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Abstract: -In this paper, we have solved the problem of one – dimensional thermoelastic disturbance in a Half 

– Space without energy dissipation due to suddenly applied constant temperature on the boundary which is 

rigidly fixed. Using the Laplace transform technique, exact expressions in closed form, for the displacement, 

temperature and stress fields are obtained. The results are illustrated graphically.     
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I. INTRODUCTION 

In the conventional approach to thermo-mechanical theories the constitutive equations are formulated 

upon the basis of the equation of balance of energy and an entropy production inequality. The theory of 

thermoelasticity without energy dissipation was formulated by Green A.E and Naghdi P.M [4]. They have 

suggested an alternative procedure that is significantly different from the conventional one. In this procedure, 

the constitutive equations are formulated upon the basis of a reduced equation of balance of energy which is a 
blend of the equation of balance of energy and an equation of balance of entropy. A novel feature of this 

procedure is that an entropy production inequality is not employed in the process of obtaining the constitutive 

equations. The inequality is utilized to improve additional restrictions, if any, on the constitutive variables only 

after the constitutive equations have been derived.  

In this we study the problem of one-dimensional thermoelastic disturbances in a half –space without 

energy dissipation due to suddenly applied constant temperature on the boundary which is rigidly fixed. Using 

the Laplace transform technique, exact expressions, in closed form, for the displacement, temperature and stress 

fields are obtained. The results are illustrated through graphs. 

II. FORMULATION OF THE PROBLEM: 
Consider one-dimensional thermoelastic disturbances propagating along the x-direction in the half-

space 0.x 
 
The displacement vector associated with these disturbances are supposed to have only one non-

zero component  u  in the x-direction, and this displacement component and temperature   are supposed to 

depend only on x and  t. It is assumed that the body force and heat sources are absent. 

As given by Chandrasekharaiah, D.S [1, 2], the equation of motion and the equation of heat transport 

and other equations of thermoelastic theory without energy dissipation, in dimensionless form are  
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Here cp and cs respectively represent the dimensionless speeds of purely elastic dilatational and Shear 

waves, and cT represents the dimensionless speed of purely thermal waves.   is the thermoelastic coupling 

parameter. 

 Here for one dimensional problem, first, second and fourth equations of    (A) reduces to,  
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Here 11T   is the normal stress in the x-direction. 

We suppose that initially the half-space is at rest in its undeformed state and has its temperature – 

change and temperature – rate equal to zero. Then the following homogeneous initial conditions hold. 

       , 0 , 0 , 0 , 0 0 , 0 (4)
u
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If the disturbances are caused by the boundary loads (on x=0), then the effects are pronounced 

only in the vicinity of the boundary, as such, we suppose that the following regularity conditions hold. 

     , , , 0 as 0 (5)u x t x t x t x for t      
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III. SOLUTION OF THE PROBLEM: 
Applying Laplace Transform to equations (1) (2) and (3), and using initial conditions (4), we get  
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 Here,  u  are the Laplace transforms of  u  respectively and s is the Laplace transform parameter. 

Eliminating    from equations (6) and (7), we get the following equation satisfied by u , 
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Once we determine  u  by solving this fourth order ordinary linear differential equation, So equation 

(9) serves as the central equation of the problem. 

Using the first of the regularity condition (5), the general solution of equation (9) is given by, 
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Where  m1 and m2 are roots with positive real parts of the biquadratic  equation 
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and  A1  and  A2 are functions of  s that may be determined by the specified boundary conditions (i.e., 

on x=0). For  u  to be non – trivial, A1  and  A2  both cannot be zero. 

Solving the biquadratic equation (11), we find that 
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Where,  
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In view of equation (12), equation (10) can be written as,  
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Substituting  u  from (16) in equation (6) and integrating the resulting  

equation with respect to x, we obtain  

 Once A1 and A2 are determined by using the specified boundary conditions, equations (16) can be 

inverted to obtain solutions for  u  in terms of x and t. 

IV. PROBLEM OF CONSTANAT STEP IN TEMPERATURE ON THE RIGID 

BOUNDARY: 

Here we consider the case where the boundary x=0 is held rigidly fixed for all time  0t   and the 

disturbances are caused by the sudden application of a constant step in temperature on this boundary at 

time 0t  .  Then the boundary conditions are 

 0, 0, 0 (17)u t t 
 

   0, , 0 (18)t H t t  
  

Here   is constant and ( )H t  is Unit Step function defined by  
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Taking the Laplace transform of the boundary conditions (17) and (18), we get, 
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Using above conditions, from equations (16) and (17), we get the following two linear equations in A1 and A2. 
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Solving the above equations, we get, A1 and A2 as, 
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Substituting these values in equations, (16), (17) and (18), we get 
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Taking inverse Laplace transform of above equations, we get u   as, 
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V. DISCUSSION OF THE RESULTS: 

From the solutions given above by equations (23), we observe that   u  are identically zero for  1x tV  

. This means that at a given instant of time 0t  , the points of the half space that lie beyond the faster wave 

front  1x t V


  do not experience any disturbance. This phenomenon is a characteristic feature of all 

hyperbolic thermoelasticity theories. Therefore thermoelasticity without energy dissipation is a hyperbolic 

thermoelasticity theory. 

We can compute the discontinuities experienced by u  at the wave fronts , 1, 2
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equation (23). These discontinuities are  
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Here    ...
k  denotes the discontinuity of the function across the wave front    , 1, 2
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Equation (24) shows that the displacement is continuous at both the wave fronts. A discontinuity in 

displacement implies that one portion of matter penetrates into another, and this phenomenon is not physically 
realistic, indeed it violates the continuum hypothesis. Therefore, thermoelasticity theory without energy 

dissipation does not make such a prediction. 

VI. NUMERICAL EVALUATION OF THE RESULTS: 
To evaluate the results numerically, we consider a material for which 

12 2
1, , 0.0168.

0.05

c cp T   Dhaliwal, R.S and Sherief, H.H [3] also considered the same material 

for which the non- dimensional relaxation time   
1

0.050     .  By using expressions (13) and (14), we get the 

dimensionless speeds of  -wave and e-wave as 4.474113 and 0.9995581 2v v   respectively. Therefore  -

wave is faster than e-wave. We analyze the behavior of displacement, temperature and stress at dimensionless 

time t= 0.25. At this instant of time, the faster wave front ( - wave front) is positioned at 

1.11851 1x x t v   and the slower wave front (e – wave front) at  0.24992 2x x tv   . 

We have computed the values of   u   at time t= 0.25 for 0x   by using equations (23). These are 

dipicted in Figure shows that the displacement is continuous at all positions including the locations of the wave 

fronts. We also find that the displacement increases steadily between the boundary and the position just beyond 

the slower wave front, decreases thereafter up to the location of the faster wave front and becomes identically 

zero beyond this location. 
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