A STUDY ON ANTI L-FUZZY SUBHEMIRINGS OF A HEMIRING

N. SELVAK KUMARAEN & K. ARJUNAN

¹Professor & Head Department of Mathematics, Latha Mathavan Engineering College, Kidaripatti-625301, Madurai, Tamilnadu, India ²Department of Mathematics, H.H.The Rajahs College, Pudukkottai – 622001, Tamilnadu, India.

ABSTRACT: In this paper, we made an attempt to study the algebraic nature of an anti L-fuzzy subhemiring of a hemiring .2000 AMS Subject classification: 03F55, 06D72, 08A72.

KEY WORDS: L-fuzzy set, anti L-fuzzy subhemiring, pseudo anti L-fuzzy coset.

INTRODUCTION

There are many concepts of universal algebras generalizing an associative ring (R ; + ; .). Some of them in particular, nearrings and several kinds of semirings have been proven very useful. Semirings (called also halfrings) are algebras (R ; + ; .) share the same properties as a ring except that (R ; +) is assumed to be a semigroup rather than a commutative group. Semirings appear in a natural manner in some applications to the theory of automata and formal languages. An algebra (R ; +, .) is said to be a semiring if (R ; +) and (R ; .) are semigroups satisfying a. (b+c) = a. b+a. c and (b+c) .a = b. a+c. a for all a, b and c in R. A semiring R is said to be additively commutative if a+b = b+a for all a, b and c in R. A semiring R may have an identity 1, defined by 1. a = a = a. 1 and a zero 0, defined by 0+a = a = a+0 and a.0 = 0 = 0.a for all a in R. A semiring R is said to be a hemiring if it is an additively commutative with zero. After the introduction of fuzzy sets by L.A.Zadeh[12], several researchers explored on the generalization of the concept of fuzzy sets. The notion of not fuzzy Left h- ideals in Hemirings was introduced by Akram.M and K.H.Dar [1]. The notion of homomorphism and anti-homomorphism of fuzzy and anti-fuzzy ideal of a ring was introduced by N.Palaniappan & K.Arjunan[6]. In this paper, we introduce the some Theorems in anti L-fuzzy subhemiring of a hemiring.

1.PRELIMINARIES:

1.1 Definition: Let X be a non-empty set and $L = (L, \leq)$ be a lattice with least element 0 and greatest element 1. A **L-fuzzy subset** A of X is a function $A : X \rightarrow L$.

1.2 Definition: Let (R, +, .) be a hemiring. A L-fuzzy subset A of R is said to be an anti L-fuzzy subhemiring (ALFSHR) of R if it satisfies the following conditions:

- $(i) \qquad \mu_A(x{+}y) \leq \mu_A(x) \lor \mu_A(y),$
- (ii) $\mu_A(xy) \le \mu_A(x) \lor \mu_A(y)$, for all x and y in R.

1.3 Definition: Let A and B be L-fuzzy subsets of sets G and H, respectively. The anti-product of A and B, denoted by AxB, is defined as AxB ={ $\langle (x, y), \mu_{AxB}(x, y) \rangle$ / for all x in G and y in H }, where $\mu_{AxB}(x, y) = \mu_A(x) \lor \mu_B(y)$.

1.4 Definition: Let A be a L-fuzzy subset in a set S, the anti-strongest L-fuzzy relation on S, that is a L-fuzzy relation on A is V given by $\mu_V(x, y) = \mu_A(x) \lor \mu_A(y)$, for all x and y in S.

1.5 Definition: Let (R, +, .) and (R', +, .) be any two hemirings. Let $f: R \to R'$ be any function and A be an anti L-fuzzy subhemiring in R, V be an anti L-fuzzy subhemiring in f (R)= R', defined by $\mu_V(y) = \inf_{x \to 0} \mu_A(x)$, for all x in R and y in R'. Then A is called a preimage of V under f and is denoted

by
$$f^{-1}(V)$$
.

1.6 Definition: Let A be an anti L-fuzzy subhemiring of a hemiring (R, +, .) and a in R. Then the pseudo anti L-fuzzy coset $(aA)^p$ is defined by $((a\mu_A)^p)(x) = p(a)\mu_A(x)$, for every x in R and for some p in P.

2. PROPERTIES OF ANTI L-FUZZY SUBHEMIRING OF A HEMIRING

2.1 Theorem: Union of any two anti L-fuzzy subhemiring of a hemiring R is an anti L-fuzzy subhemiring of R.

Proof: Let A and B be any two anti L-fuzzy subhemirings of a hemiring R and x and y in R. Let $A=\{(x, \mu_A(x)) \mid x \in R\}$ and $B=\{(x, \mu_B(x)) \mid x \in R\}$ and also let $C = A \cup B = \{(x, \mu_C(x)) \mid x \in R\}$, where $\mu_A(x) \lor \mu_B(x) = \mu_C(x)$. Now, $\mu_C(x+y) \le \{\mu_A(x) \lor \mu_A(y)\} \lor \{\mu_B(x) \lor \mu_B(y)\} = \mu_C(x) \lor \mu_C(y)$. Therefore, $\mu_C(x+y) \le \{\mu_A(x) \lor \mu_A(y)\} \lor \{\mu_B(x) \lor \mu_B(y)\} = \mu_C(x) \lor \mu_C(y)$.

ISSN: 2250-3021

 $\mu_C(x) \lor \mu_C(y)$, for all x and y in R. And, $\mu_C(xy) \le \{\mu_A(x) \lor \mu_A(y)\} \lor \{\mu_B(x) \lor \mu_B(y)\} = \mu_C(x) \lor \mu_C(y)$. Therefore, $\mu_C(xy) \le \mu_C(x) \lor \mu_C(y)$, for all x and y in R. Therefore C is an anti L-fuzzy subhemiring of a hemiring R.

2.2 Theorem: The union of a family of anti L-fuzzy subhemirings of hemiring R is an anti L-fuzzy subhemiring of R.

Proof: It is trivial.

2.3 Theorem: If A and B are any two anti L-fuzzy subhemirings of the hemirings R_1 and R_2 respectively, then anti-product AxB is an anti L-fuzzy subhemiring of R_1xR_2 .

Proof: Let A and B be two anti L-fuzzy subhemirings of the hemirings R_1 and R_2 respectively. Let x_1 and x_2 be in R_1 , y_1 and y_2 be in R_2 . Then (x_1, y_1) and (x_2, y_2) are in R_1xR_2 . Now, $\mu_{AxB} [(x_1, y_1)+(x_2, y_2)] \le \{\mu_A(x_1) \lor \mu_A(x_2) \} \lor \{\mu_B(y_1) \lor \mu_B(y_2) \} = \mu_{AxB} (x_1, y_1) \lor \mu_{AxB} (x_2, y_2)$. Therefore, $\mu_{AxB} [(x_1, y_1)+(x_2, y_2)] \le \mu_{AxB} (x_1, y_1) \lor \mu_{AxB} (x_2, y_2)$. Also, $\mu_{AxB} [(x_1, y_1)(x_2, y_2)] \le \{\mu_A(x_1) \lor \mu_A(x_2)\} \lor \{\mu_B(y_1) \lor \mu_B(y_2)\} = \mu_{AxB} (x_1, y_1)(x_2, y_2)] \le \{\mu_{AxB} (x_1, y_1) \lor \mu_{AxB} (x_2, y_2)$. Therefore, $\mu_{AxB} [(x_1, y_1)(x_2, y_2)] \le \{\mu_{AxB} (x_1, y_1) \lor \mu_{AxB} (x_2, y_2)$. Therefore, $\mu_{AxB} [x_1, y_1) \lor \mu_{AxB} (x_2, y_2)$. Therefore, $\mu_{AxB} [(x_1, y_1)(x_2, y_2)] \le \mu_{AxB} (x_1, y_1) \lor \mu_{AxB} (x_2, y_2)$. Hence AxB is an anti L-fuzzy subhemiring of hemiring of R_1xR_2 .

2.4 Theorem: Let A be a L-fuzzy subset of a hemiring R and V be the anti-strongest L-fuzzy relation of R. Then A is an anti L-fuzzy subhemiring of R if and only if V is an anti L-fuzzy subhemiring of RxR.

Proof: Suppose that A is an anti L-fuzzy subhemiring of a hemiring R. Then for any $x=(x_1, x_2)$ and $y = (y_1, y_2)$ are in RxR. We have, $\mu_V(x+y) = \mu_A(x_1+y_1) \lor \mu_A(x_2+y_2) \le \{\mu_A(x_1)\lor\mu_A(y_1)\}\lor \{\mu_A(x_2)\lor \mu_A(y_2)\}=\mu_V(x_1, x_2)\lor \mu_V(y_1, y_2)=\mu_V(x)\lor \mu_V(y)$. Therefore, $\mu_V(x+y) \le \mu_V(x)\lor \mu_V(y)$, for all x and y in RxR. And, $\mu_V(xy) = \mu_A(x_1y_1)\lor\mu_A(x_2y_2) \le \{\mu_A(x_1)\lor\mu_A(y_1)\}\lor \{\mu_A(x_2)\lor \mu_A(y_2)\}=\mu_V(x_1, x_2)\lor \mu_V(y_1, y_2)=\mu_V(x)\lor \mu_V(y)$. Therefore, $\mu_V(x)\lor \mu_V(y)$, for all x and y in RxR. This proves that V is an anti L-fuzzy subhemiring of RxR. Conversely assume that V is an anti L-fuzzy subhemiring of R x R, then for any $x = (x_1, x_2)$ and $y = (y_1, y_2)$ are in RxR, we have $\mu_A(x_1+y_1)\lor\mu_A(x_2+y_2) = \mu_V(x+y)\le \mu_V(x)\lor\mu_V(y) = \mu_V(x_1, x_2)\lor\mu_V(y_1, y_2) = \{\mu_A(x_1)\lor\mu_A(x_2)\}\lor \{\mu_A(y_1)\lor\mu_A(y_2)\}$. If $x_2=0$, $y_2=0$, we get, $\mu_A(x_1+y_1)\le \mu_A(x_1)\lor \mu_A(y_1)$, for all x_1 and y_1 in R. And, $\mu_A(x_1y_1)\lor\mu_A(x_2y_2) = \mu_V(x)\lor\mu_V(y) = \mu_V(x_1, x_2)\lor\mu_V(y_1, y_2) = \{\mu_A(x_1)\lor\mu_A(y_2)\}$. If $x_2=0$, $y_2=0$, we get $\mu_A(x_1)\lor\mu_A(y_1)$, for all x_1 and y_1 in R. And, $\mu_A(x_1y_1)\lor\mu_A(x_2y_2) = \mu_V(x)\lor\mu_V(y) = \mu_V(x_1, x_2)\lor\mu_V(y_1, y_2)$. If $x_2=0$, $y_2=0$, we get $\mu_A(x_1)\lor\mu_A(y_1)$, for all x_1 and y_1 in R. Therefore A is an anti L-fuzzy subhemiring of R.

2.5 Theorem: A is an anti L-fuzzy subhemiring of a hemiring (R, +, .) if and only if $\mu_A(x+y) \leq \mu_A(x) \vee \mu_A(y)$, $\mu_A(xy) \leq \mu_A(x) \vee \mu_A(y)$, for all x and y in R.

Proof: It is trivial.

2.6 Theorem: If A is an anti L-fuzzy subhemiring of a hemiring (R, +, .), then $H = \{ x / x \in R: \mu_A(x) = 0 \}$ is either empty or is a subhemiring of R.

Proof: It is trivial.

2.7 Theorem: Let A be an anti L-fuzzy subhemiring of a hemiring (R, +, .). If $\mu_A(x+y) = 1$, then either $\mu_A(x) = 1$ or $\mu_A(y) = 1$, for all x and y in R.

Proof: It is trivial.

2.8 Theorem: Let A be an anti L-fuzzy subhemiring of a hemiring (R, +, .), then the pseudo anti L-fuzzy coset (aA)^p is an anti L-fuzzy subhemiring of a hemiring R, for every a in R.

Proof: Let A be an anti L-fuzzy subhemiring of a hemiring R. For every x and y in R, we have, $((a\mu_A)^p)(x+y) \leq p(a)\{\mu_A(x) \lor \mu_A(y)\} = p(a)\mu_A(x) \lor p(a)\mu_A(y) = ((a\mu_A)^p)(x) \lor ((a\mu_A)^p)(y)$. Therefore, $((a\mu_A)^p)(x) \lor ((a\mu_A)^p)(x) \lor ((a\mu_A)^p)(y)$. Now, $((a\mu_A)^p)(xy) \leq p(a)\{\mu_A(x) \lor \mu_A(y)\} = p(a)\mu_A(x) \lor p(a)\mu_A(y) = ((a\mu_A)^p)(x) \lor ((a\mu_A)^p)(x)$. Hence $(aA)^p$ is an anti L-fuzzy subhemiring of a hemiring R.

2.9 Theorem: Let (R, +, .) and $(R^{l}, +, .)$ be any two hemirings. The homomorphic image of an anti L-fuzzy subhemiring of R is an anti L-fuzzy subhemiring of R^l.

Proof: Let $f : R \to R^{l}$ be a homomorphism. Then, f(x+y) = f(x) + f(y) and f(xy) = f(x)f(y), for all x and y in R. Let V = f(A), where A is an anti L-fuzzy subhemiring of R. Now, for f(x), f(y) in R^{l} , $\mu_{v}(f(x)+f(y)) \leq \mu_{A}(x+y) \leq \mu_{A}(x) \lor \mu_{A}(y)$, which implies that $\mu_{v}(f(x) + f(y)) \leq \mu_{v}(f(x)) \lor \mu_{v}(f(y))$. Again, $\mu_{v}(f(x)f(y)) \leq \mu_{A}(xy) \leq \mu_{A}(x) \lor \mu_{A}(y)$, which implies that $\mu_{v}(f(x)f(y)) \leq \mu_{v}(f(x)) \lor \mu_{v}(f(y))$. Hence V is an anti L-fuzzy subhemiring of R^l.

2.10 Theorem: Let (R, +, .) and (R', +, .) be any two hemirings. The homomorphic preimage of an anti L-fuzzy subhemiring of R¹ is an anti L-fuzzy subhemiring of R.

Proof: Let V = f(A), where V is an anti L-fuzzy subhemiring of R¹. Let x and y in R. Then, $\mu_A(x+y) = \mu_v(f(x+y)) \le \mu_v(f(x)) \lor \mu_v(f(y)) = \mu_A(x) \lor \mu_A(y)$, which implies that $\mu_A(x+y) \le \mu_A(x) \lor \mu_A(y)$. Again, $\mu_A(xy) = \mu_v(f(xy)) \le \mu_v(f(x)) \lor \mu_v(f(y)) = \mu_A(x) \lor \mu_A(y)$

which implies that $\mu_A(xy) \le \mu_A(x) \lor \mu_A(y)$. Hence A is an anti L-fuzzy subhemiring of R.

2.11 Theorem: Let (R, +, .) and $(R^{\dagger}, +, .)$ be any two hemirings. The anti-homomorphic image of an anti L-fuzzy subhemiring of R is an anti L-fuzzy subhemiring of R^{\dagger}.

Proof: Let $f : R \to R^{\dagger}$ be an anti-homomorphism. Then, f(x+y) = f(y) + f(x) and f(xy) = f(y)f(x), for all x and y in R. Let V = f(A), where A is an anti L-fuzzy subhemiring of R. Now, for f(x), f(y) in R^{\dagger} , $\mu_v(f(x)+f(y)) \le \mu_A(y+x) \le \mu_A(y) \lor \mu_A(x) = \mu_A(x) \lor \mu_A(y)$, which implies that $\mu_v(f(x)+f(y)) \le \mu_v(f(x)) \lor \mu_v(f(x)) \le \mu_A(yx) \le \mu_A(y) \lor \mu_A(x) = \mu_A(x) \lor \mu_A(y)$, which implies that $\mu_v(f(x)+f(y)) \le \mu_v(f(x)) \lor \mu_v(f(x)) \le \mu_v(f(x))$. Hence V is an anti L-fuzzy subhemiring of R¹.

2.12 Theorem: Let (R, +, .) and (R', +, .) be any two hemirings. The anti-homomorphic preimage of an anti L-fuzzy subhemiring of R' is an anti L-fuzzy subhemiring of R.

Proof: Let V = f(A), where V is an anti L-fuzzy subhemiring of R^I. Let x and y in R. Then, $\mu_A(x+y) = \mu_v(f(x+y)) \le \mu_v(f(y)) \lor \mu_v(f(x)) = \mu_A(x) \lor \mu_A(y)$, which implies that $\mu_A(x + y) \le \mu_A(x) \lor \mu_A(y)$. Again, $\mu_A(xy) = \mu_v(f(xy)) \le \mu_v(f(y)) \lor \mu_v(f(x)) = \mu_A(x) \lor \mu_A(y)$, which implies that $\mu_A(xy) \le \mu_A(x) \lor \mu_A(y)$. Hence A is an anti L-fuzzy subhemiring of R.

In the following Theorem • is the composition operation of functions

2.13 Theorem: Let A be an anti L-fuzzy subhemiring of a hemiring H and f is an isomorphism from a hemiring R onto H. Then $A \circ f$ is an anti L-fuzzy subhemiring of R.

Proof: Let x and y in R.Then we have, $(\mu_A \circ f)(x+y) = \mu_A(f(x)+f(y)) \le \mu_A(f(x)) \lor \mu_A(f(y)) \le (\mu_A \circ f)(x) \lor (\mu_A \circ f)(y)$, which implies that $(\mu_A \circ f)(x+y) \le (\mu_A \circ f)(x) \lor (\mu_A \circ f)(y)$. And, $(\mu_A \circ f)(xy) = \mu_A(f(x)f(y)) \le (\mu_A \circ f)(x) \lor (\mu_A \circ f)(x) \lor (\mu_A \circ f)(x) \lor (\mu_A \circ f)(x) \lor (\mu_A \circ f)(x)$. Therefore A of is an anti L-fuzzy subhemiring of a hemiring R.

2.14 Theorem: Let A be an anti L-fuzzy subhemiring of a hemiring H and f is an anti-isomorphism from a hemiring R onto H. Then A^of is an anti L-fuzzy subhemiring of R.

Proof: Let x and y in R. Then we have, $(\mu_A \circ f)(x+y) = \mu_A(f(y)+f(x)) \le \mu_A(f(x)) \lor \mu_A(f(y)) \le (\mu_A \circ f)(x) \lor (\mu_A \circ f)(y)$, which implies that $(\mu_A \circ f)(x+y) \le (\mu_A \circ f)(x) \lor (\mu_A \circ f)(y)$. And $(\mu_A \circ f)(xy) = \mu_A(f(y)f(x)) \le \mu_A(f(x)) \lor (\mu_A \circ f)(x) \lor (\mu_A \circ f)(x) \lor (\mu_A \circ f)(x) \lor (\mu_A \circ f)(x) \lor (\mu_A \circ f)(y)$. Therefore A of is an anti L-fuzzy subhemiring of a hemiring R.

2.15 Theorem: Let A be an anti L-fuzzy subhemiring of a hemiring R, A⁺ be a L-fuzzy set in R defined by $A^+(x) = A(x) + 1 - A(0)$, for all x in R. Then A⁺ is an anti L-fuzzy subhemiring of a hemiring R.

Proof : Let x and y in R. We have, $A^+(x+y) = A(x+y) + 1 - A(0) \le \{A(x) \lor A(y)\} + 1 - A(0) = A^+(x) \lor A^+(y)$. Therefore, $A^+(x+y) \le A^+(x) \lor A^+(y)$, for all x, y in R. Similarly, $A^+(xy) = A(xy) + 1 - A(0) \le \{A(x) \lor A(y)\} + 1 - A(0) = A^+(x) \lor A^+(y)$. Therefore, $A^+(xy) \le A^+(x) \lor A^+(y)$, for all x, y in R. Hence A^+ is an anti L-fuzzy subhemiring of a hemiring R.

2.16 Theorem: Let A be an anti L-fuzzy subhemiring of a hemiring R, A^+ be a L-fuzzy set in R defined by $A^+(x) = A(x) + 1 - A(0)$, for all x in R. Then there exists 0 in R such that A(0) = 1 if and only if $A^+(x) = A(x)$.

Proof : It is trivial.

2.17 Theorem: Let A be an anti L-fuzzy subhemiring of a hemiring R, A^+ be a L-fuzzy set in R defined by $A^+(x) = A(x) + 1 - A(0)$, for all x in R. Then there exists x in R such that $A^+(x) = 1$ if and only if x = 0. **Proof:** It is trivial.

2.18 Theorem : Let A be an anti L-fuzzy subhemiring of a hemiring R, A^+ be a L-fuzzy set in R defined by $A^+(x) = A(x) + 1 - A(0)$, for all x in R. Then $(A^+)^+ = A^+$.

Proof: It is trivial.

2.19 Theorem: Let A be an anti L-fuzzy subhemiring of a hemiring R, A^0 be a L-fuzzy set in R defined by $A^0(x) = A(0)A(x)$, for all x in R.. Then A^0 is an anti L-fuzzy subhemiring of the hemiring R.

Proof: For any x in R, we have $A^0(x+y) = A(0)A(x+y) \le A(0)\{A(x) \lor A(y)\} = A(0)A(x) \lor A(0)A(y) = A^0(x) \lor A^0(y)$. That is $A^0(x+y) \le A^0(x) \lor A^0(y)$, for all x, y in R. Similarly, $A^0(xy) = A(0)A(xy) \le A(0)\{A(x) \lor A(y)\} = A(0)A(x) \lor A(0)A(y) = A^0(x) \lor A^0(y)$. That is $A^0(xy) \le A^0(x) \lor A^0(y)$, for all x, y in R. Hence A^0 is an anti L-fuzzy subhemiring of the hemiring R.

REFERENCES

- 1. Akram . M and K.H.Dar, On Anti Fuzzy Left h- ideals in Hemirings, International Mathematical Forum, 2(46); 2295 2304, 2007.
- 2. Anitha. N and Arjunan. K, Homomorphism in Intuitionistic fuzzy subhemirings of a hemiring, International J.of.Math. Sci.& Engg. Appls.(IJMSEA), Vol.4 (V); 165 172, 2010.
- 3. Anthony J.M. and H Sherwood, Fuzzy groups Redefined, Journal of mathematical analysis and applications, 69; 124 -130, 1979.
- 4. Asok Kumer Ray, On product of fuzzy subgroups, fuzzy sets and sysrems, 105; 181-183, 1999.
- 5. Biswas. R, Fuzzy subgroups and Anti-fuzzy subgroups, Fuzzy sets and systems, 35; 121-124, 1990.
- 6. Palaniappan. N & K. Arjunan, The homomorphism, anti homomorphism of a fuzzy and an anti-fuzzy ideals of a ring, Varahmihir Journal of Mathematical Sciences, 6(1); 181-006, 2008.
- 7. Palaniappan. N & K. Arjunan, Operation on fuzzy and anti fuzzy ideals , Antartica J. Math., 4(1); 59-64, 2007.

- Rajesh Kumar, Fuzzy Algebra, University of Delhi Publication Division, Volume 1, 1993.
 Vasantha kandasamy.W.B, Smarandache fuzzy algebra, American research press, Rehoboth, 2003.
 Xueling MA. Jianming ZHAN, On Fuzzy h Ideals of hemirings, Journal of Systems science & Complexity, 20; 470 478, 2007.
- 12. Zadeh . L . A, Fuzzy sets, Information and control, 8; 338-353, 1965.

Palaniappan. N & K.Arjunan, Some properties of intuitionistic fuzzy subgroups, Acta Ciencia Indica, Vol.XXXIII (2); 321-328, 2007. 8.