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Abstract: - The speech enhancement is one of the important techniques used to improve the quality of a speech 

signal i.e. degraded by noise. Speech Enhancement using Kalman Filter require calculating the parameters of 

AR (auto-regressive) model, and performing a lot of matrix operations, which is non-adaptive. Speech 

Enhancement using Weiner filter very hard to find out the inverse matrix operations in the time domain but 

desired output is required. Adaptive Kalman Filter is constantly update the estimation of background noise, 

which is adaptive. AKF used to eliminate the matrix operations, reduces the calculating time and reduces the 

complexity. Perceptual Weighting filter is used to improve the performance of speech enhancement system. 

However the perceptual characteristics of the speech signal depends upon the perceptual characteristics of 

human ear. Compare the simulation results and different parameters(SNR, MSE, MMSE & CPU time), and also 

observe  which one the better technique for speech enhancement. 
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I. INTRODUCTION 
                The background noise is a dominant source of errors in speech recognition systems. Noise reduction 

for speech signals has therefore application in entry procedures of those systems. The Kalman filter is known in 

signal processing for its efficient structure. There are many studies of using of Kalman filtering for noise 

reduction in speech signals. Speech signals are modeled as stationary AR process. Modeling and filtering noisy 

speech signals in the sub band domain. Since the power spectral densities (PSD’s) of sub band speech signals 

are flatter than their full band signals, low-order AR models are satisfactory and only lower-order Kalman filters 

will be required. In the next focus on first-order modeling.Wiener filter is used to produce estimated pure signal 

from a given noise speech signal. Wiener filter is formulated to map an input signal to an output that is as close 

to a desired signal as possible. In the perceptual Weighting filter to improve quality of the speech signal based 

on the human auditory characteristics. 

 

II. WEINER FILTER 
 Wiener filter is used to produce estimated pure signal from a given noise speech signal [3].  Wiener 

filter is formulated to map an input signal to an output that is as close to a desired signal as possible. It is a class 

of optimum linear filter, involves linear estimation of desired signal by adjusting the weights mean square error 

reduced between the desired signal X(f) and the filter output �̂�(f). We consider some applications of the Wiener 

filter in reducing broadband additive noise, in time-alignment of signals in multichannel or multisensory 

systems, and in channel equalization. In the frequency domain, the Wiener filter output Y(f) is the product of  

input  signal X(f) and the filter frequency response W(f) . 

 

X(f)=Y(f).W(f)         (2.1) 

The estimation error signal E(f) is defined as the difference between the desired signal X(f) and the filter output 

�̂�(f) 

  

E(f)=  𝑋(f)-�̂�(f)(2.2)      

The mean square error at a frequency f is given by 

 

                 [|E(f)|2]=E[|𝑋(f)-�̂�(f)(2.3) 
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Fig. 2.1.1: Illustration of Wiener   structure 

 

 
Fig. 2.1.2: The least square error projection of a desired signal vector x onto a plane containing the input 

signal vectors y1 andy2 

 

 Clean speech signal is estimated through the Wiener filter. There are so many algorithms in the 

literature; it is extremely difficult if not impossible to find a universal analytical tool that can be applied to any 

speech enhancement algorithm. We choose Wiener filter as the basis since it is the most fundamental approach, 

and many algorithms are closely connected with this technique. Moreover, Wiener filter introduces less musical 

noise than spectral subtraction methods. Let the noisy signal can be expressed as:  

 )()()( ndnsny   (2.4) 

Where )(nx  is the original clean speech signal and )(nd is the additive random noise signal, uncorrelated with 

the original signal. Taking DFT to the observed signal gives 

    ),(),(),( kmDkmSkmY                  (2.5) 

Where Mm ,...,2,1  is the frame index,  Kk ,....,2,1  is the frequency bin index, M is the total number 

of frames and K  is the frame length, ),(),(),,( kmandDkmSkmY represent the short time spectral 

components of the )()(),( nandnSny , respectively. Basis speech enhancement methods involve estimating 

every frequency component of the clean speech ),(ˆ kmS  
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 ),(),(),(ˆ kmYkmHkmS        (2.6)                         

Where ),( kmH  is the noise suppression filter (denoising filter) chosen according to the a MMSE criterion 

.The error signal generated by this filter is  

),(),(ˆ),( kmSkmSkme  ),(),(),()1),(( kmDkmHkmSkmH  (2.7) 

 The first term in the equation (2.4) describes the speech distortion caused by the spectral weighting 

which can be minimized using 1),( kmH . The second term in the above equation is the residual noise 

distortion which can be minimized if the spectral weighting 0),( kmH .Musical noise results from the pure 

tones present in the residual noise. In general noise suppression filter can be expressed as a function of the a 

posteriori SNR and a priori SNR given by  

),(

),(
),(

2

km

kmY
km

d


                      (2.8)

 

),(

),(
),(

km

km
km

d

s






 (2.9)

    

Where  2
),(),( kmDEkmd  , by definition , is the noise power spectrum , an estimate of the which can 

be made easily during speech pauses and   2
),(),( kmSEkms  . An estimate of ),(ˆ km of ),( km is 

given by the well-known decision directed approach and is expressed as  
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Where ,1),(),(  kmkmV    xxP    if 0x  and   0xP  otherwise. 

The noise suppression gain function is given as 
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III. LIMITATIONS OF WIENER FILTER 
 Apart from the performance being limited by the accuracy of noise estimation, which additionally is 

limited by the performance of speech/pause detectors, the main problem with Wiener filtering is the processing 

distortions caused by random variations of the noise spectrum. The three sources have been attributed to the 

distortion of the instantaneous estimate of the magnitude: 

a) the finite variance of the instantaneous noise power spectrum. 

b) the cross-product terms from above equation, and 

 Irrespective of the methods used for estimating the noise statistics, the true short spectrum of the noise 

for specific segment being processed, will always have a finite variance and thus the noise estimate will always 

be over or under the estimate of the true noise level. Therefore, wherever the noisy signal level is near the level 

of the estimated noise spectrum, spectral subtraction results in some randomly located negative values for the 

estimated clean speech magnitude. The non-linear mapping of the negative, or small valued spectral estimates, 

results in the estimated magnitude spectrum to consist of a succession of randomly spaced spectral peaks. This 

leads to an annoying residual noise, also called musical noisedue to their narrow band spectrum and presence of 

tone-like characteristics. This noise although very different from the original noise, can sometimes be very 

disturbing. 

 A poorly designed Wiener filter, can sometime results in a signal that is of a lower perceived quality 

and lower information content, than the original noisy signal. Most of the research in past decade    been focused 

in ways to combat the problem of musical noise. It is literally impossible to minimize musical noise without 

affecting the speech, and hence as mentioned earlier, there is a tradeoff between the amount of noise reduction 

and speech distortion. It is due to this fact that several perceptual based approaches, wherein instead of 

completely eliminating the musical noise (and introducing distortion), the noise is masked taking advantage of 

the masking properties of the auditory system.  

 Another artifact is phase distortion, caused by the assumption that the ear is insensitive to the phase. As 

mentioned earlier, the phase is taken from the noisy signal. Experiments with “ideal” spectral subtraction (where 

the magnitude of each frame is taken from the clean signal and the phase from the noisy signal) show that this 

becomes significant as the SNR decreases, resulting in a “hoarse” or “rough” sounding voice. However as 
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mentioned earlier, it is very difficult to estimate both magnitude and phase, and using the noisy phase is an 

acceptable trade off in algorithms based on short-term magnitude estimation. 

 

IV. KALMAN FILTER 
 Kalman filter is a mathematical method named after Rudolf E. Kalman 1960, through Peter Swerling 

actually developed a similar algorithm earlier. Kalman(1960) and Kalman and buky (1961). It was developed as 

a recursive solution to the discrete-data linear filtering problem. 

A Kalman filter is simply an optimal recursive data processing algorithm. There are many ways of defining 

optimal, dependent upon the criteria chosen to evaluate performance. 

 The Kalman filter is optimal with respect to virtually any criterion that makes sense. One aspect of this 

optimality is that the Kalman filter incorporates all information that can provided to it. The different methods 

were proposed by [2]-[6]. The many of themethods needs to estimates the parameters of AR model at first, and 

then perform the noise reduction using Kalman filter algorithm. In this process, the calculation of LPC (linear 

prediction coding) coefficient and inverse matrix increase the complexity of the filtering algorithm. [3] and [4] 

have been given a simple Kalman filtering algorithm without calculating LPC coefficient in the AR model, but 

the algorithm still contains a large number of redundant data and matrix inverse operations. This algorithm is 

non-adaptive algorithm. 

 

Kalman Filter Drawbacks: 

   1. Lot of matrix operations are used, which usually non-adaptive. 

   2. Complexity. 

   3. Calculating time is more.  

 

3.1Kalman Filtering Algorithm 

A clean speech signal s(n) can be defined as a p-th (AR) autoregressive process and n- th of the noisy speech 

signal y(n) is expressed as 

𝑠(𝑛) = ∑ 𝑎𝑖
𝑝
𝑖=1 (𝑛)𝑠(𝑛 − 𝑖) + 𝑤(𝑛)(3.1.1)                                                       

In (3.1.1), ai is the i-th AR coefficient, w(n) is the white Gaussian noise which the mean is zero and the variance 

is known. 

y(n)=s(n)+v(n)                                                       (3.1.2) 

In (3.1.2) v(n) is the additive observation noise, its mean is zero and variance is known. 

In this paper, it is assumed that the variance is known, but in practice we need to estimate it by the initial 

segment included in the y(n). 

(3.1.1) and (3.1.2) can be expressed as the state equation and the observation equation which are given by 

State equation is  

x(n)=F(n)x(n-1)+Gw(n) (3.1..3) 

Observation equation is  

y(n)=Hx(n)+v(n)          (3.1.4)                     

F(n) is the p by p transition matrix expressed as  

𝐹(𝑛) =  

[
 
 
 
 
0      1     0… … . .0

0     0     1 ⋯ 0
⋮     ⋮     ⋮ ⋱ ⋮

0     0     0 ⋯ 1]
 
 
 
 

(3.1.5)                                              

Where G is the input vector and H is the observation vector. 

By using the LPC coefficient in the conventional Kalman filter is to estimate the observations of the speech 

signal, this process is easy. This part spends half the time of the total algorithm. 

The transition matrix F and the observation matrix H are modified. They has defined as 

F=H=

[
 
 
 
 
  0      0     0… … .   0

1      0     0 ⋯ 0
⋮     ⋮     ⋮ ⋱ ⋮

 0     0… .  1 ⋯ 0]
 
 
 
 

(3.1.6)                                                                     

It is also defined as the p×1 state vector Z(n)=[ s(n)…..s(n-p+1)  s(n-p+2)], the p×1 input vector Q(n)=[s(n)   0  

….   0], and the 1×p observation vector R(n)=[1, v(n)…..v(n-p+2)]. 

Finally, (3.1.3) and (3.1.4) can be written into the matrix operations by 

State equation is 

X(n)=F×X(n-1)+Q(n)                   (3.1.7) 

Observation equation is  

Y(n)=H×X(n)+R(n)                      (3.1.8) 
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State equation consisted of the speech signal, and an observation equation consisted of the speech signal and 

additive noise [3]. 

The purpose of each iteration of a Kalman filter is to update the estimation of the state vector of a system (and 

the covariance of that vector) based upon the information in a new observation. 

The recursive estimation of Kalman filtering algorithm is shown below 

    𝑋(0|0) = 0, 𝑃(0|0) = 𝐼(3.1.9) 

 

    𝑅𝑉 (𝑛) = 𝛿𝑣
2               (3.1.10)                                

𝑅𝑆(𝑛)[𝑖, 𝑗] = {
𝐸(𝑌(𝑛) ∗ 𝑌(𝑛)) − 𝛿𝑣

2 (I, j = 1)

0                otherwise
(3.1.11)                                             

[iteration] 

P(n|n-1)=F*P(n-1|n-1)*𝐹𝑇+G*𝑅𝑆(𝑛)*𝐺𝑇                               (3.1.12)                                                                                 

 K(n)=P(n|n-1)*𝐺𝑇|𝐺 ∗ 𝑃(𝑛|𝑛 − 1) ∗ 𝐺𝑇 + 𝑅𝑉 (𝑛)                              (3.1.13)                                                                                       

X(n|n-1)=F*X(n-1|n-1)                 (3.1.14)                                                                                X(n|n)=X(n|n-

1)+K*(y(n)-G*X(n|n-1))                                                  (3.1.15)                                                

P(n|n)=(I-K(n)*G)*P(n|n-1) (3.1.16)                                              

S(n)=K(n)*y(n)                     (3.1.17)                                                   

In the above case the noise variance δv
2 is known. This algorithm abrogates the computation of the AR 

coefficient. 

 

V. ADAPTIVE KALMAN FILTERING ALGORITHM 
 Due to the noise changes with the surrounding environment, it is necessary to constantly update the 

estimation of noise. So we can get a more accurate expression of noise. An adaptive Kalman filtering algorithm 

for speech enhancement can adapt to any changes in environmental noise, and also it can constantly update the 

estimation of background noise.   

 Everyone known Kalman filtering algorithm is very well. Adaptive kalman filtering algorithm can 

estimate system process noise and measurement noise on-line according to the measured value and filtered 

value, tracking changes of noise in real time to amend the filter parameters, and improve the filtering effect. 

In this adaptive kalman filter, we can set a reasonable threshold, it is used to determine whether the current 

speech frame is noise or not. It consists of mainly two steps: one is updating the variance of the environmental 

noise Rv(n), and the second one is updating the threshold U. 

1) Updating the variance of the environmental noise by 

Rv(n)=(1-d)×Rv(n)+d×Ru(n)       (4.1)                                                       

In above equation d is the loss factor that can limit the length of the filtering memory, and enhance the role of 

new observations under the current estimates. Making new data play a major role in the estimation, and leaving 

the old data forgotten gradually. According to the [7]……..? its formula is  

d=1-b/1-bt+1(4.2)                                                   

b is the forgetting factor(0<b<1), usually ranged from 0.95 to 0.99. In this paper the value of b is considered 

0.99. 

Before implementation of (18), we will compare between the variance of the current speech frame Ru(n) and 

threshold U which has been updated in the previous iteration. If Ru(n) is less than or equal to U the current 

speech frame can be considered as noise, and then the algorithm will re-estimate the noise variance. 

 In this paper,Ru(n) can’t replace RV(n) directly.  In order to reduce the error, we used. 

2) Updating and threshold by 

 U=(1-d) U+ d  Ru(n)            (4.3)                                  

 In (17) , d is used again to reduce the error. However, there will be a large error when the noise is large, 

because the updating threshold U is not restricted by the limitation Ru(n)<U. It is only affected by Ru(n). So we 

must add another limitation before implementation of (20). In order to rule out of speech frames which their 

SNR (Signal-to-noise rate) is high enough, it is defined that 𝛿𝑟
2 is the variance of pure speech signals, 𝛿𝑥

2 is the 

variance of the input noise speech signals, and 𝛿𝑣
2 is the variance of background noise.we calculate  two SNRs 

and compare between them.According to [6], one for the current speech frame is 

SNR1(n)=10× log10 (
𝛿𝑟

2(𝑛)− 𝛿𝑣
2(𝑛)

𝛿𝑣
2(𝑛)

) (4.4)                                                  

Another for the whole speech signal is 

SNR0(n)=10×log10(
𝛿𝑟

2− 𝛿𝑣
2(𝑛)

𝛿𝑣
2(𝑛)

) (4.5)                                           

 In (4.4) and (4.5), n is the number of speech frames, and 𝛿𝑣
2 has been updated I order to achieve a 

higher accuracy. The speech frame is noise when SNR1(n) is less than or equal to SNR0(n), or SNR0(n) is less 

than zero and then these frames will be follow the second limitation (Ru(n)≤U). However, if SNR1(n) is larger 

than SNR0(n), the noise estimation will be attenuated to avoid damaging the speech signals.  
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The recursive estimation of  AdaptiveKalman filtering algorithm is shown below 

[Intialization] 

S(0)=0,Rv(1)= 𝛿𝑣
2(1)   (variance of the first speech frame)                         (4.6)                                                

[iteration] 

 IfSNR1(n)<=SNR0(n)      || 

SNR0(n)<0   then   (4.7)                                            

If  Ru(n) ≤ Uthen                                                            

Rv(n)=variance of the environmental noise 

Ru(n)=variance of the current speech frame 

 1.Rv(n)=(1-d)×Rv(n)+d×Ru(n)     (4.8)                                            

            End 

2.U=(1-d)U+dRu(n) (4.9)                                            

            Else 

3.Rv(n)=Rv(n)/1.2(4.10)                                             

              End 

4.Rs(n)=Rs(n)=𝐸(𝑌(𝑛) ∗ 𝑌(𝑛)) − 𝑅𝑣(𝑛)(4.11)                                           

     5.K(n)=Rs(n)=Rs(n)/(Rs(n)+Rv(n) (4.12)                                        

6.S(n)=K(n)*y(n)             (4.13)                                                      

 

VI. PERCEPTUAL WEIGHTING FILTER ALGORITHM 
 Weighting filters are widely used in the measurement of electrical noise on telephone circuits, and in 

the assessment of noise as perceived through the acoustic response of different types of instruments. 

Usually, the perceptual weighting procedure often Results in speech coder performance. A commonly   used 

weighting filter is based on the linear prediction coefficients that represent the short-term correlation in the 

speech signal [8]. A representative perceptual weighting filter 𝑊(𝑧) =
𝐴(𝑧)

𝐴(
𝑧

𝛾
)
=

1−∑ 𝑎𝑖
𝑝
𝑖=1 𝑍−𝑖

1−∑ 𝑎𝑖𝛾
𝑖𝑝

𝑖=1 𝑍−𝑖
 is given by Where 

 A(z) represents the pth-order LP analysis filters and ai is the LP coefficient. To compute the filter 

coefficients for this filter, linear predictive analysis is used in [8]. Also, 𝛾 is a perceptually weighting factor 

which does not alter the center formant frequency, but just broadens the bandwidth of the formants. Specifically, 

frequency broadening δf given by δf=(fs/π)ln 𝛾. Where fs is the sampling frequency in hertz. 

For that reason, the weighting filter deemphasizes the formant structure while emphasizing the formant valleys 

of the speech signal. This results in a larger matching error in the region of the formants, where spectral masking 

makes the auditory systems less sensitive to quantization error. The most suitable value of 𝛾 is subjectively 

selected by listening tests, and for 8KHZ sampling, 𝛾 is adopted as 0.9here. 

 

Table 8.1.1: Different filtering methods comparision of SNR for male and female speech signal 

 

Table 8.1.2: Different filtering methods comparision of MSE for male and female speech signal 
 

 

 

 

 

 

Table  8.1.3: Different filtering methods comparion of CPU time for male and female speech signal 

Speech  

Signal 

Weiner Filter Kalman Filter Adaptive Klman 

Filter 

Perceptual Weighting 

Filter 

Male 9.723 sec 9.603 sec 5.773 sec 3.801 sec 

Female 8.645 sec 8.560 sec 3.456 sec 2.956 sec 

 

SNRin [dB] Weiner Filter Kalman filter 

SNRout [dB] 

Adaptive KF 

SNRout [dB] 

Perceptual weighting 

FilterSNRout [dB] 

Male=3.40 4.78 4.90 5.05 9.014 

Female=6.70 7.23 7.90 9.56 13.05 

Speech  

Signal 

Weiner Filter 

 

Kalman 

Filter 

Adaptive Klman 

Filter 

Perceptual 

Weighting Filter 

Male 0.423 0.432 0.0451 0.002 

Female 0.124 0.324 0.0321 0.001 
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Fig.1. the filtering results for the male speech with  noise. 
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Fig.2. the filtering results for the female speech with  noise. 

 

VII. CONCLUSION 
 Comparison of the simulation results Adaptive KalmanFilter  and Perceptual Weighting Filter 

Algorithms were better than the Weiner Filter and Kalman Filter. In the Weiner Filter calculation of the inverse 

matrix operations are hard in time domain, and in Kalman Filter lot of matrix operations are required, 

calculating time is more, and more complexity. In the perceptual Weighting Filter provide human auditory 

characteristics. 
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