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Abstract: - This study concerns with the laser oscillator, threshold conditions, circulating power, and the 

Gaussian beam profile. Laser oscillator is a crucial device, which provides the feedback necessary to make a 

laser work. The regenerative laser oscillator is essentially a combination of two basic components: an optical 

amplifier, and an optical resonator, which serves to provide highly selective feedback. The optical resonator, 

comprised of two opposing plane-parallel or curved mirrors at right angles to the axis of active material, 

performs function of the feedback element, by coupling back in phase a portion of the signal emerging from the 

amplifing medium. The photons are reflected back and forth for many passes through the rod (amplifying 

medium), stimulating more and more emission on each pass. The mirrors can be gently curved so they tend to 

keep the light concentration inside the rod. One of the mirrors is 100 % reflective, but the other mirror transmits 

part of the light hitting it. This transmitted light is the output beam from the laser 
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I. INTRODUCTION 
Laser oscillator is a crucial device, which provides the feedback necessary to make a laser work. The 

regenerative laser oscillator is essentially a combination of two basic components: an optical amplifier, and an 

optical resonator, which serves to provide highly selective feedback. The optical resonator, comprised of two 

opposing plane-parallel or curved mirrors at right angles to the axis of active material shown in Figure-1, 

performs function of the feedback element, by coupling back in phase a portion of the signal emerging from the 

amplifying medium. The photons are reflected back and forth for many passes through the rod (amplifing 

medium), stimulating more and more emission on each pass. The mirrors can be gently curved so they tend to 
keep the light concentration inside the rod. One of the mirrors is 100 % reflective, but the other mirror transmits 

part of the light hitting it. This transmitted light is the output beam from the laser [1][2]. 

 

                               
Figure-1 Laser oscillator 

 

In laser oscillator, the pump inverts the electron population in the laser material, leading to energy 

storage in the upper laser level. If this energy is released to the optical beam by stimulated emission, 

amplification takes place. Having been triggered by some spontaneous radiation emitted along the axis of the 

laser, the system starts to oscillate if the feedback is sufficiently large to compensate for the internal and external 

losses of the system. The amount of feedback is determined by the reflectivity of the mirrors. Lowering the 

reflectivity of the mirror at the output end of the laser must be partially transparent for a fraction of the radiation 

to “leak out” or emerge from the oscillator. The role of the resonator is to maintain an electromagnetic field 

configuration whose losses are replenished by the amplifying medium through induced emission. Thus the 
resonator defines the spectral, directional, and spatial characteristics of the laser radiation, and the amplifying 

medium serves as the energy source. 
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II. OPERATION AT THRESHOLD 

A laser oscillator composed of two mirrors having a reflectivity R1 and R2 and an active material of 

length l, a gain per unit length g() in the inverted laser material. In each passage through the material the 
intensity gains by a factor of exp(gl). At each reflection a fraction 1 - R1 or 1 - R2 of energy is lost. Starting at 

one point, the radiation will suffer two reflections before it can pass the same point in the original direction. The 

threshold condition is established by requiring that the photon density – after the radiation has traversed the laser 
material, been reflected by mirror with R1, and returned through the material to be reflected by mirror with R2, 

be equal to the initial photon density. Then on every complete two way passage of the light through the laser the 

loss will just equal the gain. The threshold condition is 

                                                                    R1R2 exp (2gl) = 1                             (1) 

The regenerative amplifier becomes unstable when the amplification per transit exceeds the losses. In this case 

oscillations will build up, starting from a small disturbance. Clearly, if the loop gain, 

                                                                         G = R1R2 exp (2gl)                      (2) 

is larger than 1, radiation of the proper frequency will build up rapidly until it becomes so large that the 

stimulated transition will deplete the upper level and reduce the value of g. The condition of steady state is 

reached if the gain per pass exactly balances the internal and external losses. This process is called gain 

saturation. In an oscillator a number of loss mechanisms are instrumental in attenuating the beam; the most 
important ones are reflection, scattering, and absorption losses in the mirrors, amplifying medium, and all other 

elements in the resonator, and diffraction losses [2]. 

It is convenient to lump all the non-output losses into a single parameter, the absorption coefficient per 

unit length . The condition for oscillation is then, 

                                                                    R1R2 exp (g - ) 2l = 1                                (3) 

Here all the loss mechanisms are characteristized by a single parameter c, which is equal to the decay 
time constant of the radiation in a passive resonator. Resonators are characterized by quality factor Q, which is 

defined as the ratio of energy stored in the resonator to power dissipated from the resonator per unit angular 

frequency 0. The resonator Q defined in this way is equal to 
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Where0 =20 = 2/T0.The loss mechanism, besides limiting the lifetime of the oscillation, causes a 

broadening of the resonance frequency. The width  of the resonance curve at which the intensity has fallen off 
to half the maximum value is 
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Thus from equation (4) we obtain for the Q value 
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The decay time constant of the radiation c can also be defined as the average lifetime of the photons in 
the resonator. A photon in the cavity will have some average lifetime in the cavity before being scattered or 

emitted or lost in other ways to the optical system. If we relate c to the fractional power loss  per round trip, 
we obtain 

                                                                           c
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
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Where cltR
 2 is the round trip time of a photon in a resonator having an optical length l.Rearranging 

equation (5) yields 

                                                                       2gl = ln (R1R2 )+ 2l (8) 

The expression on the right is the total fractional power loss per round trip. Since 2gl =  =tR / c, we obtain 
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Miscellaneous losses, such as absorption and scattering at the mirrors and diffraction losses of the 

resonator can be thought of as leakage from the rear mirror. Hence the reduced reflectivity R2 of the rear mirror, 

R2 = 1 – LM takes into account the miscellaneous losses. In practice LM does not exceed a few percent. With the 

approximation 

                                                                         
  MLML 1ln

           
(9) 

One can combine the optical losses in the cavity with the losses in the crystal: 
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With this approximation (8) reduces to 
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From equations (9) and (10), the threshold condition (3) is expressed in the following form: 

                                                                      2gl = L –ln R1 T + L                (12) 

The approximation –ln R1  T is valid only for values R1 close to one. 
 

III. CIRCULATING POWER 
If the photons bounce back and forth between the mirrors for a long enough period, the laser will reach 

a steady-state condition and a relativity constant power will circulate between the mirrors. This circulating 

power is not absolutely constant. Part of it is lost when it hits the output mirror, and this lost power is replaced 

when the light passes through the gain medium.Figure-2 shows how the circulating power varies inside the 

resonator. The circulating power drops at the output mirrors because part of the light is transmitted through the 

mirror. The remaining light travels through the gain medium where it is partially replenished. There is a small 

loss at the back mirror because no mirror is a perfect reflector. Then the light returns for a second pass through 

the gain medium, where it is fully restored to its previous level at point A.The power in the output beam is 

determined by the amount of circulating power and the transmission of the output mirror as: 

                                                                     circPoutP                                          (13) 

Where  the transmission of the output mirror and Pout and Pcircuare the output and the circulating powers, 
respectively. According to Koechner [2], the output power is 
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This equation relates the output power obtained from the oscillator to the geometric mean power density Iinside 

the optical resonator. Here A is the area of the front mirror. 

From equation (13), the output power is proportional to the mirror transmission. But it does not mean 

that we can always increase the output power by increasing the mirror transmission, because as the transmission 

of the output mirror is increased, the circulating power will decrease. Whatever happens to the output power 

depends on whether the circulating power decreases faster than the mirror transmission increases, and this 

depends on the particular laser we are looking at. In fact, for any laser there will be an optimum value for the 

transmission of the output mirror that will produce the maximum possible output power [1].In Figure-2, the loop 
is closed, i.e., the circulating power is restored to precisely its initial value after a round trip through the laser 

resonator. This is true for any steady state, or continuous wave laser, where the circulating power can settle 

down to steady state behaviour. In most pulsed lasers the situation is different because energy moves so quickly 

from the population inversion to circulating power to output power that it never has time to reach equilibrium. If 

the circulating power is restored to its original value after a round trip of the resonator, the round-trip gain must 

be equal to the round-trip loss. If the round-trip gain is less than the round-trip loss, the laser will not lase. On 

the other hand, if the round-trip gain is greater than the round-trip loss, the gain will saturate until it is reduced 

to the same value as the round-trip loss. 

 

 
Figure-2 circulating power inside the resonator 
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IV. RESONATORS MODES 
The light emitted by most lasers contains several discrete optical frequencies, separated from each 

other by frequency differences, which can be associated with different modes of the optical resonator. It is 

common practice to distinguish two types of resonator modes: “Longitudinal” modes differ from one another 
only in their oscillation frequency; and “Transverse” modes differ from one another not only in their oscillation 

frequency, but also in their field distribution in a plane perpendicular to the direction of propagation. 

Corresponding to a given transverse mode are a number of longitudinal modes which have the same field 

distribution as the given transverse mode but which differ in frequency.To describe the electromagnetic field 

variations inside optical resonators, the symbol TEMmnqor TEMplqare used. The capital letters stands for 

“Transverse Electromagnetic Waves” and the first two indices identify a particular transverse mode, whereas q 

describes a longitudinal mode. Because resonators that are used for typical lasers are long compared to the laser 

wavelength, they will, in general, have a large number of longitudinal modes. Therefore, the index q, which 

specifies the number of modes along the axis of the cavity, will be very high. The indices for the transverse 

modes, which specify the field variations in the plane normal to the axis, are very much lower and sometimes 

may be only the first few integers.The spectral characteristics of a laser, such as linewidth and coherence length, 

are primarily determined by the longitudinal modes; whereas beam divergence, beam diameter, and energy 
distribution are governed by the transverse modes. In general, lasers are multimode oscillators unless specific 

efforts are made to limit the number of oscillating modes. The reason for this lies in the fact that a very large 

number of longitudinal resonator modes fall within the bandwidth exhibited by the laser transition and a large 

number of transverse resonator modes can occupy the cross section of the active material [2].  

 

V. TRANSVERSE MODES 
The output spot of the laser beam is termed the transverse electromagnetic mode (TEM). Transverse 

modes are defined by the designation TEMnmfor Cartesian coordinates. The integersm and n represent the 

number of nodes or zeros of intensity transverse to the beam axis in the vertical and horizontal directions. In 
cylindrical coordinates the modes are labelled TEMpland are characterized by the number of radial nodes p and 

angular nodes l. The higher the values of m, n, p, and l, the higher the mode orders. The lowest-order mode is 

the TEM00 mode, which is a round mode with a Gaussian-like intensity profile in cross-section, with its 

maximum on the beam axis. However it is possible to operate on a wide variety of other transverse mode 

configurations. In these configurations, the output spot will have a much more peculiar shape[1].For mode with 

subscripts of 1 or more, intensity maxima occur that are off-axis in a symmetrical pattern. To determine the 

location and amplitudes of the peaks and nodes of the oscillation modes, it is necessary to employ higher-order 

equations, which either involve Hermit or Laguerre polynomials. The Hermit polynomials are used when 

working with rectangular coordinates, while Laguerre polynomials are more convenient when working with 

cylindrical coordinates. The transverse mode structure will be calculated using the paraxial approximation to the 

electromagnetic wave equations [3][2]. 
 

VI. TEM0,0 GAUSSIAN BEAM PROPAGATION 
The lowest-order transverse mode is called the TEM0,0 mode, the 00-mode, the lowest-order mode, 

fundamental mode, or the Gaussian mode. This is the mode that is circular in transverse dimensions and has a 

Gaussian intensity profile. It is the mode that is most widely used in laser systems [4][5][6]. The decrease of the 

field amplitude with distance r from the axis in a Gaussian beam is described by Koechner[2] as: 
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Thus, the distribution of power density is  
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The quantity w is the radial distance at which the field amplitude drops to 1/e of its value on the axis 

and the power density is decreased to 1/ e2 of its axial value. The parameter w is often called the beam radius or 

“spotsize” and 2w, the beam diameter. According to Koechner [2]the fraction of the total power of a Gaussian 

beam which is contained in a radial aperture of r = w, r =1.5w, and r = 2w is 86.5 %, 98.9 % and 99.9 %. If a 

Gaussian beam is passed through a radial aperture of 3w, then only 10-6 % of the beam power is lost due to the 

obstruction. Therefore a radial aperture in excess of three spot sizes is means an “infinite aperture”. Although 

the intensity distribution is Gaussian in every propagating beam cross section, the width of the intensity profile 

changes along the axis. The Gaussian beam contracts to a minimum diameter 2w0 at the beam waist where the 

phase front is planer.  
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Figure-3 Gaussian beam 

 

If one measures z from this waist, the expansion laws for the beam assume a simple form. The spot size 

a distance z from the beam waist expands as a hyperbola, which has the form 
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Its asymptotes are inclined at an angle  / 2 with the axis, as shown in Figure-3, and defines the far-field 
divergence angle of the emerging beam. The full divergence angle for the fundamental mode is given by  
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From these considerations it follows that at large distances, the spot size increases linearly with z, and the beam 

diverges at a constant cone angle . The smaller the spot size w0 at the beam waist, the greater the divergence. 

At sufficiently large distances from the beam waist the wave has a spherical wavefront appearing to emanate 
from a point on the beam axis at the waist. If R (z) is the radius of curvature of the wavefront that intersects the 

axis at z, then 
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In a Gaussian beam the wavefront has the same phase across its entire surface. According to Koechner[2], 

sometimes the properties of a TEM00 mode beam are described by specifying a confocal parameter 
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Where b is the distance between the points at each side of the beam waist for which     02)( wzw  (Figure-3). A 

laser operating at the TEM00mode will have a beam divergence according to Eq. (18). For a plane wavefront 

incident upon a circular aperture of diameter D, the full cone angle of the central (Airy) disc, defined at the first, 

minimum of the Fraunhofer diffraction pattern, is given by 
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the energy contained within this angle is about 84 % of the total energy transmitted by the aperture. 

Equations (18) and (21) are often confused, because various conventions have been adopted by different 

authors, with the equation 

                                                                     D
R

22.1
                  (22) 

Which represents the half-cone angle of the Fraunhofer diffraction pattern, and also happens to be the “Rayleigh 

criterion” for the angular resolution of an optical instrument? 
In laboratory work, a beam size is often obtained by measuring the diameter of the illuminated spot 

with a scale. This is not the spot size 2w0 as defined by (17). There is no obvious visual cue to the magnitude of 

the spot size in the appearance of the illuminated spot. Thus, “spot size” and “size of the illuminated spot” are 

totally different concepts. The former is a property of the laser cavity; the latter is a subjective estimate. To 
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measure the spot size, the illuminated spot is scanned with a photodetector behind a small pinhole. The resulting 

curve of intensity versus position of the pin-hole will yield a Gaussian curve from which the spot size 0 be 
extracted by mathematical methods [6][7]. 

 

VII. RESONATOR CONFIGURATION 
The most commonly used laser resonators are composed of two spherical or flat mirrors facing each 

other. Let us consider the generation of the lowest-order mode by such a resonant structure. Once the parameters 

of the TEM00 mode are known, all higher-order modes simply scale from it in a known manner. Diffraction 

effects due to the finite size of the mirrors are neglected. 

The Gausssian beam shown in Figure-4, has a wavefront curvature of R1 at a distance t1 from the beam 

waist. If we put a mirror at t1 whose radius of curvature equals that of the wavefront, then the mode shape has 

not been altered. To proceed further, we can go along the z axis to another point t2 where the TEM00mode has a 

radius of curvature R2, and place there a mirror whose radius of curvature R2 equals that of the spherical 

wavefront at t2. Again the mode shape remains unaltered. 

Therefore, to make a resonator, we simply insert two reflectors, which match two of the spherical 

surface defined by (19). Alternately, given two mirrors separated by a distance L, if the position of the plane z = 

0 and the value of the parameter w0 can be adjusted so that the mirror curvatures coincide with the wavefront 
surfaces, we will have found the resonator mode.Kogelnik and Li [7] gave formulas, which relate the mode 

parameters w1, w2, w0, t1 and t2 to the resonator parameters R1, R2 and L. as illustrated in Figure-4, w1 and w2 are 

the spot radii at mirrors M1 and M2, respectively; t1 and t2 are the distances of the beam waist described by w0 

from mirrors M1 and M2which are separated a distance L. Labeling conventions are that concave curvatures are 

positive.The beam radii at the mirrors are given by  
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The radius of the beam waist, which is formed either inside or outside the resonator, is given by  
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The distances t1 and t2, between the waist and the mirrors, measured positive as shown in Figure-4, are 
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These equations treat the most general case of a resonator. These are many optical resonator 

configurations for which (23) – (25) are greatly simplified. Figure-5 shows some of the most commonly used 

geometry of resonators [8]. 

  
Figure-5 Resonator with mirrors of unequal curvature 
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Figure-6 Resonator configurations giving uniphase wavefronts 
 

 

VIII. STABILITY OF LASER RESONATORS 
A stable resonator is, by definition, one in which a ray is trapped between the mirrors by their 

curvature. The word stable implies nothing about a resonator’s sensitivity to misalignment nor about an absence 

of fluctuations in its output power. Most lasers have stable resonators, in which the curvatures of the mirrors 

keep the light concentrated near the axis of the resonator. If the path of the light ray is traced between the 

mirrors of a stable resonator, it is found that the ray is eventually reflected back toward the resonator axis by the 

mirrors as shown in Figure-7. The only way light can escape from the resonator is to go through one of the 
mirrors.  

 

 
Figure-7 Stable & Unstable Resonator 

 

 
Figure-8 Stability diagram for the passive laser resonator 
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In the unstable resonator, the light rays keep on moving away from the resonator axis until eventually 

they miss the small convex mirror altogether. The output beam from this resonator will have a doughnut-like 

shape with a hole in the middle caused by the shadow of the small mirror. Thus unstable resonators are designed 

in a ways that avoid the hole-in-the-center beam. The advantage of unstable resonators is that they usually 

produce a larger beam volume inside the gain medium so the beam can interact with more of the population 

inversion and thereby produce more output power. Unstable resonators are usually used only with high-power, 

pulsed gas and solid-state lasers [1]. Light rays that bounce back and forth between the spherical mirrors of a 

laser resonator experience a periodic focusing action. The effect on the rays is the same as in a periodic-
sequence of lenses. Rays passing through a stable sequence of lenses are periodically refocused. For unstable 

systems the rays become more and more dispersed the further they pass through the sequence. In an optical 

resonator operated in the stable region, the waves propagate between reflectors without spreading appreciably. 

This fact can be expressed by a stability criterion [2][3] 
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To show graphically which type of resonator is stable and which is unstable, it is useful to plot a 

stability diagram on which each particular resonator geometry is represented by a point. This is shown in 

Figure-7, where below parameters are drawn as the coordinate axes. 
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All cavity configurations are unstable unless they correspond to points in the area enclosed by a branch 

of the hyperbola g1g2 =1 and the coordinate axes. The origin of the diagram represents the confocal system. The 

low-loss regions of Figure-8 represent the following three sets of possible mirror geometries: 

1. Both mirrors are concave, and the center of curvature of each mirror lies beyond the other mirror. 

2. Both mirrors are concave, and the center of curvature of each mirror lies between the other mirror and the 
center of curvature of the other mirror. 

3. One mirror is convex and one is concave, and the center of curvature of the concave mirror lies between the 

convex mirror and the center of curvature of the convex mirror. It turns out that the mirror configurations 

which satisfy the stability criterion are those for which the wavefront and mirror curvature are matched. 

 

IX. ACTIVE RESONATOR 
Introducing an active element into the resonator, such as a laser crystal, in addition to altering the 

optical length of the cavity, will perturb the mode configuration, since the active material possesses a saturable, 

nonuniform gain and exhibits thermal lensing and birefringence. In high-gain, giant-pulse lasers, gain saturation 
at the center of a TEM00 mode can lead to a flattening of the intensity profile [9]. Also, pump nonuniformities 

leading to a nonuniform gain distribution across the beam will lead to non-Gausssian output intensity profiles. 

Theoretical and experimental investigations have shown that in solid-state lasers the governing mechanisms 

which distort the mode structure in the resonator are the thermal effects of the laser rod. Optical pumping leads 

to a radial temperature gradient in the laser rod. As a result, in cw and high average power systems, the rod is 
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acting like a positive thick lens of an effective focal length f, which is inversely proportional to the pump power 

[10]. 

The theory necessary to analyze resonators that contain optical elements other than the end mirrors has 

been developed by Kogelnik [11]. This theory is applied to the case of a resonator containing an internal thin 

lens. To a first approximation, this lens can be thought of as representing the thermal lensing introduced by the 

laser rod. The more complex case of a distributed thick lens which more adequately describes thermal lensing 

has been treated in [12].Beam properties of resonators containing internal optical elements are described in 
terms of an equivalent resonator composed of only two mirrors. The pertinent parameters of a resonator 

equivalent to none with an internal thin lens are 
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where L0 = L1 + L2 – (L1L2/f) and f is the focal length of the internal lens; L1 and L2 are the spacing 

between mirrors M1, M2 and the lens as shown in Figure-9a. In any resonator, the TEM00 mode spot size at one 

mirror can be expressed as a function of the resonator parameters 
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the ratio of the spot sizes at the two mirrors is 
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the stability condition (26) remains unchanged. As an example we will consider a resonator with flat mirrors (R1 

= R2= ) and a thin lens in the center (L1 = L2 = L/2). From (28) we obtain 
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Forf =  the resonator configuration is plane-parallel; for f = L/2 we obtain the equivalent of a confocal 
resonator; and f = L/4 the resonator corresponds to a spherical configuration. 

The mode size in the resonator will grow to infinity as the mirror separation approaches four times the 

focal length of the laser rod. Figure-9b shows the location of a plane-parallel resonator with an internal lens of 

variable focal length in the stability diagram. Above types of resonators are restricted to devices having axial 

symmetry with respect to the beam axis. Resonators that contain inclined surfaces, such as Brewster-ended rods, 

polarizers, prisms, etc., lack axial symmetry. The effect of these asymmetric devices is to produce astigmatic 

beams, i.e., beams that have different spot sizes, wavefront curvatures, and beam waist positions in two 
orthogonal directions. Axially asymmetric laser cavities have been analyzed by Hanna and Kogelnik [13][14]. 

 

X. DIFFRACTION LOSSES 
In any real laser resonator some part of the laser beam will be lost either by spillover at the mirrors or 

by limiting apertures, such as the lateral boundaries of the active material. These losses will depend on the 

diameter of the laser beam in the plane of the aperture and the aperture radius. If we take a finite aperture of 

radius a within the resonator into account, the diffraction losses depend on four parameters R1, R2, L and a, 

which describe the resonator; and on three parameters, m and n, characterizing the particular optical beam 
present in the resonator. Fortunately, the losses depend only on certain combinations of these parameters. These 

combinations are the so-called Fresnel number [2] 
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And the quantities which were defined in (27). The parameter N can be thought of as the ratio of the 

acceptance angle (a/L) of one mirror as viewed from the center of the opposing mirror to the diffraction angle 

(/a) of the beam. Therefore, when N is small, especially if N< 1, the loss factor will be high because only a 
portion of the beam will be intercepted by the mirrors. When N is large, the losses will be low for the stable 

resonator configurations and large for the unstable resonators. If two resonators have the same values of N, g1 

and g2, then they have the same diffraction loss, the same resonant frequency, and the same mode patterns. The 

fractional energy loss per transit due to diffraction effects for the lowest-order mode of a resonator with identical 
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mirrors (g1 = g2 = g) is given by Li  [15]. For the plane-parallel resonator with circular aperture, an analytical 

expression of the diffraction losses for large Fresnel numbers (F 1) has been derived by Vainshtein [16]: 
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Where= 0.824, M = (8N)1/2 and kpl is the (p + l)th zero of the Bessel function of order l. The 
diffraction losses in a confocal resonator for a number of low-order modes are shown by McCumber [17]. He 

showed that all have very large losses for small N and that the losses drop with increasing N. However, the 

losses for the higher-order modes drop less rapidly than the losses for the lower-order modes. 

 

XI. RESONATOR SENSITIVITY 
There are two contexts in which the term “stability” is used. First, laser resonators are said to be 

optically stable or unstable depending on the values of g1, g2. Second the mode size and position are sensitive to 

mechanical and optical perturbations of the optical elements.When designing resonators for an optimum mode 

size, it will be of the utmost importance to consider the resonator sensitivity to these mechanical and optical 
perturbations. Usually one is interested in the sensitivity of the resonator to two common types of perturbations: 

first, a time-varying thermal lensing effect caused by the laser rod, and second, misalignments of the resonator 

mirrors. The former perturbation leads mainly to a change in mode size and beam divergence [12][18], whereas 

the latter perturbation leads to a lateral displacement and angular tilt of the output beam [19] which causes an 

increase of the diffraction losses and, therefore, a reduction of output power. First-order effects on the modes as 

a function of cavity perturbation are usually obtained by evaluation of sensitivity matrix. 

Considering first the resonator’s sensitivity to lensing effects, a resonator is insensitive to axial 

perturbations if the spot size w1 is insensitive to changes of g1 and g2[eqs. (29), (31)]. A calculation of the 

relative sensitivities of various resonators to small changes in mirror radii of curvature has been carried out by 

Chesler and Mayden [18] and Steffen et al.[12]. A perturbation within the resonator producing changes in mirror 

radii is equivalent to the introduction of a lens of some focal length f. In order for the resonator to have a low 

sensitivity to axial perturbations, i.e., small spot size changes for large changes of g1 and g2, it is necessary that 
dw1/df = 0. This condition is met for resonator geometries, which satisfy the following equation: 
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One particular resonator satisfying (34) is determined by 
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In this case the internal lens is either absent or located at the surface of mirror R1. Steffen et al. [12] 

shows that the curves, which are obtained from (29), reveal that the spot size is fairly insensitive to variations of 

g1 and g2 for resonator configurations which can be represented by points on the hyperbola g1g2 = 0.5. Large 

spot sizes w1 are obtained for resonators with large g2 values. From (27) follows that in order for g2> 1, the 

radius of curvature of mirror R2 has to become negative, which indicates a convex mirror according to our 

labelling convention. 

The resonator sensitivity to mirror misalignment is related to the fact that the mode axis must be 

normal to each of the two mirrors. This can be satisfied only if the ray is incident along a line, which passes 

through the center of curvature of the mirrors. Considering a typical resonator of mirror radii R1 and R2 and 

separation L, as shown in Figure-10, a rotation of mirror M1 through an angle  rotates the line joining the 

centers of curvatures of the two mirrors through an angle and causes a linear displacement x and y. Small-angle 
approximations are valid, and we have 
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For a resonator with large radius mirrors of equal radii R1 = R2 = R we obtain,  
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If one of the mirrors is slightly tilted, the entire mode is displaced parallel to the resonator axis. For a confocal 
resonator (R1 = R2 = L) we have           

                                                              x = 0      and      y = L                                                                        (39) 
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Figure-10 Mirror alignment parameters 

 
In this case the mirror being tilted represents the pivot point for the mode axis. If the flat mirror of a 

hemispherical resonator (R1 , R2 L) is tilted, we obtain 

                                                   
  02  LRx , y = L                   (40) 

Comparing the sensitivity to the angular tilt of the various resonator configurations, it is found that, for 

example, a large-radius mirror resonator with R = 10L is five times more sensitive to tilt than the confocal and 

hemispherical resonators. 

 

Table-1 Performance of a cw Nd:YAG at different transverse modes 

 TEM00 TEM01*
 TEM10 TEM11* TEM20 TEM21* 

Aperture size [mm] 1.4 1.6 1.8 2.0 2.2 2.3 

Laser output power [W] 1.5 2.4 3.5 4.5 5.5 6.0 

Beam divergence [mrad] 1.9 2.3 2.8 3.1 3.4 3.6 

Brightness [MW/cm2 sr] 28 18 20 18 15 15 

 

 

 

                                                
 

Figure-11 Mode patterns and beam intensity distribution of a cw Nd: YAG 
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Freiberg et al.[19] shows that, the alignment tolerances of a resonator with relatively short-radius 

mirrors. Furthermore, a plano-concave resonator is more sensitive to misalignment than a resonator with to 

curved mirrors. Also, alignment tolerance becomes progressively less stringent for higher-order modes. 

Bleousova and Danilov [18] shows that, the higher–order mode is less sensitive to mirror misalignment and, 

furthermore, that the confocal resonator has the highest tolerance in terms of misalignment. Again, the confocal 

resonator is far more forgiving for mirror misalignment than the other types. Therefore the drop in output power 

of a pulsed Nd:YAG laser as a function of mirror misalignment for different mirror combination. As is to be 
expected, the resonator containing two curved mirrors is least sensitive to misalignment.Experiments have 

shown that reduction of the angular divergence of the beam is a means of transverse-mode control. Mode 

selectivity can be obtained by the sharp angular variations of the internal reflectivity near the critical angle of 

prisms or Lummer-Gehrke plate [20].It is important to have a perfectly aligned system with clean and damage-

free optical surfaces. Slight misalignments, tilts, or imperfections (dust particles) of laser reflectors can cause 

changes in the mode character of the output, favoring higher-orders. For example, a particle or a damage spot 

located at the center of the beam can prevent oscillation in the TEM00 mode and cause oscillation at the TEM01* 

mode [21].  

To illustrated the effect of mode selection on the performance of a laser system, Koechner [2] shows in 

Figure-11, the mode pattern and radial intensity distributions from a cw-pumped Nd:YAG laser. Shown are the 

first six modes from the laser, which were obtained by successively increasing the mode-selecting aperture. The 
mode patterns were taken in the far field (20 m away from the laser) by photographing the light striking a 

ground-glass surface through an infrared image intensifier. The radial intensity distribution of the transverse 

mode patterns was observed by sweeping the laser beam across a small-aperture detector using the rotating 

plane mirror and displaying the detector signal on an oscilloscope. The system delivered a maximum of 8.5 W 

of multimode power. Mode selection was accomplished by insertion of different-size apertures into the cavity. 

The various aperture sizes and the corresponding output powers, beam divergences, and mode structures are 

summarized in Table-1. 

 

XII. CONCLUSION 
When mirrors are placed at the ends of an amplifying medium, they not only effectively increase the 

length of the gain medium but also place boundary conditions upon the electromagnetic field (the laser beam) 

that develops between the two mirrors. These boundary conditions are similar as for the modes that develop 

within a cavity in radiative thermal equilibrium; similar modes also develop within the laser cavity. The 

conditions are such that the electric field must be zero at the reflecting surfaces of the mirrors. Therefore we 

begin the analysis by considering what happens when a beam of light is incident upon a two-mirrored cavity, 

known as a Fabry-Perot resonator, with no optical elements between the mirrors. We will then consider the 

effect of placing an amplifying medium between the mirrors. 
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