEEE Transactions on Power Systems, Vol. 11, No. 1, pp. 112-118, 1996. 

[8.] T. Jayabarathi, G. Sadasivam and V. Ramachandran, ―Evolutionary programming based economic dispatch of generators with 

prohibited operating zones,‖ Electric Power Systems Research, Vol. 52, No. 3, pp. 261-266, 1999. 

[9.] Sidhartha Panda and N. P. Padhy, ―Comparison of Particle Swarm Optimization and Genetic Algorithm for FACTS-based Controller 

Design‖, Applied Soft Computing. vol. 8, issue 4, pp. 1418-1427, 2008. 

[10.] D. E. Goldberg, ―Genetic Algorithms in Search, Optimization and Machine Learning‖. Addison-Wesley, 1989. 

[11.] Sidhartha Panda, S.C. Swain, P.K. Rautray, R. Mallik, G. Panda, ―Design and analysis of SSSC-based supplementary damping 

controller‖, Simulation Modelling Practice and Theory, doi: 10.1016/j.simpat.2010.04.007. 

[12.] Sidhartha Panda, C. Ardil, ―Real-coded genetic algorithm for robust power system stabilizer design‖, International Journal of 

Electrical, Computers and System Engineering, vol. 2, no. 1, pp. 6-14, 2008.  

 
 

 

 

 

 

 

 

 

 

 

 
 


