Analysis of diffusion and extraction in hollow cylinders for some boundary conditions

Ching Chiang Hwang¹, Ing-Bang Huang^{2*}

¹Department of Biotechnology, Mingdao University, Taiwan ^{2*} Department of Materials Science and Engineering, National Formosa University, Huwei, Yulin, 63201, Taiwan (corresponding author)

Abstract: Analysis of diffusion and extraction in hollow cylinders with different outer / inner radius ratio has been investigated. The first five roots, α_n of the two valuable equations, $J_1(a\alpha)Y_0(b\alpha)-J_0(b\alpha)Y_1(a\alpha)=0$ and $J_0(a\alpha)Y_1(b\alpha)-J_1(b\alpha)Y_0(a\alpha)=0$, were derived and tabulated. Under the condition where diffusion coefficient is constant, the concentration profiles curves of diffusion and extraction for some cases have been demonstrated and discussed.

Keywords: - Diffusion; Transport properties; Mechanical properties

I. INTRODUCTION

Because of a sensitive electrochemical method developed by Devanathan and Stachurski [1] and some mathematical solutions of the pertinent diffusion equation given by McBreen et al. [2], Kiuchi and McLellan [3], and Yen and Shih [4], measurements of the diffusion coefficient and the permeation rate of hydrogen through a metal membrane have been widely investigated. When critical hydrogen concentration induced cracking in a metal pipe (hollow cylinder) has become an important factor [5-6]. Therefore, the need to understand the concentration profile in a hollow cylinder might be urgent. Several decades ago, Ash et al. [7] provided a means of measuring the diffusion coefficient D for a material in the form of a hollow cylinder shell by the time lag method. Carslaw and Jaeger [8-9] also gave some solutions to the problem of heat conduction through a hollow cylinder shells for some cases. However, a more general mathematical solution including steady, set up transient, and decay transient states of the concentration distribution and permeation rate in a hollow cylinder was investigated in our earlier study [11].

The objective of this study was to derive the mathematical solutions of diffusion and extraction in hollow cylinders with different outer / inner radius ratio K. In this paper, the concentration profiles for set up transient and decay transient states were given, respectively.

2.1. Diffusion equation

II. MATHEMATICAL ANALYSIS

Consider a long circular cylinder in which diffusion is everywhere radial. Concentration is then a function of radius r and time t only, and the diffusion equation becomes

$$\frac{\partial C}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left(rD \frac{\partial C}{\partial r} \right)$$

2.2. Set up transient state

Carslaw and Jaeger [8] have given the solution to the problem of diffusion into a hollow cylinder in which the concentration is initially zero and the boundary conditions on the two surfaces are

(2)

(1)

$$k_1 \frac{\partial C}{\partial r} - k_2 C = k_3, r = a$$
$$k_1 \frac{\partial C}{\partial r} + k_2 C = k_3, r = b$$

Carslaw and Jaeger [8] give the solution by the use of Laplace transformation. The final result is

$$C = \frac{-ak_{3}\left[k_{1}^{'}-bk_{2}^{'}\ln\left(\frac{r}{b}\right)\right]+bk_{3}^{'}\left[k_{1}+ak_{2}\ln\left(\frac{r}{a}\right)\right]}{ak_{2}k_{1}^{'}+bk_{1}k_{2}^{'}+abk_{2}k_{2}^{'}\ln\left(\frac{b}{a}\right)} - \pi\sum_{n=1}^{\infty}\frac{e^{-D\alpha_{n}^{2}t}}{F(\alpha_{n})} \times \left\{k_{1}^{'}\alpha_{n}J_{1}(b\alpha_{n})-k_{2}^{'}J_{0}(b\alpha_{n})\right\} \times U_{0}(r\alpha_{n}) \times \left[k_{3}^{'}\left\{k_{1}\alpha_{n}J_{1}(b\alpha_{n})-k_{2}^{'}J_{0}(b\alpha_{n})\right\} - k_{3}^{'}\left\{k_{1}\alpha_{n}J_{1}(a\alpha_{n})+k_{2}J_{0}(a\alpha_{n})\right\}\right]$$
(3)

where

$$F(\alpha_n) = \left(k_1^{\prime 2} \alpha_n^{2} + k_2^{\prime 2}\right) [k_1 \alpha_n J_1(a\alpha_n) + k_2 J_0(a\alpha_n)]^2 -$$

$$\left(k_{1}^{2}\alpha_{n}^{2}+k_{2}^{2}\right)\left[k_{1}\alpha_{n}J_{1}(b\alpha_{n})-k_{2}J_{0}(b\alpha_{n})\right]^{2}$$
(4)

$$U_0(r\alpha_n) = J_0(r\alpha_n)[k_1\alpha_nY_1(a\alpha_n) + k_2Y_0(a\alpha_n)] -$$

$$Y_0(r\alpha_n)[k_1\alpha_nJ_1(a\alpha_n) + k_2J_0(a\alpha_n)]$$
(5)

Here α_n are the roots of the following equation:

$$\begin{bmatrix} k_1 \alpha J_1(a\alpha) + k_2 J_0(a\alpha) \end{bmatrix} \begin{bmatrix} k_1 \alpha Y_1(b\alpha) - k_2 Y_0(b\alpha) \end{bmatrix} - \begin{bmatrix} k_1 \alpha Y_1(a\alpha) + k_2 Y_0(a\alpha) \end{bmatrix} \begin{bmatrix} k_1 \alpha J_1(b\alpha) - k_2 J_0(b\alpha) \end{bmatrix} = 0$$
⁽⁶⁾

Consider the hollow cylinder with zero concentration initially and the boundary conditions on the two surfaces are

$$t \le 0, a < r < b, C = 0$$

 $t > 0, \quad r = a, C = C_0$
 $t > 0, \quad r = b, C = C_0$

In order to satisfy the Eq. (7), the constant of the Eq. (2) can be derived as

(7)

$$k_1 = 0$$
, $k_2 = 1$, $k_3 = -C_0$, $k'_1 = 0$, $k'_2 = 1$, $k'_3 = C_0$
Substituting these constants into Eqs. (4)-(6), one obtains

$$F(\alpha_n) = J_0^2(a\alpha_n) - J_0^2(b\alpha_n)$$
⁽⁸⁾

$$U_0(r\alpha_n) = J_0(r\alpha_n)Y_0(a\alpha_n) - Y_0(r\alpha_n)J_0(a\alpha_n)$$

$$J_0(a\alpha)Y_0(b\alpha) - Y_0(a\alpha)J_0(b\alpha) = 0$$
(10)

where α_n are the positive roots of Eq. (10), as given in Table 1[8, 10]. Substituting $k_1 = 0, k_2 = 1, k_3 = -C_0, k_1 = 0, k_2 = 1, k_3 = C_0$

Eqs. (8)- (10) into Eq. (3), one obtains

$$C = C_0 - \pi C_0 \sum_{n=1}^{\infty} \frac{J_0(b\alpha_n)U_0(r\alpha_n)}{J_0(a\alpha_n) + J_0(b\alpha_n)} \exp\left(-D\alpha_n^2 t\right)$$
(11)

The normalized concentration of this case can be expressed as $\begin{pmatrix} & & \\ & & \\ & & \\ & & \end{pmatrix}$

$$\frac{C}{C_0} = 1 - \pi \sum_{n=1}^{\infty} \frac{J_0(ka\alpha_n)U_0(a\alpha_n r^*)}{J_0(a\alpha_n) + J_0(ka\alpha_n)} \exp[-(a\alpha_n)^2 \tau]$$
(12)

where

$$U_0(a\alpha_n r^*) = J_0(a\alpha_n r^*)Y_0(a\alpha_n) - J_0(a\alpha_n)Y_0(a\alpha_n r^*)$$
$$r^* = \frac{r}{a} , \quad K = \frac{b}{a}, \quad \tau = \frac{Dt}{a^2}$$

2.3. Decay transient stat

2.3.1. Fast decay : Case A

Carslaw and Jaeger [9] had given the solution to the problem of diffusion into a hollow cylinder with initial concentration and the two surfaces and kept at zero concentration. The general solution is

$$C = \frac{\pi^2}{2} \sum_{n=1}^{\infty} \frac{\alpha_n^2 J_0^2(a\alpha_n)}{J_0^2(a\alpha_n) - J_0^2(b\alpha_n)} \times \exp\left(-D\alpha_n^2 t\right) U_0(r\alpha_n) J_a^b rf(r) U_0(r\alpha_n) dr$$
(13)

where

$$U_0(r\alpha_n) = J_0(r\alpha_n)Y_0(b\alpha_n) - Y_0(r\alpha_n)J_0(b\alpha_n)$$
⁽¹⁴⁾

Here α_n are the positive roots of Eq. (10), as given in Table 1[8, 10]. Consider, Eq. (12), the concentration of the steady state, as the initial condition i.e. $C=C_0$. The boundary conditions are

 $t \le 0, a < r < b, C = C_0$

$$t>0, \qquad r=a,C=0$$

$$t > 0, \quad r = b, C = 0$$

Substituting Eqs.(14) and (15) into the integral

$$\int_{a}^{b} rf(r)U_{0}(r\alpha_{n})dr$$

in Eq. (13), one obtains

$$\int_{a}^{b} r f(r) U_{0}(r \alpha_{n}) dr = \int_{a}^{b} r C_{0} U_{0}(r \alpha_{n}) dr = C_{0} \int_{a}^{b} r U_{0}(r \alpha_{n}) dr$$
(16)

www.iosrjen.org

(15)

Since

$$\int_{a}^{b} r U_{0}(r\alpha_{n}) dr = -\frac{1}{\alpha_{n}^{2}} \left[r \frac{dU_{0}(r\alpha_{n})}{dr} \right]_{a}^{b} = \frac{2\{J_{0}(a\alpha_{n}) - J_{0}(b\alpha_{n})\}}{\pi \alpha_{n}^{2} J_{0}(a\alpha_{n})}$$
(17)

Eq. (16) becomes

$$\int_{a}^{b} rf(r) U_{0}(r\alpha_{n}) dr = \frac{2C_{0} [J_{0}(a\alpha_{n}) - J_{0}(b\alpha_{n})]}{\pi \alpha_{n}^{2} J_{0}(a\alpha_{n})}$$
(18)

Substituting Eq. (18) into Eq. (13), one obtains

$$\infty I_{2}(qq) V_{2}(rq) = (qq)$$

$$C = \pi C_0 \sum_{n=1}^{\infty} \frac{J_0(a\alpha_n)U_0(r\alpha_n)}{J_0(a\alpha_n) + J_0(b\alpha_n)} \exp\left(-D\alpha_n^2 t\right)$$
(19)

Or the normalized concentration of this case is

$$\frac{C}{C_0} = \pi \sum_{n=1}^{\infty} \frac{J_0(a\alpha_n)U_0(a\alpha_n r_A^*)}{J_0(a\alpha_n) + J_0(ka\alpha_n)} \exp\left[-(a\alpha_n)^2 \tau\right]$$
(20)

where

$$U_0(a\alpha_n r_A^*) = J_0(a\alpha_n r_A^*) Y_0(ka\alpha_n) - Y_0(a\alpha_n r_A^*) J_0(ka\alpha_n)$$
(21)

 $r_A^* = \frac{r}{a}$ $K = \frac{b}{a}$ $\tau = \frac{Dt}{a^2}$

Table 1

Roots of $J_0(a\alpha_n)Y_0(b\alpha_n) - J_0(b\alpha_n)Y_0(a\alpha_n)$.

$\frac{b}{a}$	$a\alpha_1$	$a\alpha_2$	aα₃	$a\alpha_4$	aa5	
1.2	15.7014	31.4126	47.1217	62.8302	78.5385	
1.5	6.2702	12.5598	18.8451	25.1294	31.4133	
2.0	3.1230	6.2734	9.4182	12.5614	15.7040	
2.5	2.0732	4.1773	6.2754	8.3717	10.4672	
3.0	1.5485	3.1291	4.7038	6.2767	7.8487	
3.5	1.2339	2.5002	3.7608	5.0196	6.2776	
4.0	1.0244	2.0809	3.1322	4.1816	5.2301	

2.3.2. Slow decay: Case B

Özişik [12] had given the solution to the problem of diffusion into a hollow cylinder by the method of separation of variables with initial concentration F(r), the two surfaces r = a with zero flux and kept at zero concentration. The general solution is

$$C = \sum_{n=1}^{\infty} \frac{1}{N(\alpha_n)} e^{-D\alpha_n^2 t} R_0(\alpha_n r) \int_a^b r R_0(\alpha_n r) F(r) dr$$
(22)

Where

$$R_0(\alpha_n r) = J_0(\alpha_n r) Y_0(\alpha_n b) - J_0(\alpha_n b) Y_0(\alpha_n r)$$
 (23)
 $\frac{1}{N(\alpha_n)} = \frac{\pi^2}{2} \times \frac{\alpha_n^2 J_1^2(\alpha_n a)}{J_1^2(\alpha_n a) - J_0^2(\alpha_n b)}$ (24)
And
 $J_1(a\alpha) Y_0(b\alpha) - J_0(b\alpha) Y_1(a\alpha) = 0$ (25)

Here α_n are the positive roots of Eq. (25) which were determined as given in Table 2.

Table 2

$\frac{b}{a}$	$a\alpha_1$	aα ₂	aα₃	aa4	aα₅
1.2	8.14628	23.661	39.3308	55.0214	70.7197
1.5	3.4029	9.52064	15.766	22.0327	28.3067
2.0	1.79401	4.80206	7.90896	11.0351	14.168
2.5	1.24267	3.22655	5.28885	7.36856	9.45462
3.0	0.959569	2.43717	3.97818	5.53497	7.09771
3.5	0.78554	1.96238	3.19134	4.43458	5.68343
4.0	0.666971	1.645	2.66644	3.70083	4.74048

Roots of $J_1(a\alpha_n)Y_0(b\alpha_n) - J_0(b\alpha_n)Y_1(a\alpha_n)$.

In this case, consider, Eq.(12), the concentration of the steady state, as the initial condition i.e. $C=C_0$. The boundary conditions are $t \le 0, a < r < b, C = C_0$

$$t > 0, \qquad r = a, \frac{\partial C}{\partial r} = 0$$

 $t>0, \qquad r=b, C=0$

,

(26)

Substituting Eq. (23) and (26) into the integral

$$\int_{a}^{b} rR_{0}(r\alpha_{n})F(r)dr$$

in Eq. (22), one obtains

$$\int_{a}^{b} rR_{0}(r\alpha_{n})F(r)dr = C_{0}\int_{a}^{b} r\{J_{0}(\alpha_{n}r)Y_{0}(\alpha_{n}b) - J_{0}(\alpha_{n}b)Y_{0}(\alpha_{n}r)\}dr$$

$$= C_{0}\{\frac{2 - a\pi\alpha_{n}[J_{1}(\alpha_{n}a)Y_{0}(\alpha_{n}b) - J_{0}(\alpha_{n}b)Y_{1}(\alpha_{n}a)]}{\pi\alpha_{n}^{2}}\}$$
Substituting Eq. (27) into Eq. (22), one obtains
$$C = \sum_{n=1}^{\infty} \frac{\pi C_{0}}{2} \times \frac{\{2 - a\pi\alpha_{n}[J_{1}(\alpha_{n}a)Y_{0}(\alpha_{n}b) - J_{0}(\alpha_{n}b)Y_{1}(\alpha_{n}a)]\}J_{1}^{2}(\alpha_{n}a)R_{0}(\alpha_{n}r)}{J_{1}^{2}(\alpha_{n}a) - J_{0}^{2}(\alpha_{n}b)}$$
(27)

$$C = \sum_{n=1}^{\infty} \frac{1}{2} \times \frac{1}{J_1^2(\alpha_n a) - J_0^2(\alpha_n b)}$$
$$\times \exp(-D\alpha_n^2 t)$$

www.iosrjen.org

(28)

The normalized concentration of this case is

$$\frac{C}{C_0} = \sum_{n=1}^{\infty} \frac{\pi}{2} \times \frac{\{2 - \pi \alpha_n a [J_1(\alpha_n a) Y_0(k\alpha_n a) - J_0(k\alpha_n a) Y_1(\alpha_n a)]\} J_1^2(\alpha_n a) R_0(\alpha_n a r_B^*)}{J_1^2(\alpha_n a) - J_0^2(k\alpha_n a)} \times \exp(-\alpha_n^2 a^2 \tau)$$
(29)

where

where

$$R_0\left(a\alpha_n r_B^*\right) = J_0\left(a\alpha_n r_B^*\right) Y_0(ka\alpha_n) - J_0(ka\alpha_n) Y_0\left(a\alpha_n r_B^*\right)$$

$$r_B^* = \frac{r}{a} \quad K = \frac{b}{a} \quad \tau = \frac{Dt}{a^2}$$
(30)

2.3.3. Slow decay: Case C

Özişik [12] had given the solution to the problem of diffusion into a hollow cylinder by the method of separation of variables with initial concentration F(r), the two surfaces kept at zero concentration and r=a with zero flux. The general solution is

$$C = \sum_{n=1}^{\infty} \frac{1}{N(\alpha_n)} e^{-D\alpha_n^2 t} R_0(\alpha_n r) \int_a^b r R_0(\alpha_n r) F(r) dr$$
(31)

where

$$R_0(\alpha_n r) = J_1(\alpha_n b) Y_0(\alpha_n r) - J_0(\alpha_n r) Y_1(\alpha_n b)$$
(32)

$$\frac{1}{N(\alpha_n)} = \frac{\pi^2}{2} \times \frac{\alpha_n^2 J_0^2(\alpha_n a)}{J_0^2(\alpha_n a) - J_1^2(\alpha_n b)}$$
(33)

$$J_0(a\alpha)Y_1(b\alpha) - J_1(b\alpha)Y_0(a\alpha) = 0$$
(34)

Here α_n are the positive roots of Eq. (34) which were determined as given in Table 3. Table 3

$\frac{b}{a}$	$a\alpha_1$	$a\alpha_2$	aα ₃	$a\alpha_4$	aα ₅
1.2	7.56667	23.4688	39.2141	54.9381	70.6549
1.5	2.88989	9.34479	15.6601	21.957	28.2478
2.0	1.36078	4.6459	7.81416	10.9671	14.1151
2.5	0.866058	3.08354	5.20107	7.30541	9.40534
3.0	0.625598	2.30404	3.89542	5.47516	7.05095
3.5	0.485007	1.83725	3.11249	4.37731	5.63854
4.0	0.393456	1.52661	2.59082	3.64558	4.69706

Roots of	$J_0($	$a\alpha_n$	$Y_1($	$b\alpha_n$	$) - J_1($	$b\alpha_n$	Y_0	$[a\alpha_n]$).
----------	--------	-------------	--------	-------------	------------	-------------	-------	---------------	----

In this case, consider the concentration of the steady state (C=Co), as the initial condition. The boundary conditions are

 $t \le 0, a < r < b, C = C_0$

$$t > 0$$
, $r = a, C = 0$

$$t > 0, \quad r = b, \frac{\partial C}{\partial r} = 0$$

(35)

Substituting Eqs. (32) and (35) into the integral

$$\int_{a}^{b} rR_{0}(r\alpha_{n})F(r)dr$$

$$a$$
in Eq. (31), one obtains
$$\int_{a}^{b} rR_{0}(r\alpha_{n})F(r)dr = C_{0}\int_{a}^{b} r\{J_{1}(\alpha_{n}b)Y_{0}(\alpha_{n}r) - J_{0}(\alpha_{n}r)Y_{1}(\alpha_{n}b)\}dr$$

$$a$$

$$C_{0}\{\frac{a[J_{1}(\alpha_{n}a)Y_{1}(\alpha_{n}b) - J_{1}(\alpha_{n}b)Y_{1}(\alpha_{n}a)]}{\alpha_{n}}\}$$
(36)

Substituting Eq. (36) into Eq. (31), one obtains

$$C = \sum_{n=1}^{\infty} \frac{\pi^2 C_0}{2} \times \frac{\alpha_n a J_0^2(\alpha_n a) [J_1(\alpha_n a) Y_1(\alpha_n b) - J_1(\alpha_n b) Y_1(\alpha_n a)] R_0(\alpha_n r)}{J_0^2(\alpha_n a) - J_1^2(\alpha_n b)} \times \exp(-D\alpha_n^2 t)$$
(37)

The normalized concentration of this case is

$$\frac{C}{C_0} = \sum_{n=1}^{\infty} \frac{\pi^2}{2} \times \frac{\alpha_n a J_0^2(\alpha_n a) [J_1(\alpha_n a) Y_1(k\alpha_n a) - J_1(k\alpha_n a) Y_1(\alpha_n a)] R_0(\alpha_n a r_C^*)}{J_0^2(\alpha_n a) - J_1^2(k\alpha_n a)} \times \exp(-\alpha_n^2 a^2 \tau)$$
(38)

$$R_0(a\alpha_n r_C^*) = J_1(ka\alpha_n)Y_0(a\alpha_n r_C^*) - J_0(a\alpha_n r_C^*)Y_1(ka\alpha_n)$$

$$r_C^* = \frac{r}{a} \quad K = \frac{b}{a} \quad \tau = \frac{Dt}{a^2}$$
(39)

III. RESULTS AND DISCUSSION

3.1. Set up transient state

The concentration distribution of C/C₀ predicted by Eq. (12) are plotted against r^* for K = 1.2, 1.5, 2, 2.5, 3, 3.5 and 4, at , 0.4 and 1 as shown in Figs. 1(a)-(c), respectively. These curves are obtained by using the first five roots, α_n 's, of the Eq. (10) which are listed in Table 1.The concentration profile increases with increasing τ and decreasing K. Generally, the concentration profiles of this case are symmetrical. All curves reveal similar concave shapes. For K = 1.2 and 1.5, there is no difference between Figs. 1(a) and (b) since steady state has already been reached at $\tau \geq 0.2$. Also, these curves indicate that the greater the value of K, the more τ is needed to reach a steady state.

Fig.1(a)

Fig.1(c)

Fig. 1. Set up transient state concentration distribution through cylinder wall at (a) $\zeta = 0.2$ (b) $\zeta = 0.4$ (c) $\zeta = 1$. Numbers on curves are values of K.

3.2. Decay transient state

3.2.1. Fast decay: Case A

The concentration distribution of C/C_0 calculated by Eq. (20) are plotted against r_A^* at various ζ and K, as shown in Figs. 2(a)-(c), respectively. These curves are also plotted by using the first five roots, α_n 's, of the Eq. (10) which are listed in Table 1. The concentration profile decreases with increasing ζ and decreasing K. The concentration profiles are symmetrical. Especially for K \leq 1.2, it is almost as symmetrical as the sheet case [13], as shown in Fig. 2(a). All curves reveal similar convex shapes.

Fig.2(a)

Fig. 2. Decay transient state concentration distribution through cylinder wall for (a) K = 1.2(b) K = 2 (c) K = 4. Numbers on curves are values of for case A.

3.2.2. Slow decay: Case B

The concentration distribution of C/C₀ calculated by Eq. (29) are plotted against r_B^* at various \mathcal{T} and K, as shown in Figs. 3(a)-(c), respectively. These curves are also plotted by using the first five roots, α_n 's, of the Eq. (25) which are listed in Table 2. The concentration profile decreases with increasing \mathcal{T} and decreasing K. All curves reveal similar convex shapes.

Fig.3(a)

Fig. 3. Decay transient state concentration distribution through cylinder wall for (a) K = 1.2(b) K = 2(c) K = 4. Numbers on curves are values of for case B.

3.2.3. Slow decay: Case C

The concentration distribution of C/C₀ calculated by Eq. (38) are plotted against r_c^* at various ζ and K, as shown in Figs. 4(a)-(c), respectively. These curves are also plotted by using the first five roots, α_n 's, of the Eq. (34) which are listed in Table 3. The concentration profile decreases with increasing ζ and decreasing K. All curves reveal similar convex shapes. Comparing the decreasing rate of concentration profile for cases A, B and C, case A is the fastest, case C is the slowest for K \geq 2. However, for K \leq 1.2, the decreasing rate of concentration profile for cases B and C is the same.

www.iosrjen.org

Fig. 4. Decay transient state concentration distribution through cylinder wall for (a) K = 1.2(b) K = 2 (c) K = 4. Numbers on curves are values of for case C.

IV. CONCLUSION

The mathematical solutions of diffusion in hollow cylinder with different K for the set up transient and decay transient states are given in Eqs. (12), (20), (29), and (38), respectively. Through the mathematical analysis and figure plotting, a few conclusions are drawn:

1. In the set up transient state and decay transient state for case A, the concentration profiles are reverse and symmetrical.

2. In the decay transient state for cases B and C, the normalized concentration profiles are reverse and reveal the similar convex shapes.

3. In decay transient states for cases A, B and C, comparing the decreasing rate of the concentration profile, case A is the fastest, for the same K.

REFERENCES

- M. A. V Devanathan and Z. Stachurski, The adsorption and diffusion of electrolytic hydrogen in palladium, *Proceedings of the Royal Society*, A 270, 1962, 90-102.
- [2] J. McBreen, L. Nanis, and W. Beck, A Method for Determination of the Permeation Rate of Hydrogen Through Metal Membranes, Journal of the Electrochemical Society, 113,1966, 1218-1222.
- [3] K. Kiuchi and R. B. McLellan, The Solubility and Diffusivity of Hydrogen in Well-Annealed and Deformed Iron, *Acta Metallurgica* 31,1983, 961-984.
- [4] S. K. Yen and H. C. Shih, A Mathematical Solution to the Determination of the Permeation Rate of Hydrogen through Metal Membrane, *Journal of the Electrochemical Society*, 135,1988, 1169-1170.
- [5] R. W. Revie, V. S. Sastri, G. R. Hoey, R. R. Ramsingh, D. K. Mak, and M. T. Shehata, Hydrogen-Induced Cracking of Linepipe Steels Part 1-Threshold Hydrogen Concentration and pH, *Corrosion*, 49 1993,17-23.
- [6] R. W. Revie, V. S. Sastri, M. Elboujdaini, R. R. Ramsingh, and Y. Lafreni re, Hydrogen-Induced Cracking of Line Pipe Steels Used in Sour Service, *Corrosion*, 49,1993, 531-535.
- [7] R. Ash, R. M. Barrer, D. G. Palmer, Diffusion in multiple laminates, British Journal of Applied Physics 16, 1965, 873-884.
- [8] H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd Edition, Oxford, 1959, 332-333.
- [9] H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd Edition, Oxford, 1959, 205-207.
- [10] J. Crank, *The Mathematics of Diffusion*, Oxford University Press, Oxford, 1975, chapter 5.
- [11] I. B. Huang and S. K. Yen, Diffusion in hollow cylinders for some boundary conditions I. Mathematical treatment, *Materials Chemistry and Physics* 74, 2002, 289-299.
- [12] M. Necati Özişik, Heat Conduction, 2nd Edition, New York, 1993, 112-113.
- [13] S. K. Yen and Y. C. Tsai, Critical Hydrogen Concentration For The Brittle Fracture of AISI 430 Stainless Steel, Journal of the Electrochemical Society, 143,1996, 2736-2741.