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Abstract: The two-dimensional canonical transform can be used in optical system analysis, image processing
and pattern recognition. In this paper two-dimensional transform anonical is extended to the distribution of
compact support. Analyticity theorem, inversion theorem, is proved for this transform. Lastly properties of
kernel are discussed.
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. Introduction:

Now a days fractional integral transform play an important role in signal processing, image
reconstruction, pattern recognition, acoustic signal processing,[1], [2]. The fractional Fourier transform[3], [4],
which is the generalization of
the one-dimensional Fourier transforms is defined as

= (S) — /%ez(m's) J‘ eficotoztzeicow’tz f (t)dt """""" (1)

It has the following additivity property
ofof =0 L. )

In fact, the fractional Fourier transform is the special case of the canonical
transform [5],[6]. The canonical transform is defined as

{2 DCT f{(t, x)}(s,w) = Le%(%jsz ]O eii(gtjfe%(%jtz ft)dtb#0.rnns ©)

\27ib o

The one-dimensional canonical transform can be extended in to two-dimensional canonical transform as follows.
- {2DCT £ (t,x)}(s,w)
ifd), i(d (s fw ) ifa), ifa).
L 1 E[E]S eigjw f efl[BtJefl[BX]eE[ij ei(g} f(t,x)dxdt b=0

=
J27ib \27ib o

Notation and terminology as per Zemanian [7].

This paper is organized as follows: Section 2 the definition two- dimensional canonical transform, and testing
function space. Section 3 inversion and Analyticity theorem, are proved. Section 4 properties of kernel are
discussed.

I1.  Definition two dimensional (2D) canonical transform:
Where we have, given the definition of two dimensional (2D) generalized canonical transform.

2.1 Two-dimensional Generalized canonical transform E (RxR):
It can be easily proved that the functions K (t,s) and K, (x,w) which are the functions of t and X

are members of E(RxR).
where,
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K, (t,s)= 1 e%[%jszeiz(%)z_ef(gt) and K (x,w)= ! elz(%) eé@xz_e*i(%x)

\27ib \27ib
sup
Thatis yg, {Kfl (ts)K,, (x,w)} = -0 <t<ow DDy K, (t,5)K, (X,w)|<
—00 < X <00

let E'(RxR) denotes the dual of E(RxR). Therefore the generalized canonical transform of
f (t,x) e E' (RxR) can be defined as

{2DCT  (t,x)}(s,w) = ( F (t.%), K, (t,5) K, (x,w))
- {2DCT f (t,x)}(s,w)

IS S ) 0 D E S PR L O .

27rib \/27ib 0
ifd)z s} if2a)e
Where K, (t,s)= 1_ ez(b] e (b}ez(b]t when b =0
! \J27ib
= ﬁeE(Cds )5(t —~ds) when b=0
id)e w), ifa)e
Ky, (x,w)= 1_ ez(b] e ) ez[bj when b =0
: \27ib
= \/EeE(Cdmé(x— d.w) whenb =0
2.2 Definition of testing function space:
An infinitely differentiable complex valued function ¢ on R" belongs to E(R"), if for each compact set.
| cs,,J s, where s, ={t:teR", ||<a,a>0},s ={x:xeR", [x]<b,b>0}

andfor 1 eR", JeR",

7ex#(t.X)=SUP|DD, g(t, 0| <o k=0,1,23.and 1=0,1,23...

—oo<t<o
—o<t<oo

Thus E(R") will denotes the space of all ¢(t,x) € E(R" ) with support contained in s, ands, . Note that space E
is complete and a Frechet space, let E" denotes the dual space of E .
1. Inversion and Analyticity of Two Dimensional canonical transform:

3.1 Inverse of Two Dimensional canonical transform:

If {2DCT f (t,x)}(s,w) is canonical transform of f (t,x) then inverse of transform is given by

= o sifa)e cifa)a L (s L) i(9)e Si(d),e
f(t,x):\?\?ez(b)l ez[bj [[e (blje (bt]ez(b) ez(t’J {2DCT f (t,x)}(s,w)dsdw
3.2 Analyticity theorem:

Let f e E'(R") and let its two canonical transform be defined by,
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{2DCT (t,%)} (s, W) = /2—1”0 o) /2—1”) eé(ﬁjwz Te%[%]tze{axze’i@‘ e’i(%]x f (t, x) dxdt
T T o

then {2DCT f(t,x)}(s,w) is analytic on C",if the a, b, suppfcs,and s, where
s, ={t:teR", ||<a,a>0}s ={x:xeR", |[x|<b,b>0} moreover 2D C T(§J t) is
differentiable and  D!D), {2DCT f (¢, x)}(s,w):< f (t,%), DD}, K, (t,5)K (X, w)>
Proof: Let, s:{S;, Sp,..c..c.08jeeeesn} € C"and w2 {wy, Wy, oo ow} € CT
. o0 0 .
We first prove that, — ——{2DCT f (t,x)}(s,w) exists,
055 oW,
o' o" o" o"

——{2DCT f(t,x)}(s,w) =< f (t,x), ——K_ (t,9)K. (X,w) >
asj"aw?{ (t,x)}(s,w) ( )as;aw? i (6 S)K ¢ (X, w)

we prove the result n = 1, the general result following by induction.

For fixed s; # 0 choose two concentric circles C and C' with centre sj and radii r and r, respectively
such that 0<r<r;< [sj.

Let ASJ. be a complex increment satisfying 0 < ‘ASJ.‘ < I . Also for fixed w; # 0.4gain choose two

concentric circles C and C, with centre w; and radii r and rl' respectively such that 0< r< r1' <|wj.

Let Aw; be a complex increment satisfying 0 < |Aw;|<r

Consider,
(2DCT) (s; +As;,w;) —(2DCT) (s;,w;) (2DCT) (s;, w; +Aw;) —(2DCT) (s;, ;)
AS. AW.

] ]

o0 0
—-< f(t,X), EMKH (t,S)Kf2 (X,W) >

] ]

=< £ (t,X), WAS, () PAW, (X) > .......(5)

1
where WASs; (t)Aw, (X) - (K, (65,8, -5 +As;--5) =K, (t,) ]

S
1 o" o"
A—Wj[Kf2 (X, W, Wy == e W; +Aw; ‘--Wn)—K,z (x,w)] _as;‘ W?KH (t,s)Kf2 (%, w) >
For any fixed (t,x)eR" and any fixed integer.
k=(k,k,~-k)eN' and L=, 1) e N

DD, K (t,s)K, (x,w) isanalytic insideand on C" and C/.

We have, by Cauchy integral formula.
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kn! 1 1 L !
Bt fl(t'S)K (XW)”[AS [Z—Sj—ASj_Z_st_(Z_SJ)Z]

DD} WAS, AW, (t,X) =

where,
=S L |12 dzdy
y-w,—Aw, y-w; | (y-w)
= (Stee e eSjity Z, Sjrdeee vee e sp)  and W = (Wy......... Wi, Y Wit1eee eee e Wh).
As Aw, DD! K, (t,5)K, (x,W
_ JZJJ"[ t Px f12( )fz( ) zdzdy
4t 0o (28 -08) (2-8)) (Y- w; - Aw;) (Y-w;)
But for all zeC' and y e C, and(t,x) restricted to a compact subset of R",
D DK, (t,s)K, (x,W)is bounded by constantQ.
AW
|Dk D, WAS, Aw, (t, x)| | | |” Q |diz||dy|
(K= () -1 (r)
<|Asj||ij| Q

C At (-0 ()R- (n)
Thus as |As|— 0,and [Aw;| -0, D} D,WAs;Aw; (t,X) tends to zero. Uniformly on the compact subset of
R".Therefore it follows that ‘PASJ-AWJ- (t, X) converges in E(R") to zero since fe El, we concluded (5)

tends to zero. Therefore {2DCT f(t, x)}(s,w) is differentiable with respective s; and w;. But this is true for all i,
j=12,.....n Hence
{2DCTTf (t,x)} (s, w) is analyticon C" and,
DyD, {2DCT f (t,x)} (s,w) =< f(t,x), D{D,, K, (t,s)K (x,w) >
IV.  Properties of kernel:

i(d

11 gk %(%]WZT Te_i(%t]e_i(%jxeii[g}zeiﬁxzf(t’x)dth

If {2DCT f (t,x)}(s,w)= e e

{ ( )}( ) N27ib «27ib e
is definition two dimensional canonical transform of f (t, x)
Where,

1 L8 S A0 A
ki (t,s p2\b) 20/ g 0/ g b Jp2lb) a2l when b=0
( ) ( ) x/2m N2rib
= \/EeE(Cdsz)é(t—ds)\/d_eE(CdWZ)S(x—dw) when b= 0

kernel of 2D canonical transform satisfied following property
4.1) k¢ (t,8)ky, (xow) =k (t,-s k¢, (xw)

4.2) ki (-t,s)ky (—=xw) =k (t,—s Kk, (x,-w)

4.3)k; (t,s)k;, (x,w) =k, (s,t)k; (w,x) ifa=b

4.4) k¢ (t,;s)k;, (x,w) =k (s,t)k; (w,x) ifa=b

Five properties of kernel, stated above are simple to prove, hence the proof omitted.
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V. Conclusion:

The two-dimensional canonical transform is generalized in the distributional sense. Its inversion and Analyticity
theorem is proved. Some properties of kernel are discussed. It can be used optical system analysis.
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