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INTRODUCTION 

 There are many concepts of universal algebras generalizing an associative ring ( R ; + ; . ). Some of 

them in particular, nearrings and several kinds of semirings have been proven very useful. Semirings (called 
also halfrings) are algebras ( R ; + ; . ) share the same properties as a ring except that ( R ; + ) is assumed to be a 

semigroup rather than a commutative group. Semirings appear in a natural manner in some applications to the 

theory of automata and formal languages. An algebra (R ; +, .) is said to be a semiring if (R ; +) and (R ; .) are 

semigroups satisfying a. ( b+c ) = a. b+a. c and (b+c) .a =  b. a+c. a for all a, b and c in R. A semiring R is said 

to be additively commutative if a+b = b+a for all a, b and c in R. A semiring R may have an identity 1, 

defined by 1. a = a = a. 1 and a zero 0, defined by 0+a = a = a+0 and a.0 = 0 = 0.a for all a in R. A semiring 

R is said to be a hemiring if it is an additively commutative with zero. After the introduction of fuzzy sets by 

L.A.Zadeh[12], several researchers explored on the generalization of the concept of fuzzy sets. The notion of 

anti fuzzy Left h- ideals in Hemirings was introduced by Akram.M and K.H.Dar [1]. The notion of 

homomorphism and anti-homomorphism of fuzzy and anti-fuzzy ideal of a ring was introduced by 

N.Palaniappan & K.Arjunan[6]. In this paper, we introduce the some Theorems in anti L-fuzzy subhemiring of a 
hemiring.  

1.PRELIMINARIES: 
1.1 Definition: Let X be a non-empty set and L = (L, ≤) be a lattice with least element 0 and greatest element 1. 

A L-fuzzy subset A of X is a function A : X  L. 
1.2  Definition:  Let ( R , + , . )  be a hemiring. A L-fuzzy subset A of R is said to be an anti L-fuzzy 

subhemiring (ALFSHR) of R if it satisfies the following conditions: 

 (i) A(x+y) ≤ A(x) A(y), 

 (ii) A(xy) ≤ A(x)  A(y), for all x and y in R. 
1.3 Definition: Let A and B be L-fuzzy subsets of sets G and H, respectively. The anti-product of A and 

B, denoted by AxB, is defined as AxB ={ (x, y ), AxB(x,y)  / for all x in G and y in H }, where                             

AxB(x, y) = A(x)  B(y). 
1.4  Definition: Let A be a L-fuzzy subset in a set S, the anti-strongest L-fuzzy relation on S, that is a                            

L-fuzzy relation on A is V given by V(x, y) = A(x)  A(y), for all x and y in S. 
1.5 Definition: Let ( R, +, . ) and ( R׀, +, . )  be any two hemirings. Let f : R → R׀  be any function and A 

be an anti L-fuzzy subhemiring in R, V be an  anti L-fuzzy subhemiring in f (R)= R׀, defined by                                       

V(y) = inf
)(1 yfx 

A(x), for all x in R and y in R׀. Then A is called a preimage of V under f and is denoted 

by  f -1(V). 

1.6 Definition: Let A be an anti L-fuzzy subhemiring of a hemiring ( R,  +, . ) and a in R. Then the pseudo 

anti L-fuzzy coset (aA)p is defined by ( (aA)p )(x) = p(a)A(x), for every x in R and for some p in P. 

2. PROPERTIES OF ANTI  L-FUZZY SUBHEMIRING OF A HEMIRING 

2.1 Theorem: Union of any two anti L-fuzzy subhemiring of a hemiring R is an anti L-fuzzy subhemiring 

of R. 

Proof: Let A and B be any two anti L-fuzzy subhemirings of a hemiring R and x and y in R. Let                              

A={( x, A(x)) / xR} and B={( x, B(x) ) / xR} and also let C =AB ={ (x, C(x)) / xR}, where A(x) 

 B(x)= C(x). Now, C(x+y) ≤ {A(x)A(y)} { B(x)B(y)}= C(x)C(y). Therefore, C(x+y) ≤ 
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C(x)C(y), for all x and y in R. And, C(xy) ≤{ A(x)  A(y) }{ B(x)  B(y)}= C(x)  C(y). 

Therefore, C(xy) ≤ C(x)  C(y), for all x and y in R. Therefore C is an anti L-fuzzy subhemiring of a 
hemiring R. 

2.2 Theorem: The union of a family of anti L-fuzzy subhemirings of hemiring R is an anti L-fuzzy 

subhemiring of R. 

Proof: It is trivial. 

2.3 Theorem: If A and B are any two anti L-fuzzy subhemirings of the hemirings R1 and R2 respectively, 

then anti-product AxB is an anti L-fuzzy subhemiring of R1xR2.  

Proof: Let A and B be two anti L-fuzzy subhemirings of the hemirings R1 and R2 respectively. Let x1 and 

x2 be in R1, y1 and y2 be in R2. Then (x1, y1) and (x2, y2) are in R1xR2. Now, AxB [ (x1, y1)+ (x2, y2) ] ≤                       

{ A(x1)  A(x2) }{ B(y1)  B(y2) } = AxB (x1, y1) AxB (x2, y2). Therefore, AxB [(x1, y1) +(x2, y2)] ≤ 

AxB (x1, y1)  AxB (x2, y2). Also, AxB [ (x1, y1)(x2, y2) ] ≤ {A(x1)  A(x2)} { B(y1)  B(y2)}                         

= AxB (x1, y1)  AxB (x2, y2). Therefore, AxB [(x1, y1)(x2, y2)] ≤ AxB (x1, y1)  AxB (x2, y2). Hence AxB is 
an anti L-fuzzy subhemiring of hemiring of R1xR2. 

2.4 Theorem: Let A be a L-fuzzy subset of a hemiring R and V be the anti-strongest L-fuzzy relation of 
R. Then A is an anti L-fuzzy subhemiring of R if and only if V is an anti L-fuzzy subhemiring of RxR. 

Proof: Suppose that A is an anti L-fuzzy subhemiring of a hemiring R. Then for any x=(x1, x2 ) and                            

y = ( y1, y2 ) are in RxR. We have, V (x+y) = A(x1+ y1)  A( x2+y2) ≤ {A(x1)A(y1)}{A(x2)  

A(y2)}= V (x1, x2) V (y1, y2) = V (x)  V (y). Therefore, V ( x + y) ≤ V (x)  V (y), for all x and y in 

RxR. And, V(xy) = A(x1y1)A(x2y2) ≤{A(x1)A(y1)}{ A(x2)  A(y2)}= V (x1, x2)  V (y1, y2) = 

V (x)  V (y). Therefore, V (xy) ≤ V (x)  V (y), for all x and y in RxR. This proves that V is an anti                     
L-fuzzy subhemiring of RxR. Conversely assume that V is an anti L-fuzzy subhemiring of R x R, then for 

any x = (x1, x2) and y = (y1, y2) are in RxR, we have A(x1+y1)A(x2+y2) =V (x+y)≤ V(x)V(y) = 

V(x1, x2)V(y1, y2) = {A(x1)A(x2)}{A(y1)  A(y2)}. If x2 =0, y2 = 0, we get, A(x1+ y1) ≤ A(x1)  

A(y1 ), for all x1 and y1 in R. And, A(x1y1)  A(x2y2) =V (xy) ≤ V (x)V (y) = V (x1, x2)  V (y1, y2) 

={A(x1)A(x2) }{A(y1)  A(y2)}. If x2 = 0, y2 = 0, we get A(x1y1) ≤ A(x1)  A(y1), for all x1 and y1 
in R. Therefore A is an anti L-fuzzy subhemiring of R. 

2.5 Theorem: A is an anti L-fuzzy subhemiring of a hemiring ( R, +, . ) if and only if A(x+y) ≤                          

A(x)  A(y), A(xy) ≤ A(x)  A(y), for all x and y in R. 
Proof: It is trivial. 

2.6 Theorem:  If A is an anti L-fuzzy subhemiring of a hemiring ( R, +, . ), then H = { x / xR: A(x) = 0} 
is either empty or is a subhemiring of R. 
Proof: It is trivial. 

2.7 Theorem: Let A be an anti L-fuzzy subhemiring of a hemiring ( R, +, . ). If A(x+ y) = 1, then either 

A(x) =1 or A(y) = 1, for all x and y in R. 
Proof: It is trivial. 

2.8 Theorem: Let A be an anti L-fuzzy subhemiring of a hemiring ( R, +, . ), then the pseudo anti L-fuzzy 

coset (aA)p is an anti L-fuzzy subhemiring of a hemiring R, for every a in R. 

Proof: Let A be an anti L-fuzzy subhemiring of a hemiring R. For every x and y in R, we have, 

((aA)p)(x+y) ≤ p(a){A(x)A(y)}= p(a)A(x)p(a)A(y) = ((aA)p )(x) ((aA)p)(y). Therefore, ((aA)p )                    

( x+y)≤( (aA)p )(x)((aA)p )(y). Now, ((aA)p)(xy)   ≤ p(a){ A(x) A(y)}= p(a)A(x) p(a)A(y) = 

((aA)p )(x)((aA)p )(y). Therefore,   ((aA)p )(xy) ≤ ( (aA)p )(x)  ( (aA)p )(y). Hence (aA)p is an anti                      
L-fuzzy subhemiring of a hemiring R. 

2.9 Theorem: Let ( R, + ,  . ) and ( R׀, +, . ) be any two hemirings. The homomorphic image of an anti                       

L-fuzzy subhemiring of R is an anti L-fuzzy subhemiring of R׀. 

Proof: Let f : R  R׀ be a homomorphism. Then, f(x+y) = f(x) + f(y) and f(xy) = f(x)f(y), for all x and y 

in R. Let V = f(A), where A is an anti L-fuzzy subhemiring of R. Now, for f(x), f(y) in R׀, v( f(x)+f(y)) ≤ 

A(x+y) ≤ A(x)A(y), which implies that v(f(x) + f(y)) ≤ v( f(x) )  v( f(y) ). Again, v( f(x)f(y)) ≤ 

A(xy) ≤ A(x)A(y), which implies that v( f(x)f(y) ) ≤ v(f(x))  v(f(y)). Hence V is an anti L-fuzzy 
subhemiring of R׀. 

2.10 Theorem: Let ( R, +, .) and ( R׀, +, .) be any two hemirings. The homomorphic preimage of an anti 

L-fuzzy subhemiring of R׀ is an anti L-fuzzy subhemiring of R. 

Proof: Let V = f(A), where V is an anti L-fuzzy subhemiring of R׀. Let x and y in R. Then, A(x+y)= 

v(f(x+y) ) ≤ v( f(x)) v( f(y)) = A(x) A(y), which implies that A(x+y) ≤ A(x)A(y). Again, 

A(xy)=v(f(xy)) ≤ v(f(x))  v(f(y)) = A(x)A(y) 

which implies that A(xy) ≤ A(x)  A(y). Hence A is an anti L-fuzzy subhemiring of R. 
2.11 Theorem: Let ( R, +, . ) and ( R׀, +, . ) be any two hemirings. The anti-homomorphic image of an anti 

L-fuzzy subhemiring of R is an anti L-fuzzy subhemiring of R׀. 
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Proof: Let f : R  R׀ be an anti-homomorphism. Then, f(x+y) = f(y) + f(x) and f(xy) = f(y)f(x), for all x 
and y in R. Let V = f(A), where A is an anti L-fuzzy subhemiring of R. Now, for f(x), f(y) in R׀,                                

v( f(x)+f(y)) ≤ A(y+x) ≤ A(y) A(x) = A(x) A(y), which implies that v( f(x)+f(y)) ≤ v( f(x) )                     

v( f(y) ). Again, v( f(x)f(y)) ≤ A(yx) ≤ A(y) A(x) = A(x)A(y), which implies that v(f(x)f(y)) ≤ 

v(f(x))  v(f(y)). Hence V is an anti L-fuzzy subhemiring of R׀. 
2.12 Theorem: Let ( R, + , . ) and ( R׀, +, . ) be any two hemirings. The anti-homomorphic preimage of an 

anti L-fuzzy subhemiring of R׀ is an anti L-fuzzy subhemiring of R. 

Proof: Let V = f(A), where V is an anti L-fuzzy subhemiring of R׀. Let x and y in R. Then, A(x+y) =                    

v( f(x+y) ) ≤ v(f(y) ) v(f(x)) = A(x) A(y), which implies that A(x + y)  ≤ A(x)  A(y). Again, 

A(xy) = v( f(xy)) ≤ v(f(y))  v(f(x)) = A(x) A(y), which implies that A(xy) ≤ A(x)  A(y). Hence 
A is an anti L-fuzzy subhemiring of R. 

In the following Theorem ◦ is the composition operation of functions 
2.13 Theorem: Let A be an anti L-fuzzy subhemiring of a hemiring H and f is an isomorphism from a 

hemiring R onto H. Then A◦f is an anti L-fuzzy subhemiring of R. 

Proof: Let x and y in R.Then we have, (A◦f)(x+y) = A(f(x)+ f(y))≤ A(f(x)) A(f(y)) ≤ (A◦f)(x)                                   

(A◦f )(y), which implies that (A◦f )(x+y) ≤ (A◦f)(x)  (A◦f)(y). And, (A◦f)(xy) = A (f(x)f(y)) ≤ 

A(f(x))  A(f(y)) ≤ (A◦f )(x) (A◦f )(y), which implies that (A◦f)(xy) ≤ (A◦f )(x)  (A◦f )(y). 
Therefore A◦f is an anti L-fuzzy subhemiring of a hemiring R. 

2.14 Theorem: Let A be an anti L-fuzzy subhemiring of a hemiring H and f is an anti-isomorphism from a 
hemiring R onto H. Then A◦f is an anti L-fuzzy subhemiring of R. 

Proof: Let x and y in R. Then we have, (A◦f)( x+y ) = A(f(y)+f(x)) ≤ A(f(x))  A(f(y)) ≤ (A◦f)(x)  

(A◦f)(y), which implies that (A◦f)(x+y) ≤ (A◦f)(x)  (A◦f)(y). And (A◦f)(xy) = A(f(y)f(x))≤ A(f(x)) 

A(f(y))≤ (A◦f )(x)  (A◦f )(y), which implies that (A◦f )(xy) ≤ (A◦f)(x) (A◦f)(y). Therefore A◦f is 

an anti L-fuzzy subhemiring of a hemiring R. 
2.15  Theorem: Let A be an anti L-fuzzy subhemiring of a hemiring  R, A+ be a L-fuzzy set in R defined 

by  A+(x) = A(x) +1 – A(0), for all x in R . Then A+  is an anti L-fuzzy subhemiring of a hemiring R. 

Proof : Let x and y in R. We have, A+(x+y) = A(x+y) +1- A(0) ≤ {A(x)A(y)}+1- A(0) = A+(x)  A+(y). 

Therefore, A+(x+y) ≤ A+(x)  A+(y), for all x, y in R. Similarly, A+(xy) = A(xy) +1- A(0) ≤ 

{A(x)A(y)}+1- A(0) = A+(x)  A+(y). Therefore,  A+(xy) ≤ A+(x)  A+(y), for all x, y in R. Hence A+  is  
an anti L-fuzzy subhemiring of a hemiring R. 

2.16 Theorem: Let A be an anti L-fuzzy subhemiring of a hemiring R, A+ be a L-fuzzy set in R defined by  

A+(x) = A(x) +1 – A(0), for all x in R. Then  there exists 0 in R such that A(0) = 1 if and only if  A+(x) = 

A(x). 

Proof : It is trivial. 

2.17 Theorem: Let A be an anti L-fuzzy subhemiring of a hemiring R, A+ be a L-fuzzy set in R defined by 

A+(x) = A(x) +1 – A(0), for all x in R. Then  there  exists x in R such that A+(x) = 1 if and only if  x = 0. 

Proof: It is trivial. 

2.18 Theorem : Let A be an anti L-fuzzy subhemiring of a hemiring R, A+ be a L-fuzzy set in R defined 

by A+(x) = A(x) +1 – A(0), for all x in R. Then (A+)+ = A+. 

Proof: It is trivial. 
2.19 Theorem: Let A be an anti L-fuzzy subhemiring of a hemiring R, A0 be a L-fuzzy set in R defined by 

A0(x) = A(0)A(x), for all x in R.. Then A0 is an anti L-fuzzy subhemiring of the hemiring R.                      

Proof: For any x in R, we have A0(x+y) = A(0)A(x+y) ≤ A(0){ A(x)  A(y) }= A(0)A(x) A(0)A(y) = 

A0(x)  A0(y). That is A0(x+y) ≤ A0(x)  A0(y), for all x, y in R. Similarly, A0(xy) = A(0)A(xy) ≤ 

A(0){A(x) A(y)}= A(0)A(x) A(0)A(y) = A0(x)  A0(y). That is A0(xy) ≤ A0(x)  A0(y), for all x, y in R. 
Hence A0  is  an anti L-fuzzy subhemiring of the hemiring R.             
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