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Abstract: -  In this paper, we consider the high level scheduling and load sharing properties offered by the 
Domain Name System, as implemented in popular DNS software packages. We explore the performance and 

capabilities of high-level DNS-based load balancing, where we draw special attention to the choice of caching 

policy (time-to-live) for DNS data. Further, we analyze the use of a database-supported DNS service for 
allowing highly dynamical query responses, and show that this approach has both potentially negative (single 

point of failure) and positive (improved balancing flexibility) properties. The objective of this paper is we 

discuss the performance requirements of the DNS, and argue that the robustness and performance of the DNS 

could be improved and also discuss the impact of TTL on response time in DNS 

 

I. INTRODUCTION 
The Domain Name System (DNS) is one of the components most critical to Internet functionality. Nearly all 

Internet applications rely on the DNS for name-to-address translation. The ubiquity of the DNS necessitates 

both the accuracy and availability of responses.At the most basic level, Domain Name System, or DNS as it is 

commonly known, is an Internet service that maps domain names into IP addresses and is an essential 

component of any network. There are two types of DNS servers: authoritative and non-authoritative.  

1. Authoritative DNS Authoritative DNS is the authoritative source for all DNS requests made for a 
designated domain. 

2.  Non-Authoritative DNS Also referred to as a Local DNS (LDNS) or a caching DNS server -- is often 

located near the DNS client, caching DNS answers received from Authoritative DNS servers, speeding 

future resolution requests. Local DNS servers are usually provided by ISPs or an enterprise’s IT 

department. 

  Load balancing both authoritative and non-authoritative DNS servers requires handling DNS queries 

coming from a variety of sources. The minor difference between the two is that the non-authoritative DNS 

servers need to make outbound connections to other authoritative DNS servers, while authoritative DNS servers 

require zone transfers.  In a small to medium-size load environment, DNS servers may be both authoritative and 

non-authoritative. In a large environment, DNS servers may be dedicated to serve as either authoritative or non-

authoritative.  

 

II. DNS ARCHITECTURE 
 DNS policies based on detailed server state information (for example, present and past load) do not 

effectively balance client requests across servers. The policies are ineffective because with address caching, 

each address mapping can cause a burst of future requests to the selected server and quickly obsolete the current 

load information. The domain request rate estimates the impact of each address mapping and is more useful to 

guide routing decisions. Scheduling algorithms based on the domain request rate and alarms from overloaded 

servers can lead to better load balancing than RR-DNS and maintain high Web site availability. However, they 

give less satisfactory results when generalized to a heterogeneous Web-server system through probabilistic 

routing. To balance requests among distributed Web server systems, adaptive TTL algorithms are the most 
robust and effective, despite skewed loads and non cooperative name servers. The algorithms, however, do not 

consider the client-to-server distance in making scheduling decisions. Furthermore, such policies do not 

consider the client level address caching, resulting in subsequent requests from the same client (browser) being 

sent to the same server as shown in figure 1 
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                                                                                 Figure 1 

Problems exist even at the network-level of address caching because most intermediate name servers are 
configured such that they reject very low TTL values [1][2][3]. 

 

III. DNS ALGORITHM 
 There are three common lookup methods used in open-source DNS servers. (We do not address the 

data structures used in commercial servers as the source code is not available to us.)  

The first, and most common, is a balanced binary search tree using a comparison function that implements the 

DNS’s ordering on names. This is used in BIND, NSD and many less-popular servers.  

 The second is to store all RRSets in a hash table , indexed by the query name and type. This allows for 

very fast lookups but requires some special handling for failed lookups, such as explicitly searching for the 
enclosing zone or wildcard.  The third is to offload the data lookup to a general-purpose database, using a 

standard interface such as SQL or Berkeley DB. Using a database back-end allows administrators to integrate 

their other network management tools with their DNS zones without needing to export zone files.  For example 

the DNS namespace, and a trie holding the same names. In order to preserve the same ordering on DNS names 

as required for DNSSEC, we must first reorder the labels, so www.example.com is entered in the trie as 

com|example|www|, where | separates labels and is ordered before all other characters. Also, any upper-case 

ASCII characters are converted to lower case. With these 

 
Figure 2: The same names arranged in a radix trie 

 

 changes, the DNSSEC ordering is the same as simple lexicographical ordering on converted names†. 

Each node of the trie is marked with the index into the key of the character that a lookup should branch on when 

it reaches that node. Also, each edge is marked with all the characters where there are no branches; in this way 

lookups can check all the characters of the key, not just the ones where there are branches in the trie. We note 
that there can be nodes in the trie that have no corresponding node in the namespace (e.g., the node representing 

com|ext in Figure.2), and nodes in the namespace without corresponding nodes in the trie (e.g., the node 

representing com in Figure 2). This algorithm returns the RRSets for the query name (if any exist) and also 
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those for the closest enclosing zone and cut point. If the lookup fails, we can look for a suitable wildcard as 

well. The wildcard rules for the DNS make this more subtle than looking for zones. The server must back up 

along the key to the “closest encounter” (the last node that it passed in the namespace tree), and overwrite the 

rest of the key with *. This gives a key for the “source of synthesis”: any RRSets found under the modified key 

can be used to synthesise answers to the original query. 

 

 
 

 The zone head is stored at last soa, and the cut point for a delegated zone is at last ns. If the lookup 

succeeded, the RRSets for the queried name are at node. If the lookup failed before the key was used, we report 

a name error (NXDomain); if it failed and all the key was used, we report a “no data” error (NoError). 
For example, in the first zone fragment in Figure 7.4 a lookup of the name trial.example.com should be 

answered from the RRSets of *.example.com. In the second, although the tries have the same shape, a lookup 

for trial.x.example.com should fail. Algorithm 2 shows how 

this can be implemented in the radix trie. 

 
Figure 3: Examples of the DNS wildcard algorithm 

 

 Algorithm 3. We can precompute some of this on the first pass by remembering the last node where the 

branch we took was not the leftmost one. This removes the need for upward pointers in the trie. Support for 

NSEC3 will require additional data structures as the hashed queries used for denials deliberately do not follow 

the tree layout of the namespace. If a query fails, the server must hash the query name and find the name with 

the closest preceding hashed value, which will have an NSEC3 RR covering the extent of the hashed namespace 

that includes the hashed query. A binary tree stored at the zone head, and mapping back from hashed names to 
their original owners, would suffice 
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3.1 Updates 
Because of the size of the database, it would be unacceptable to have to recompile the data structure every time 

a change is made. The trie described above has been designed with the intention of allowing it to be updated 

with little effort. Zones can be split and delegated simply by adding the relevant records and flags to the trie. 

Adding wildcard records does not require any extra housekeeping in the trie. Because we use a trie instead of a 

balanced tree, there is never any need to re-balance the structure. Names can be deleted entirely from the trie by 

removing at most two nodes (see Algorithm 4). 
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This algorithm returns the RRSets for the query name (if any exist) and also those for the closest enclosing zone 

and cut point. If the lookup fails, we can look for a suitable wildcard as well. The wildcard rules for the DNS 

make this more subtle than looking for zones. The server must back up along the key to the “closest encounter” 

(the last node that it passed in the namespace tree), and overwrite the rest of the key with *. This gives a key for 

the “source of synthesis”: any RRSets found under the modified key can be used to synthesis answers to the 

original query†. 

IV. DNS SPOOFING 
 DNS spoofing (or DNS cache poisoning) is a computer hacking attack, whereby data is introduced 

into a Domain Name System (DNS) name server's cache database, causing the name server to return an 

incorrect IP address, diverting traffic to another computer (often the attacker's). To perform a cache poisoning 

attack, the attacker exploits a flaw in the DNS software. If the server does not correctly validate DNS responses 

to ensure that they are from an authoritative source (for example by using DNSSEC) the server will end up 

caching the incorrect entries locally and serve them to other users that make the same request. 

This technique can be used to direct users of a website to another site of the attacker's choosing. For example, 

an attacker spoofs the IP address DNS entries for a target website on a given DNS server, replacing them with 

the IP address of a server he controls. He then creates files on the server he controls with names matching those 
on the target server. These files could containmalicious content, such as a computer worm or a computer virus. 

A user whose computer has referenced the poisoned DNS server would be tricked into accepting content coming 

from a non-authentic server and unknowingly download malicious content. 

 

4.1 DNS anticipation and improvement 

 Many cache poisoning attacks can be prevented on DNS servers by being less trusting of the 

information passed to them by other DNS servers, and ignoring any DNS records passed back which are not 

directly relevant to the query. For example, versions of BIND 9.5.0-P1[3] and above perform these checks.[4] As 

stated above, source port randomization for DNS requests, combined with the use of cryptographically-secure 

random numbers for selecting both the source port and the 16-bit cryptographic nonce, can greatly reduce the 

probability of successful DNS race attacks. 
 BIND (Berkeley Internet Name Domain) [7] is the most commonly used Domain Name System (DNS) 

server on the Internet. The earliest BIND servers did very little to address security. In order to avoid a same 

transaction ID repeating at the same time in the network, the server used an “Increment by One” method. Each 

new query was issued with the previous transactionID+1. Guessing the transaction ID in such a case is a fairly 

easy job. This weakness was patched and the new BIND versions issue a random transaction ID to every new 

query. In the new version (BIND 9), the transaction ID is a randomly generated number, or more precisely, the 

transaction ID is a pseudo random generated number. The algorithm that generates the IDs in each of the BIND 

versions is open to the public and can be easily obtained and studied. As shown in [8], in many of the BIND 9 

versions, the algorithm is weak and the next random number can be derived from the previous one 

 However routers, firewalls, proxies, and other gateway devices that perform network address 

translation (NAT), or more specifically, port address translation (PAT), often rewrite source ports in order to 

track connection state. When modifying source ports, PAT devices typically remove source port randomness 
implemented by nameservers and stub resolvers. Secure DNS (DNSSEC) uses cryptographic electronic 

signatures signed with a trusted public key certificate to determine the authenticity of data. DNSSEC can 

counter cache poisoning attacks, but as of 2008 was not yet widely deployed. In 2010 DNSSEC was 

implemented in the Internet root zone servers.
[5]

Although, some security experts claim with DNSSEC itself, 

without application-level cryptography, the attacker still can provide fake data.[6] This kind of attack may also be 

mitigated at the transport layer or application layer by performing end-to-end validation once a connection is 

established. A common example of this is the use ofTransport Layer Security and digital signatures. For 

example, by using HTTPS (the secure version of HTTP), users may check whether the server's digital certificate 

is valid and belongs to a website's expected owner. Similarly, the secure shell remote login program checks 

digital certificates at endpoints (if known) before proceeding with the session. For applications that download 

updates automatically, the application can embed a copy of the signing certificate locally and validate the 
signature stored in the software update against the embedded certificate. 

 

V. TTL ALGORITHM 

 In this approach, server side authorized DNS maps domain name to IP address of one of the nodes of 

the cluster, based on various scheduling policies. Selection of replica occurs at server side DNS so it does not 

suffer from applicability problem of client-side mechanisms. But DNS has limited control over requests 

reaching at server because of caching of IP address mapping at several levels viz., by client softwares, local 

DNS resolvers, intermediate name servers, etc. Besides the mapping, a validity period for this URL to IP 

address mapping, known as Time-To-Live (TTL) is also supplied. After expiration of TTL period this mapping 
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request is again forwarded to authorized DNS. Setting this value to very small or zero does not work because of 

existence of non cooperative intermediate name servers and client level caching. Also, it increases network 

traffic and DNS itself can become bottleneck. Several DNS based approaches are discussed in and . DNS based 

algorithms can be classified on the basis of the scheduling algorithms used for server selection and TTL values. 

Constant TTL algorithms: These are classified on the basis of the system state information used by DNS for 

server selection. The system state information can include both client and server state information, like load, 

location etc.[1] 
1. System stateless algorithms : Most simple and first used algorithm of this type is round robin (DNS-RR). 

It was used by NCSA (National Center for Supercomputing Applications)  to handle large traffic volume 

using multiple servers. In this approach, primary DNS returns IP addresses of servers in the round robin 

fashion. 

It suffers from uneven load distribution and server overloading, since large number of client from same domain 

(using same proxy/gateway) are assigned same server. Also, whole document tree must be replicated on every 

server or network file system should be used. 

2. Server state based algorithms : A simple feedback mechanism from servers about their loads is very 

effective in avoiding server overloading and not giving IP address of unavailable servers. The scheduling 

policy might be to select the least loaded server any time. This approach solves overloading problem to 

some extent yet control over requests is not good because of caching of IP addresses. Some 
implementations try to solve this problem by reducing TTL value to zero but it is not generally applicable 

and puts more load on DNS.[9][10] 

 

(a) Client state based algorithms : In this approach, two types of information about clients, the typical       

load arriving to system from each connected domain (from same proxy/gateway) and the geographical 

proximity can be used by DNS for scheduling.  

Requests arriving from domains having higher request rate per TTL value can be assigned to more capable 

server. Proximity information can be used to select nearest server to minimize network traffic. One mode of 

Cisco Distributed Director [11] takes client location (approximated from client's IP address) and client-

server link latency into account to select the server by acting as primary DNS. This approach also suffers 

form same problem experienced by Server state based algorithms. 

 
(b) Server and Client state based algorithms : Cisco Distributed Director takes server availability 

information along with client proximity information into account while making server selection decision. 

These algorithms can also use various other state estimates for server selection. Such algorithms give the 

best results. 

(c) Dynamic TTL algorithms : These algorithms also change TTL values while mapping host name to 

address. These are of two types : 

a. Variable TTL algorithms : As server load increases these algorithms try to increase DNS control over 

request distribution by decreasing TTL values. 

b. Adaptive TTL algorithms : These algorithms take into account the domain request rate (number of 

requests from a domain in TTL time period) and server capacities, for assigning TTL values. So a large 

TTL value can be assigned for a more capable server and less TTL value for those mappings that have high 
domain request rate.  

 

These are most robust and effective in load balancing even in presence of skewed loads and non-cooperative 

name servers, but these don't take geographical information into account.[12] 

 

VI. EXPERIMENTAL RESULT 
6.1 Impact of TTL on Response-time 

1. Static Back-end 

 The results from running the flood tool with the initial event farmer resulted in the plot in figure 4. 
Round-trip times in the plot are fetched from the flood output, which therefore include both the DNS lookup and 

the HTTP request. What we observe is that with TTL 0, the round-trip time is about 350 ms with a relatively 

low standard deviation compared to the following samples.  The plot in figure 5 shows the relationship between 

lookup time and TTL. It is clear that all requests are either bound to a short lookup time, i.e. when querying the 

cache; or a longer lookup time when TTL has expired and the authoritative server must be contacted. See figure 

6 for a more detailed view. This is a clear bimodal behaviour, where the TTL is an input parameter that 

determines the skew towards a low or high cache hit-rate. With a TTL of 0, we see that there are no lookups in 

the range of 0 to 30 ms. This is expected, since a zero TTL disables caching. All of the DNS lookups for TTL 0 

reside in the range of 200 to 500 ms, clearly shown in the plots. As we increase the TTL, the number of low-
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latency lookups grows, while the expensive authoritative lookups diminish. This happens very quickly as the 

TTL increases, with a near exponential proportional. A somewhat strange phenomenon can be observed in the 

detailed plot. At approximately x = 280 ms, there is a marked dip in the number of occurrences. The reason for 

this dip remains unclear. Since it cannot be identified in the generated NetEm distributions, it might be a valid 

assumption that the network emulation is not the cause for the anomaly. As a secondary part of the data analysis, 

the HTTP round-trip times appear to follow a distribution that bears direct resemblance to the Pareto- Normal 

distribution in NetEm. 

                                    
Figure 4: Flood static – Total page load time. This plot shows the total page load time, DNS lookup + HTTP 

request, observed by running the flood tool against the shared web server address. Note the relatively low 

deviation for TTL 0. 

 

                                    
Figure 5: Flood static – DNS lookup times. This is a probability density plot for the round-trip times observed 

in DNS lookups for a varying TTL. We clearly see the two peaks at x = 20 and x = 300 

 

                                     
Figure 6: Flood static – DNS lookup times (scaled). This figure is a scaled version of the previous plot. Scaling 

is individual for both peaks, to better observe their properties. Note the characteristic dip around x = 280 for 

TTL 0, 1 and 2; its cause remains unclear plots. 
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2. Dynamic Back-end 

 When exchanging the static BIND back-end with a highly flexible and dynamic PowerDNS setup, an 

administrator is given a very powerful tool that can aid in manageability and performance. When analysing the 

network dump files gathered from the client, we observed a rise in both round-trip time and deviation as the 

TTL was increased. The plot in figure 7 is derived from the network dumps and shows this relationship. What 

we observe is a steady and almost perfectly linear increase in HTTP response time corresponding to the input 

TTL value. For TTL 0, we observe a relatively low response time with comparably low standard deviation. 
Since we use a zero TTL, all DNS lookups are directed to the authoritative source, which returns a random entry 

from the set of six addresses, i.e. a one in six chance for returning any given address. Since we get a new 

address for each HTTP request, the scheduling granularity is very fine; all servers participate equally in 

answering the heavy requests. Incidentally, the measurements for TTL 1 are almost exactly the same as for TTL 

0. A cause for this could be that the request rate from the client is less than one per second, which would result 

in a zero cache hit-rate. This is not the case, however: The flood configuration is set up to generate. Consider 

figure 8, where we see a time series plot of the load for each server for TTL 0 (a) and 20 (b). The measurements 

were gathered at a resolution of one second, but were smoothed out using a simple moving average with a 

window of ten seconds. For a zero TTL, it is apparent that no server reaches 100% CPU utilisation. The load is 

rather unstable, but is generally kept well below 50%. On a side note, the plot for TTL 0 clearly shows the four 

different flood sessions, starting around 0, 110, 220 and 360 seconds, respectively. When we increase the TTL 
to 20, the outcome is markedly different probability. . A service operator would be interested in keeping the 

probability of overload as low as possible, and could analyse data flows to determine a suitable TTL to achieve 

this goal. Another interesting point to look at is the HTTP response times as plotted in figure 9, using the 

cumulative frequency distribution. Using this approach, we can observe that for TTL 0, most requests – nearly 

90% – are within the range of 0 to 1,000 ms per request. Conversely for TTL 9, around 60% of requests are 

within a range of 0 to 2,000 ms/req. Similarly, a TTL of 9 seconds also results in approximately 90% of requests 

lie within the 0 to 6,000 ms/req range. Results of this kind is what forms the basis of service level agreements, 

where providers guarantee some levels of service for customers; e.g. a level can define minimum delays with a 

given probability 

                        

                              
Figure 7: Flood dynamic – HTTP response time. This plot shows how HTTP response time behaves when the 

client only receives one server address at any given time. It leads to server overload as the TTL increases 
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                                                          (a) Server load with TTL 0 

 

                        
                                                                     b) Server load with TTL 20 

Figure 8: Web server utilisation with varying TTL. The figures show the observed load on  all six web 

servers during the testing, for TTLs 0 and 20. 
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Figure .9: Flood dynamic – Cumulative HTTP response time. This graph shows the cumulative frequency 

distribution of response times for HTTP queries. A higher TTL leads to a higher degree of delayed responses, 

because of higher possibility of over-utilisation. 

 

VII. CONCLUSION 
 Throughout this paper, we have examined the use of the Domain Name System as a mechanism for 

load balancing. Insight into available literature on the topic has shown that DNS lookups are an often neglected, 

yet substantial part of total page response time – not only because of network traversal delay, but because of the 

recursive nature of queries. The use of caching offers a partial remedy to this challenge of mitigating the 

frequency of time-intensive authoritative lookups, but introduces problems of its own. Caching time for a given 

resource record is governed by the time-to-live parameter set at the authoritative nameserver for that record. A 

TTL of a few seconds suggests that auth lookups are frequent, and the cache hit-rate is low. A TTL of hours to 

days would mean a considerably higher cache hit-rate, but forfeits the ability of the authoritative nameserver to 

influence the information within the much longer period until TTL expiry. Further, we have investigated aspects 

of popular DNS implementations and their practice of answering of requests, both for caching and authoritative 

modes. Based on a varying set of input parameters, our goal has been to determine the degree of uncertainty in 
meeting QoS demands, especially that of round-trip times. 
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