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Abstract: - The approximate solutions for the Kuramoto –Sivashinsky Equation are obtained by using the 

homotopy perturbation method (HPM). The numerical example show that the approximate solution comparing 

with the exact solution is accurate and effective and suitable for this kind of problem.   
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I. INTRODUCTION 

 The homotopy perturbation method (HPM) was first proposed by the Chinese mathematician Ji-Huan 

He [1-3]. Unlike classical techniques, the homotopy perturbation method leads to an analytical approximate and 

exact solutions of the nonlinear equations easily and elegantly without transforming the equation or linearizing 

the problem and with high accuracy, minimal calculation and avoidance of physically unrealistic assumptions. 

As a numerical tool, the method provide us with numerical solution without discretization of the given equation, 

and therefore, it is not effected by computation round-off errors and one is not faced with necessity of large 

computer memory and time. This technique has been employed to solve a large variety of linear and nonlinear 

problems [4- 10]. In the present study, homotopy perturbation method has been applied to solve the Kuramoto–

Sivashinsky equations. The numerical results are compared with the exact solutions. It is shown that the errors 
are very small. 

 

II. INDENTATIONS AND EQUATIONS 
II.1 Mathematical Model  

The Kuramoto–Sivashinsky equation is a non-linear evolution equation and has many applications in a 

variety of physical phenomena such as reaction diffusion systems (Kuramoto and Tsuzuki, 1976)[11], long 

waves on the interface between two viscous fluids (Hooper and Grimshaw, 1985)[12], and thin hydrodynamics 

films (Sivashinsky, 1983)[13]. The Kuramoto-Sivashinsky equation has been studied numerically by many 

authors (Akrivis and Smyrlis, 2004; Manickam et al.,1998; Uddin et al., 2009)[14-16]. 
 

Consider the Kuramoto–Sivashinsky equation 

 

𝑢𝑡 + 𝑢𝑢𝑥 + 𝛼 𝑢𝑥𝑥 + 𝛾 𝑢𝑥𝑥𝑥 + 𝛽 𝑢𝑥𝑥𝑥𝑥 = 0            (1) 

Subject to the initial condition 

𝑢 𝑥, 0 = 𝑓(𝑥)           𝑎 ≤ 𝑥 ≤ 𝑏.                                2  
And boundary conditions 

 
𝑢 𝑎, 𝑡 = 𝑔1 𝑡 ,    𝑢 𝑏, 𝑡 = 𝑔2 𝑡           𝑡 > 0 

 
𝜕2𝑢

𝜕𝑥2
= 𝑕1  ,     at   𝑥 = 𝑎  and  𝑥 = 𝑏         where  𝑕1 ≥ 0.

         3  

 

II.2 Basic idea of homotopy perturbation method 

To illustrate the basic ideas of this method, we consider the following non-linear differential equation 

𝐴(𝑢)  −  𝑓(𝑟)  =  0,      𝑟 ∈  𝛿                                 (4) 

with the following boundary conditions 

𝐵  𝑢,
𝜕𝑢

𝜕𝑛
  = 0    ,       𝑟 ∈  𝜏                                         (5) 

where 𝐴 is a general differential operator, 𝐵 a boundary operator, 𝑓 𝑟  is a known analytical function and 𝜏 is 

the boundary of the domain 𝛿. The operator 𝐴 can be decomposed into two operators, 𝐿 and 𝑁, where 𝐿 is a 

linear, and 𝑁 a nonlinear operator. 𝐸𝑞. (4) can be, therefore, written as follows: 

                                                   𝐿 𝑢 +  𝑁 𝑢 −  𝑓 𝑟 =  0.                                           (6) 

Using the homotopy technique, we construct a homotopy  𝑣(𝑟, 𝑝) ∶   𝛿 ×  [0, 1]  →  𝑅, which satisfies: 

𝐻 𝑣, 𝑝 =   1 –  𝑝  𝐿 𝑣 −  𝐿 𝑢0  +  𝑝 𝐴 𝑣 −  𝑓 𝑟  =  0, 
 𝑝 ∈   0, 1 , 𝑟 ∈  𝛿 .                                                       (7) 
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Or 

𝐻 𝑣,𝑝 =  𝐿 𝑣 −  𝐿 𝑢0 +  𝑝𝐿 𝑢0 +  𝑝 𝑁 𝑣 −  𝑓 𝑟  =  0,           (8) 

where 𝑝 ∈  [0, 1] is an embedding parameter, 𝑢0 is an initial approximation for the solution of 𝐸𝑞. (4), which 

satisfies the boundary conditions. Obviously, from 𝐸𝑞𝑠. (7) and (8) we will have: 

𝐻 𝑣, 0 =  𝐿 𝑣 −  𝐿 𝑢0 =  0,                                        (9) 
𝐻 𝑣, 1 =  𝐴 𝑣 −  𝑓 𝑟 =  0.                                           (10) 

The changing process of 𝑝 form zero to unity is just that of 𝑣(𝑟, 𝑝) from 𝑢0(𝑟) to 𝑢(𝑟). In topology, this is 

called homotopy. According to the (HPM), we can first use the embedding parameter  𝑝 as a small parameter, 

and assume that the solution of 𝐸𝑞𝑠. (7) and (8) can be written as a power series in 𝑝: 

𝑣 =  𝑣0  +  𝑝𝑣1  +  𝑝2𝑣2  + · · ·                                       (11) 

Setting  𝑝 =  1, results in the approximate solution of 𝐸𝑞. (1) 

𝑢 = lim
𝑝→1

𝑣  =  𝑣0  + 𝑣1  +  𝑣2  + · · ·                               (12) 

The combination of the perturbation method and the homotopy method is called the homotopy perturbation 

method (HPM), which has eliminated the limitations of the traditional perturbation methods. On the other hand, 

this technique can have full advantage of the traditional perturbation techniques.  

The series (11) is convergent for most cases. Some criteria is suggested for convergence of the series (11), in 

our equation , in[1].  

 

II.3 Derivative of HPM for Kuramoto-Sivashinsky equation 

consider Kuramoto-Sivashinsky equation when  

𝑢𝑡 + 𝑢𝑢𝑥 + 𝛼 𝑢𝑥𝑥 + 𝛾 𝑢𝑥𝑥𝑥 + 𝛽 𝑢𝑥𝑥𝑥𝑥 = 0,                                   13  
with the initial condition of 

                                                𝑢 𝑥, 0 = 𝑓(𝑥)                                                                              14  
To solve Eq. (13) by means of HPM, we construct the following homotopy for this equation: 

                          𝐻 𝑣,𝑝 =   1 –  𝑝  𝐿 𝑣 −  𝐿 𝑢0  +  𝑝 𝐴 𝑣 −  𝑓 𝑟  =  0,                   15  

where                       𝐿 𝑣 =
𝜕𝑣

𝜕𝑡
  ,             𝐿 𝑢0 =

𝜕𝑢0

𝜕𝑡
   , 

that is 

                 𝐻 𝑣,𝑝 =   1 –  𝑝  
𝜕𝑣

𝜕𝑡
−  

𝜕𝑢0

𝜕𝑡
 +  𝑝  

𝜕𝑣

𝜕𝑡
+ 𝑣

𝜕𝑣

𝜕𝑥
+ 𝛼

𝜕2𝑣

𝜕𝑥2 + 𝛾
𝜕3𝑣

𝜕𝑥3 + 𝛽
𝜕4𝑣

𝜕𝑥4
 =  0,                16  

Substituting v from Eq. (8) into Eq. (13) and equating the terms with identical powers of p, we have 

𝑝0 ∶     
𝜕𝑣0

𝜕𝑡
−  

𝜕𝑢0

𝜕𝑡
= 0 ,             𝑣0 𝑥, 0 = 𝑓(𝑥);                                                                                 17                

𝑝1 ∶  
𝜕𝑣1

𝜕𝑡
+

𝜕𝑣0

𝜕𝑡
+ 𝑣0

𝜕𝑣0

𝜕𝑥
+ 𝛼

𝜕2𝑣0

𝜕𝑥2 + 𝛾
𝜕3𝑣0

𝜕𝑥3 + 𝛽
𝜕4𝑣0

𝜕𝑥4 = 0 ,         𝑣1 𝑥, 0 = 0;                                18    

𝑝2 ∶    
𝜕𝑣2

𝜕𝑡
+ 𝑣0

𝜕𝑣1

𝜕𝑥
+ 𝑣1

𝜕𝑣0

𝜕𝑥
+ 𝛼

𝜕2𝑣1

𝜕𝑥2 + 𝛾
𝜕3𝑣1

𝜕𝑥3 + 𝛽
𝜕4𝑣1

𝜕𝑥4 = 0 ,          𝑣2 𝑥, 0 = 0;                         19  

𝑝3 ∶   
𝜕𝑣3

𝜕𝑡
+ 𝑣0

𝜕𝑣2

𝜕𝑥
+ 𝑣2

𝜕𝑣0

𝜕𝑥
+ 𝑣1

𝜕𝑣1

𝜕𝑥
+ 𝛼

𝜕2𝑣2

𝜕𝑥2 + 𝛾
𝜕3𝑣2

𝜕𝑥3 + 𝛽
𝜕4𝑣2

𝜕𝑥4 = 0 ,     𝑣3 𝑥, 0 = 0;               20  

… 
Solving these equations yields 𝑣0  ,𝑣1  ,𝑣2  ,𝑣3  and so on. 

Thus, we can obtain 

𝑢 =  𝑣𝑖 =

𝑛

𝑖=0

𝑣0  + 𝑣1 +  𝑣2 + ⋯+  𝑣𝑛                                                                 (21) 

 

III. FIGURES AND TABLES 
III.1 Numerical Example 

In this section, we apply the technique discussed in the previous section to find numerical solution of the 

Kuramoto–Sivashinsky equations and compare our results with exact solutions. 

 

Example: [17] 

𝑢𝑡 + 𝑢𝑢𝑥 + 𝑢𝑥𝑥 + 𝑢𝑥𝑥𝑥𝑥 = 0    ,              𝑥 ∈  0,32𝜋 , 𝑡 ∈  0,001 ;                   22  
with the initial condition of 

             𝑢 𝑥, 0 = cos  
𝑥

16
  1 + sin

𝑥

16
 ;                                                                                         23               

Exact solution of problem is given by 

                                    𝑢 𝑥, 𝑡 = cos  
𝑥

16
− 𝑡  1 + sin  

𝑥

16
− 𝑡                                                        (24) 

 

𝑝0 ∶     
𝜕𝑣0

𝜕𝑡
−  

𝜕𝑢0

𝜕𝑡
= 0 ,             𝑣0 𝑥, 0 = cos  

𝑥

16
  1 + sin

𝑥

16
 ;                                                          25                
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𝑝1 ∶  
𝜕𝑣1

𝜕𝑡
+

𝜕𝑣0

𝜕𝑡
+ 𝑣0

𝜕𝑣0

𝜕𝑥
+

𝜕2𝑣0

𝜕𝑥2 +
𝜕4𝑣0

𝜕𝑥4 = 0 ,         𝑣1 𝑥, 0 = 0;                                                             26    

𝑝2 ∶    
𝜕𝑣2

𝜕𝑡
+ 𝑣0

𝜕𝑣1

𝜕𝑥
+ 𝑣1

𝜕𝑣0

𝜕𝑥
+

𝜕2𝑣1

𝜕𝑥2 +
𝜕4𝑣1

𝜕𝑥4 = 0 ,    𝑣2 𝑥, 0 = 0;                                                           27  

𝑝3 ∶   
𝜕𝑣3

𝜕𝑡
+ 𝑣0

𝜕𝑣2

𝜕𝑥
+ 𝑣2

𝜕𝑣0

𝜕𝑥
+ 𝑣1

𝜕𝑣1

𝜕𝑥
+

𝜕2𝑣2

𝜕𝑥2 +
𝜕4𝑣2

𝜕𝑥4 = 0 ,     𝑣3 𝑥, 0 = 0;                                             28  

… 

Then , we only find third-order term approximate solution for Eq.(22) 

                        𝑣0 𝑥, 𝑡 = cos 
𝑥

16
  1 + sin  

𝑥

16
  ;                                                                                     29               

 

 

 

𝑣1 𝑥, 𝑡 = 𝑡 cos 
𝑥

16
  

 
9200  sin 

𝑥
16
 − 8192 cos2  

𝑥
16
 sin 

𝑥
16
 − 12288 cos2  

𝑥
16
 + 8447

65536
               (30) 

 

𝑣2 𝑥, 𝑡 = 𝑡2 cos  
𝑥

16
  

 

 
165437696  sin  

𝑥
16
 − 517734400  cos2  

𝑥
16
 sin 

𝑥
16
 + 201326592 cos4  

𝑥
16
 sin  

𝑥
16
   

8589934592

+
−579706880 cos2  

𝑥
16
 + 419430400 cos4  

𝑥
16
 + 164855297

8589934592
            (31) 

 

𝑣3 𝑥, 𝑡 = 𝑡3  cos 
𝑥

16
  

                               (
 4859359014912 sin  

𝑥
16
 − 30758081134592 cos2  

𝑥
16
 sin 

𝑥
16
   

1688849860263936

+
38638599536640 cos4  

𝑥
16
 sin 

𝑥
16
 − 8796093022208  cos6  

𝑥
16
 sin  

𝑥
16
  − 33071821131776  cos2  

𝑥
16
 

1688849860263936
   

+
52566188621824 cos4  

𝑥
16
 −  23570780520448 cos6  

𝑥
16
 +  4826353967871 

1688849860263936
)                   (32) 

     

 

 

 

Then approximation solution is  𝑢 𝑥, 𝑡 = 𝑢0 + 𝑢1 + 𝑢2 + 𝑢3 with third-order approximation. 
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Now we compare exact solution with homotopy perturbation method (HPM) solution in Fig.1,Fig.2. 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
 

 

Table (1) comparison exact with homotopy perturbation method (HPM) 

𝑥 ∗ 𝜋 𝑡 𝑢𝐸𝑥𝑎𝑐𝑡  𝑢𝐻𝑃𝑀   𝑢𝐸𝑥𝑎𝑐𝑡 − 𝑢𝐻𝑃𝑀   

0 0 1.000000000000000 1.000000000000000 0 

0.0002 0.999799980005333 0.999988278219568 1.882982142341616e-004 

0.0004 0.999599920042668 0.999976556481800 3.766364391323274e-004 

0.0006 0.999399820144005 0.999964834786718 5.650146427130798e-004 

0.0008 0.999199680341350 0.999953113134345 7.534327929941131e-004 

0.001 0.998999500666708 0.999941391524700 9.418908579912344e-004 

6.4 0 0.602909620521184 0.602909620521184 0 

0.0002 0.603261605525986 0.602924029951888 3.375755740976372e-004 

0.0004 0.603613531113795 0.602938440031289 6.750910825057410e-004 

0.0006 0.603965397251127 0.602952850759426 1.012546491701349e-003 

0.0008 0.604317203904505 0.602967262136334 1.349941768170049e-003 

0.001 0.604668951040459 0.602981674162053 1.687276878405974e-003 

12.8 0 -1.284545252522524 -1.284545252522524 0 

0.0002 -1.284489444647476 -1.284551820710811 6.237606333447943e-005 

0.0004 -1.284433528322049 -1.284558388250076 1.248599280267992e-004 

0.0006 -1.284377503541076 -1.284564955140284 1.874515992073000e-004 

0.0008 -1.284321370299405 -1.284571521381397 2.501510819914454e-004 

0.001 -1.284265128591897 -1.284578086973377 3.129583814804882e-004 

19.2 0 -0.333488736227371 -0.333488736227371 0 

0.0002 -0.333668118536193 -0.333484164639820 1.839538963727683e-004 

0.0004 -0.333847544554259 -0.333479593175463 3.679513787964717e-004 

0.0006 -0.334027014266963 -0.333475021834294 5.519924326690129e-004 

0.0008 -0.334206527659685 -0.333470450616308 7.360770433769148e-004 

0.001 -0.334386084717798 -0.333465879521502 9.202051962963198e-004 

25.6 0 0.015124368228711 0.015124368228711 0 

0.0002 0.015095977652350 0.015123677789543 2.770013719346869e-005 

0.0004 0.015067621719845 0.015122987353990 5.536563414442614e-005 

0.0006 0.015039300412906 0.015122296922050 8.299650914345494e-005 

0.0008 0.015011013713235 0.015121606493723 1.105927804877852e-004 

0.001 0.014982761602528 0.015120916069009 1.381544664819934e-004 

32 0 1.000000000000000 1.000000000000000 0 

0.0002 0.999799980005333 0.999988278219567 1.882982142346057e-004 

0.0004 0.999599920042668 0.999976556481800 3.766364391322163e-004 

0.0006 0.999399820144005 0.999964834786718 5.650146427135239e-004 

0.0008 0.999199680341350 0.999953113134344 7.534327929941131e-004 

0.001 0.998999500666708 0.999941391524699 9.418908579915675e-004 
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IV. CONCLUSION 
The (HPM) applied to Kuramoto-Sivashinsky equation and by comparing with the exact solution Fig.(1) 

, Fig.(2) and Table(1) shows that the absolute error is so small and the approximate solution is so closed to the 

exact solution. 
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