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Abstract: Images get blurred when they are acquired and contaminated by noise while being transmitted,hence it 
is  necessary to restore the image and remove the noise present in the image.The deconvoluion is performed for 

removing blur from the image in many application such as astronomy, remote sensing and medical imaging 

etc.In this paper we have used wavelet transform to deblur the image and Daubechies wavelet is used for this 

purpose.We have compared the performance of wavelet based deconvolution with the Weiner deconvolution 

method. The simulation has been performed by contaminating the image using different types of blur and signal 

to noise ratio in both cases have been calculated .  
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I. INTRODUCTION 
The image deconvolution or deblurring is the task of recovery of the original image from the observed 

corrupted image. The image is generated from physical process, its values are proportional to energy radiated by 

a physical source. The resultant image i(x,y) is non-zero and finite[1]. 

                                                                i(x,y) ϵ  Z                                                                 (1)                                                                                   

            Where Z is finite set of integers and x,y denotes spatial coordinates. The image is interpreted as two 

dimensional light intensity function i(x,y) and the value i ,at any point (x,y) is proportional to the brightness (or 

gray level ) of image at that point[1].A digital image may be considered as matrix whose row and column 
indices represents point in the image and the corresponding matrix element known as picture element, pixels 

values identifies gray level at that point. The image formation depends on the characteristics of the object being 

captured, environmental conditions and the image capturing system. The process of reconstructing the original 

image from the degraded version is known as image restoration. The image degradation model is represented as  

                                                                  

                                                                     
fd h i n                                                                      (2) 

                                                                                     

  Where d is degraded image,hf  is the degradation function known as point spread function(PSF) or blur 
and n is the additive noise. For given d, some knowledge about the degradation function hf and some knowledge 

about n,the objective of the restoration is to obtain an estimate  of  original image. The process includes 

deblurring of images by the limitation of a sensor and its environment, noise filtering and correction of 

geometric distortion or non-linearity due to sensor. The image restoration has many application in astronomical 

imaging, medical imaging, remote sensing and it has found application in x-ray imaging. 

The recovery process can be sub divided into two categories: 

(i)  Classical Restoration  

(ii) Blind image restoration or deconvolution 

 Classical image restoration includes the techniques which utilizes some prior information about the 

PSF during reconstruction.In blind image deconvolution an observed or degraded image d(x,y) is assumed to be 

two dimensional convolution of true image i(x,y) with linear shift invariant blur known as PSF  h(x,y) and 
additive noise is assumed zero[2]. 

                                                                     ( , ) ( , )* ( , )d x y i x y h x y                                              (3) 

 The problem of reconstructing the true image i(x,y) requires the deconvolution of the PSF h(x,y) from 

the degraded image d(x,y).Many research has been done exploring various methods for image deconvolution,but 

it is  one of the challenging problem for the researcher. Authors of [3] have demonstrated a novel way of 

wavelet decomposition to sub sample and image to abstract information for automatic decision making. Authors 
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of [4] has proposed an efficient, hybrid Fourier-wavelet regularized deconvolution (ForWaRD) algorithm that 

performs noise regularization via scalar shrinkage in both the Fourier and wavelet domains. 

In this paper we have shown the performance of daubechies wavelet based deconvolution for removing the blur 

from the degraded image. 

 

II. WAVELET TRANSFORM 
           The wavelet transform decomposes a signal into set of basis function. In the wavelet transform the 

basis function is [5]. 
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 Where „a‟ represents scale variable and the variable „b‟ represents time shift or translation. Since the 

wavelet transform is generated using dilates and translates of the single function ψ(t), the wavelet for the 

transform is referred to as mother wavelet. 

 The discrete wavelet transform represents a 1-d signal x in terms of shifted versions of a low–pass 

scaling function ϕ  and shifted and dilated versions of a prototype bandpass wavelet function ψ.For special 

choices of ϕ  and ψ, the functions [6] 
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Form an orthonormal basis, and we have the representation [6]  
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 The parameter J controls the resolution of wavelet representation. For a discrete-time signal, the n 

wavelet coefficients {uj0,wj,k} of x(tn) can be easily computed using a filter bank consisting of low pass filters, 

high pass filters, and decimators[6]. Due to the special filter band structure the forward and inverse wavelet 

transform can be computed in O(N) operations ,where N is the length of the signal.  

2.1 Multiresolution Analysis 

       In discrete data domain, the resolution of the data is the level of detail. Since the wavelet transform can 

be analyzed at different side, the different resolution of wavelet domain can be obtained and a shift invariant 

interpretation can be performed. In brief, forward wavelet transform (FWT) for input signal x in jth
  level by 

multiresolution analysis(MRA) and its inverse wavelet transform (IWT) can simply expressed using convolution 

as follows; 

                                                                     
1 *j jw l v 

                                                                 (8) 

                                                                      
1 *j jv k v                                                                (9) 

                                                                                                     
1 1* *j j jv k v l w  

                                                     (10) 

 where wj and vj are vector for wavelet and scaling coefficients in jth level ,k and l are scaling and 

wavelet filters.wj and vj can be down-sampled for FWT and up-sampled for IWT. As proven by Daubechies 
[7],the input data decomposed by down-sampling can be reconstructed without any loss. 

                           
Fig.2 Two different 2D separable wavelet transform approaches (upper: square-shaped approach, lower:                             

rectangular approach) 
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2.2 Two dimensional Wavelet Transform 

               There are several ways to perform two-dimensional (2D) wavelet transform such as non-separable 

transform[8] rectangular separable transform[9] and squared–shaped separable approach. Most popular is square 

separable approach by applying two 1D operations for all rows and then all columns for each decomposition 

levels.2D FWT for the  jth level can be obtained in similar way to 1 D FWT .In 2d wavelet domain shown in 

fig.3., each square shaped set of wavelet coefficients are called a sub band. In 2D image, each decomposition 

level can have four filtered sub bands, LL, LH, HL and HH.The sub band labeled LH1,HL1,and HH1 are sets of 
wavelet coefficients in finest level. The following coarser level of sub bands,LH2,HL2 and HH2 are obtained 

from the scaling coefficients in the finer level LL1.The sub band and its adjacent coarser level of sub bands 

generated by the same filter have the parent-child relationship. 

 
Fig.3  2D separable wavelet transform 

 

III. WEINER DECONVOLUTION 
              The optimal weights that can be used to shrink each Fourier components during regularized inversion is 

a function of the SNR at each frequency. For wide-sense stationary signals, the optimal weights are given by 

[10],  
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 Where ( )x nP f  is the power spectral density of the stochastic signal x and σ2
 is the variance of the 

additive noise. The resulting LTI quasi-inverse operator is called the LTI Weiner deconvolution filter. 

Inversion- The noisy and blurred observation d is treated with H-1 to obtain noisy, unbiased estimate i of the 

input signal .This step necessarily amplifies the noise components at frequencies where H(fn) 
 is small. Further 

processing is required to estimate the signal from the amplified noise. 

Fourier domain signal estimation - Each frequency component of the noisy signal obtained  after pure 

inversion is shrunk using weights R(fn).),it is clear that less shrinkage is employed at components where the 

SNR is high . The LTI Weiner deconvolution estimates the input signal is  
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                            (12)  

 For Gaussian WSS signals, the LTI Weiner deconvolution provides globally MSE-optimal estimate of 

the input since the Fourier domain ideally represents both, the noise after inversion, and the signal of interest. 

The Fourier coefficients of the signal and the noise by H-1 are independent making individual, scalar estimation 

in the Fourier domain optimal. However, when the input signal or noise is not Gaussian, Weiner filtering no 

longer remains optimal. 

 

IV. DEBLURRING ALGORITHM 
The deblurring algorithms[4] using db wavelet is: 

  (i)  The input image (256x256) is selected from the file and then it is blurred with PSF of different size. 

 (ii)  The two wavelet filters of different length were simulated to perform the estimation. 
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(iii)  The thresholding factor was set, and decomposition level is selected. 

(iv)  Then Wiener estimation is performed. 

(v)   Regularized inverse filtering is done on the degraded image, Fourier processing is performed. 

(vi)  Wavelet domain estimation of true image is performed. 

   

V. SIMULATION RESULTS 
The daubechies scaling function for filter of length 8 and 20 with minimum phase simulated is shown below:  

       Fig.4 db scaling for filter of length 8               Fig.5 db scaling  function for filter of length 20 

 

              The wavelet based deconvolution algorithm was implemented using MATLAB 7.10.Daubechies 

wavelet has been used in the algorithm for the deblurring the images. We have taken two images for 

consideration,the first image is 256 x 256 boat image and second image is 256 x 256 text image(a synthetically 

generated binary text image of the word “ DAUBECHIES WAVELET ”.We have set the noise variance such 

that the BSNR is 40 dB and regularization parameter is set equal to 1.Firstly the boat image is blurred by 2-D 

9x9 blur, then the same image is blurred with 2-D 9x9 blur)and this image is also blurred by circular blur .Next 

the NIST image is blurred by 2-D 9x9 blur then the same image is blurred with 2-D 9x9 blur and this image is 

also blurred by circular blur of radius 7.The summary of the simulation results is given below table: 

 

                                                                     Table.1: Simulation results 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

Image 

Blur 

BSNR=40dB 

Weiner Estimate Wavelet Estimate 

ISNR(dB) SNR(dB) ISNR(dB) SNR(dB) 

 

BOAT 

 

9x9  6.26 23.29 9.05 26.09 

21x21 7.78 21.44 8.69 22.34 

circular 9.19 23.4 13.38 27.59 

 

TEXT 

IMAGE 

9x9  7.71 12.12 12.3 16.7 

21x21 6.86 8.67 8.74 10.56 

circular 8.46 13.4 17.63 22.57 
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    (a) Original image                 (b) Blurred image             (c) Weiner estimate            (d) Wavelet estimate 

         Fig.6 Results for the Boat image degraded by the 21x21 boxcar blur for a BSNR of 40 dB. 

 

       
              (a) Original image                 (b) Blurred image                (c) Weiner estimate              (d) Wavelet estimate 

Fig.7 Results for the text image degraded by the 21x21 blur for a BSNR of 40 dB. 

 

VI. CONCLUSION 
 From the simulation results,we conclude that the performance of the image debluring by using wavelet 

technique is better as compared to the Weiner deconvolution method as the signal to noise ratio and the 

improved signal to noise ratio obtained in wavelet case is  higher than that in the Wiener case .The proper 

selection of the regularization parameter in the algorithm is necessary for obtaining better results. 
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