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ABSTRACT: In this paper, a Total Lagrangian formulation based on the Logarithmic strains is developed. The 
variation in these strains is based on the variation of the Engineering strains and the variation of Green strains. 

The “true” Cauchy stresses thus obtained are compared with the Engineering stresses based on the 

Engineering strains obtained from a Total Lagrangian formulation. The Cauchy stresses obtained based on the 

assumption of small Engineering shear strains are also compared with the above mentioned stresses. A 

Geometric nonlinear Total Lagrangian formulation applied on two-dimensional elasticity using 4-node plane 

finite elements was used. The formulation was implemented into the finite element program (NUSAP). The 

solution of nonlinear equations was obtained by the Newton-Raphson method. The program was applied to 

obtain stresses for three numerical examples. The evaluation of the accuracy of the formulation was based on 

comparing the stresses obtained with those from the other two formulations as stated above. The paper 

concludes that all three Total Lagrangian formulations converge to the correct solution, as expected, for small 
strains. For moderate and large strains, there is a clear difference between the Cauchy and  the Engineering 

stresses.  The formulation based on the Logarithmic strains results in the accurate evaluation of the “true” 

Cauchy stresses. These stresses can be used in the geometric and material nonlinear analyses of large 

deformation problems using constitutive equations based on Logarithmic strains. 
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I. INTRODUCTION 
The nonlinear behavior of almost all structures prior to reaching their limit of resistance and the use of 

light “tall” structures, coupled with advance in solution methods and computing facilities, have lead to the 

intensive use of geometric nonlinear analysis. As stated by Yang and Kuo [1] one of the main factors that have 

to be considered in nonlinear analysis is the calculation of internal forces. Hence, the major problem in 

geometrically nonlinear (GNL) finite element analysis is the need to define reference coordinates and to specify 
the relevant stress and strain measures. As had been shown by Ji, Waas and Bazant [2], the use of non-conjugate 

stress and strain increments in finite element programs can cause errors as large as 100%. 

The two main finite element formulations for GNL problems are the Eulerian formulation (EFM) and 

the Lagrangian formulation (LFM). As stated, among others, by Yang and Kuo[1], Crisfield[3], and  

Zeinkiewicz and Taylor[4] LFM, in contrast to EFM, is suitable in solid mechanics applications. This is mainly 

due to the ease with which it handles complicated boundaries and its ability to follow material points enabling 

the accurate treatment of history dependent materials. There are two main approaches to LFM, namely the Total 

Lagrangian (TL) and the Updated Lagrangian (UL). As pointed out by Surana and Sorem[5] and Djermane et 

al[6] the TL formulation is recognized as the most realistic civil engineering approach. But, the main serious 

drawback of the TL approach, based on the Green strains, is that these strains are unsuitable for work with large 

strains and the 2ndPiola-Kirchhoff stresses, which are work conjugate to the Green strains, are defined in the 

deformed configuration and should be transformed to the un-deformed configuration. Therefore, this TL 
approach will result in stresses with no physical significance [3]. This is why the UL formulation is considered, 

by researchers ([1], [3], [4], Belytschko[7], Marinkowic et al[8] and Bonet and Wood[9]),  to be the most 

efficient formulation and to result in the evaluation of “true” stresses. As an alternative to the use of Green 

strains, the LFM can be based on using the Engineering strains with the Engineering stresses and the 

Logarithmic strains with the Cauchy “true” stresses as work conjugate in the virtual work expression.  

Freed [10], stated that the use of Logarithmic strain, although more complex in evaluation, will 

ultimately lead to much simpler constitutive equations especially under the conditions of large deformations.  

Greco and Ferreira [11], used the Logarithmic strain measure to obtain a GNL finite element formulation to deal 

with large strains on space trusses. The formulation was based on the positional formulation. Camrino, Monlans 

and Bathe [12], developed a fully implicit algorithm for large strain anisotropic elasto-plasticity with mixed 

hardening using hyper-elasticity in terms of Logarithmic strains. Petterman et al [13], extended an incremental 
approach to the thermoelasto-plasticity problem to account for large strains by means of Cauchy stresses and 
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Logarithmic strains. Yegneh [14], introduced a constitutive model for rigid-plastic hardening materials based on 

the Logarithmic strain tensor. Ulz [15], presented a model of rate independent and rate dependent thermo-

plasticity in the Logarithmic Lagrangian strain space at finite strains. Naghdabadi et al [16], introduced a finite 

deformation constitutive model for rigid plastic hardening materials based on the logarithmic strain tensor. 

Miehe et al [17], outlined a constitutive model and experimental results of rate dependent finite elastic-plastic 

behavior of polymers. Their proposed formulation was constructed in the Logarithmic strain space. Dvortein et 

al [18], used the Logarithmic strain measure to develop a quadrilateral finite element formulation for modeling 

finite strain elasto-plastic deformation processes. Hence, a formulation that enables the accurate evaluation of 

the true Cauchy stresses for finite deformation will be of great benefit for both geometric and material nonlinear 

finite element analyses.  

Akasha and Mohamed [19], developed a TL formulation for the evaluation of the Cauchy stresses 
based on the Logarithmic strains. The formulation was based on the variation of the Engineering strains. The 

only limitation of the formulation was the assumption that the 

Engineering shear strains are small. In a recent paper Mohamed, Akasha and Adam [20], developed a 

TL formulation based on the Engineering strains using the actual shear strains. 

This paper presents a TL formulation for finite strain geometric nonlinear plane stress/strain problems. 

The formulation uses the Logarithmic strains and the true Cauchy stresses. The formulation is based on the 

variation of actual Engineering strains. The results for the Cauchy stresses obtained from the developed 

formulation are compared with the actual Engineering stresses (Ref. [20]) and the Cauchy stresses presented in 

Ref. [19].   

 

II. GEOMETRICALLY NON-LINEAR FINITE ELEMENT TL FORMULATION  

BASED ON LOGARITHMIC STRAINS 
Direct proportionality between the 2ndPiola-Kirchhoff stresses, s0, and the Green-Lagrange strains, e0, 

is assumed when writing the virtual work expression. In two dimensions, with reference to the initial 

configuration (t=0), the Green strains are given by: 

𝒆𝟎  =  𝑒𝑥,𝑒𝒚,𝑒𝑥𝑦  
𝑇

 =  
1

2
 𝐅T𝐅 −   𝐈                                                                                                                                    (1) 

where F is the displacement gradient  matrix 

In a finite element formulation equation (1) is written as:  

 𝒆𝟎   =  𝒆0
𝟎 +  𝒆0

𝑳   =  𝐁𝟎𝒂𝟎 +
1

2
𝐁𝑳 𝒂𝟎 𝒂0                                                                                                                           (2) 

where 𝒂𝟎 is the vector of nodal variables.   The nonlinear strain 𝒆𝟎
𝑳can be written as:  

𝒆𝟎
𝑳  =  

1

2
𝐁𝑳 𝒂𝟎 𝒂0  =  

1

2
𝑨𝜃𝜽0                                                                                                                                               (3) 

where𝜽0 =   
𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑥

𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑦
 
𝑇

=  𝑮0𝒂0                                                                                                                                       (4) 

u and v being the displacement components in the x and y directions respectively.   

Hence, the strain displacement matrix B is given from the variation in strain by:  

𝑩 =  
𝝏 𝒆𝟎 

𝝏𝒂0  
=  𝐁𝟎  +  𝐁𝑳 𝒂𝟎 = 𝑩0 + 𝑨𝜃𝑮0                                                                                                                            (5) 

In two dimensions the Engineering strains, unit stretch,𝐸𝑥and 𝐸𝑦  are defined by the change in length 

per unit initial length of line elements originally oriented parallel to the x and y
  

axes respectively. The shear 

strain 𝛾𝑥𝑦  is the actual angle change. 

The Engineering strains, as defined above, are given in terms of Green strains by: 

𝐸𝑥  =   𝑔𝑥 .𝑔𝑥  − 1 =   1 + 2𝑒𝑥 −  1,      𝐸𝑦  =    𝑔𝑦 .𝑔𝑦 −  1 =   1 + 2𝑒𝑦 −  1                                                 (6) 

and the shear strain is defined from: 

𝑒𝑥𝑦 =  𝑔𝑥 .𝑔𝑦  =   1 + 2𝑒𝑥   1 + 2𝑒𝑦  sin𝐸𝑥𝑦  

as:          𝐸𝑥𝑦  =  sin−1  
𝑒𝑥𝑦

 1+2𝑒𝑥    1+2𝑒𝑦       
                                                                                                                           (7) 

where 𝑔𝑥  = 
𝜕𝑅

𝜕𝑥
  , 𝑔𝑦 =

𝜕𝑅

𝜕𝑦
  are the displacement gradient vectors, and R is the position vector after deformation. 

The variation in the Engineering strains is given in terms of the variation in Green strains by: 

𝛿𝑬0 =   𝛿𝐸𝑥  𝛿𝐸𝑦  𝛿𝐸𝑥𝑦  
𝑻

 = 𝑯𝛿𝒆0                                                                                                                                       (8) 

From which, the variations in the Engineering strains are given by: 

𝛿𝑬0  = 𝑯𝑩𝛿𝒂0  =  𝑩∗ 𝛿𝒂0                                                                                                                                                     (9) 

In which B is the strain matrix, and H relates variation in Engineering strains to variation in  Green strains and is 

given by: 
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H = 

 
 
 
 
 

𝟏

 𝒍𝒙
0 0

0
𝟏

 𝒍𝒚
0

−𝒆𝒙𝒚

𝒍𝒙∗ 𝒍𝒆

−𝒆𝒙𝒚

𝒍𝒚∗ 𝒍𝒆

𝟏

 𝒍𝒆 
 
 
 
 

                                                                                                                                                       (10) 

 

In which: 

𝑙𝑥 = 1 + 2 𝑒𝑥 , 𝑙𝑦 = 1 + 2 𝑒𝑦 , 𝑙𝑒 =  1 + 2𝑒𝑥  1 + 𝑒𝑦 −  𝑒𝑥𝑦
2                                                                      (11) 

The “true” Cauchy stresses are defined as the internal forces per unit area acting along the normal and 

two tangential directions of the deformed configuration. The Logarithmic strain ε is the strain associated with 

the Cauchy stress τ. In two dimensions the Logarithmic strains are defined   in terms of the Engineering strains 

as:  

𝜀𝑥 = ln 1 +  𝐸𝑥 , 𝜀𝑦 = ln 1 + 𝐸𝑦 , 𝜀𝑥𝑦 = 𝐸𝑥𝑦                                                                                              (12) 

Wherein the true shear strain is defined as the actual change in the angle (in radians) between two  
 material line elements initially perpendicular to each other.   

And the Cauchy stresses are given by:   

𝝉= { 𝜏𝑥𝜏𝑦𝜏𝑥𝑦 }𝑇 = 𝑫 𝜺                                                                                                                                                            (13) 

From (12), the variation in Logarithmic strains is defined in terms of the variation in Engineering 

 strains as:   

𝛿𝜺0 = 𝑳 𝛿𝑬0  = 𝑳𝑯𝑩𝛿𝒂0  =  𝑩′  𝛿𝒂0                                                                                                                                (14) 

In which L is given by:   

L = 

 
 
 
 

1

1+𝐸𝑥
0 0

0
1

1+𝐸𝑦
0

0 0 1 
 
 
 

                                                                                                                                                             (15) 

The incremental equilibrium equations in terms of Cauchy stresses are:  

−𝝋  =  𝐑−   𝑩𝑇𝑯𝑇𝑳𝑇𝝉 𝑑𝑉0
𝑉0

 =   𝐑 −   𝑩′𝑇𝝉 𝑑𝑉0
𝑉0

                                                                                           (16) 

And their variation gives: 

𝛿𝝋   = 𝑲𝑇
∗  𝛿𝒂0                                                                                                                                                                     (17) 

In which the tangent stiffness matrix   𝑲𝑇   is given by:   

𝑲𝑇  =  𝑲0 +  𝑲𝐿 +  𝑲𝜎 + 𝑲𝜎
∗ +  𝑲𝜎

∗∗                                                                                                                           (18) 

where: 

𝑲0 +  𝑲𝐿  =   𝑩𝑇 𝑯𝑇𝑳𝑇𝑫𝑳𝑯𝑩 𝑑𝑉0
𝑉0

=   𝑩′𝑇𝑫𝑩′𝑑𝑉0
𝑉0

                                                                                      (19) 

and 𝑲𝜎   is the initial stress stiffness matrix dependent on the Cauchy stress, and can be written as:  

𝑲𝜎  =  𝑮0
𝑇𝑷𝟎𝒊𝑮0𝑑𝑉0

𝑉0

                                                                                                                                                       (20) 

where 𝑮0 is the matrix containing shape function derivatives (equation (4)). 

and the initial stress matrix 𝑷𝟎𝒊 is defined as:  

𝑷𝟎𝒊  =   
𝜏𝒙
∗ 𝐼 𝜏𝒙𝒚

∗  𝐼 

𝜏𝒙𝒚
∗  𝐼 𝜏𝒚

∗ 𝐼 
                                                                                                                                                        (21) 

where 𝐼  is 22 unit matrix. 

and 𝝉∗is the stress vector given by:  

𝝉∗   =   

𝜏𝒙
∗

𝜏𝒚
∗

𝜏𝒙𝒚
∗
  =  𝑯𝑇𝑳𝑇  

𝜏𝒙
𝜏𝒚
𝜏𝒙𝒚

                                                                                                                                               (22) 

And the 1st  additional initial stress stiffness matrix  𝑲𝜎
∗  takes the following form:  

𝑲𝜎
∗  =   𝑩𝑇𝑷𝟎𝒊

∗ 𝑩 𝑑𝑉0
𝑉0

                                                                                                                                                       (23) 

Where 𝑷𝟎𝒊
∗  the  2nd  initial stress matrix is obtained from:  

𝛿𝑯𝑇𝑳𝑇𝝉 =  𝑷𝟎𝒊
∗ 𝛿𝜺0  = 𝑷𝟎𝒊

∗  𝑩𝛿𝒂0                                                                                                                                       (24) 

and 𝑷𝟎𝒊
∗  is given by: 
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𝑷𝟎𝒊
∗ =

 
 
 
 
 
 
 
 
−𝜏𝑥

′

 𝑙𝑥
3

+
2𝑒𝑥𝑦 𝜏𝑥𝑦

′

𝑙𝑥
2 ∗  𝑙𝑒

+
𝑙𝑦𝑒𝑥𝑦 𝜏𝑥𝑦

′

𝑙𝑥 ∗  𝑙𝑒
3

𝑒𝑥𝑦 ∗ 𝜏𝑥𝑦
′

 𝑙𝑒
3

−𝑙𝑦𝑒𝑥𝑦 𝜏𝑥𝑦
′

 𝑙𝑒
3

𝑒𝑥𝑦 ∗ 𝜏𝑥𝑦
′

 𝑙𝑒
3

−𝜏𝑦
′

 𝑙𝑦
3

+
2𝑒𝑥𝑦 𝜏𝑥𝑦

′

𝑙𝑦
2 ∗  𝑙𝑒

+
𝑙𝑥𝑒𝑥𝑦 𝜏𝑥𝑦

′

𝑙𝑦 ∗  𝑙𝑒
3

−𝑙𝑥𝑒𝑥𝑦 𝜏𝑥𝑦
′

 𝑙𝑒
3

−𝑙𝑦𝑒𝑥𝑦 𝜏𝑥𝑦
′

 𝑙𝑒
3

−𝑙𝑥𝑒𝑥𝑦 𝜏𝑥𝑦
′

 𝑙𝑒
3

𝑒𝑥𝑦 𝜏𝑥𝑦
′

 𝑙𝑒
3

 
 
 
 
 
 
 
 

                                                   (25) 

 

And 𝝉′ is the stress vector given by:  

𝝉′   =   

𝜏𝒙
′

𝜏𝒚
′

𝜏𝒙𝒚
′

  =  𝑳𝑇  

𝜏𝒙
𝜏𝒚
𝜏𝒙𝒚

                                                                                                                                                     (26) 

The 2nd   additional initial stress stiffness matrix  𝑲𝜎
∗∗ is of the following form:  

𝑲𝜎
∗∗  =   𝑩𝑇𝑯𝑇𝑷𝟎𝒊

∗∗𝑯𝑩 𝑑𝑉0𝑉0
  

         =  𝑩∗𝑇𝑷𝟎𝒊
∗∗𝑩∗𝑑𝑉0

𝑉0

                                                                                                                                                     (27) 

Where 𝑷𝟎𝒊
∗∗the 3rd initial stress matrix is obtained from:  

𝛿𝑳𝑇𝝉 =  𝑷𝟎𝒊
∗∗𝛿𝑬0  = 𝑷𝟎𝒊

∗∗𝑯 𝑩𝛿𝒂0                                                                                                                                        (28) 

and is given by:    

 

𝑷𝟎𝒊
∗∗ =

 
 
 
 
 

−𝜏𝑥
(1 + 𝐸𝑥)2

0 0

0
−𝜏𝑦

(1 + 𝐸𝑦)2
0

0 0 0 
 
 
 
 

                                                                                                                                  (29) 

Upon solving the incremental equilibrium equations for the displacement increments ∆𝒂0
𝑖  the total 

displacements  𝒂0
𝑖+1 are obtained as:  

𝒂0
𝑖+1 =  𝒂0

𝑖 +  ∆𝒂0
𝑖                                                                                                                                                                  (30) 

Then, the strain increments are given by:  

∆𝜺0
𝑖  =  𝑳  𝑯  𝐁𝟎 +  𝐁𝑳 𝒂0

𝑖+1 +  
1

2
𝐁𝑳 ∆𝒂0

𝑖    ∆𝒂0
𝑖                                                                                                   (31) 

The stress increments are then given by:  

∆𝝉0
𝑖  = 𝑫∆𝜺0

𝑖                                                                                                                                                                           (32) 

And the total stresses are:  

𝝉0
𝑖+1  =  𝝉0

𝑖 + ∆𝝉0
𝑖                                                                                                                                                                   (33) 

The residual forces, for a new displacement increment, are then equal to:  

−𝝋𝒊+𝟏  = 𝐑 −   𝑩𝑇𝑯𝑇𝑳𝑇𝝉𝟎
𝒊+𝟏𝑑𝑉0

𝑉0

= 𝐑 −   𝑩′𝑇𝝉𝟎
𝒊+𝟏𝑑𝑉0

𝑉0

                                                                                    (34) 

 

III. NUMERICAL RESULTS AND DISCUSSION 
The finite element TL formulation described in the above section was implemented in the FORTRAN 

based program NUSAP. Three numerical examples of large deformation problems were examined to 

demonstrate the degree of accuracy that can be obtained by using the geometrically non-linear formulation 

based on 4-node isoparametric plane stress/strain elements. The results of the true Cauchy stresses obtained 

from the formulation based on the Logarithmic strains (Log ) are compared with Cauchy stresses obtained using 

the formulation presented in reference [19] (Log Re19) and the Engineering stresses from reference [20] (Eng). 

 

3.1 Cantilever under point load at free end 
The (Log) formulation was tested by analyzing the cantilever plate with vertical load at the free end. 

The cantilever is of dimensions L=2.5m, b=1m and t=0.1m as shown in Figure (1). The numerical values of 

material property parameters are; Young's modulus, E = 2x10
8
 kN/m

2
 and Poisson’s ratio υ = 0.3. The structure 

is modeled with 40 equal size isoparametric elements. The results obtained for stresses are compared with those 

from Ref [19]  (Log Re19) and Ref [20] (Eng). Graphical comparison of results of the stresses at the support and 

at mid- span are presented in Figures (2) to (7). Tables (1), (2) and (3) show the stresses at mid-span.  
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At mid-span the x-direction stress values closely agree for small and medium deformations. For large 

deformation there is a clear difference between the stress values with a maximum of 35.5% between the Log and 

Log R19 and 31% between the Log and Eng formulations. The y-direction stress values vary similarly with a 

maximum difference of 24% for the Log and the Log R19 and 29% for the Log and Eng formulations. For small 

strain, the shear stress values are in close agreement for all formulations. The Log and the Log R19 shear values 

closely agree up to the 140 kN load (4% maximum difference). The maximum difference between the Log and 

Eng shear values is about 21% for the 140 kN load. For larger loads there are marked differences between the 

shear values for all formulations.  

At the support the x-direction stress values for the Log and Eng formulations closely agree for all loads 

with a maximum difference of 2%. The Log R19 values vary slightly from the Log values for large loads with a 

maximum difference of 7%. The y-direction stresses are in close for the three formulations for all loads. There 
are marked differences in the shear stress values at the support for large loads. The maximum difference is about 

17.5% between the Log and the Eng values and 36%   between the Log and the Log R19 values. 

The differences between the Log and Log R19 values are mainly due to the assumption of small 

engineering shear strains in the Log R19 formulation. The differences between the Log and Eng values may be 

attributed to the large strain value at mid-span.  

 
Figure (1) Cantilever plate with vertical load at free end 

 

Table (1): Average Nodal Stress in x-direction at mid span 

LOAD 
(N) 

Stress (N/mm2) LOAD 
(N) 

Stress (N/mm2) 
Log Log Ref19 Eng Log Log Ref19 Eng 

0 0 0 0 92000 -5.61E+06 -6.63E+06 -4.86E+06 

4000 -2.99E+05 -2.99E+05 -2.99E+05 100000 -5.26E+06 -6.65E+06 -4.51E+06 

20000 -1.50E+06 -1.51E+06 -1.49E+06 116000 -3.22E+06 -5.70E+06 -2.82E+06 

36000 -2.75E+06 -2.80E+06 -2.66E+06 132000 1.37E+06 -2.79E+06 6.57E+05 

52000 -3.99E+06 -4.14E+06 -3.75E+06 148000 9.56E+06 2.94E+06 6.54E+06 

68000 -5.06E+06 -5.41E+06 -4.59E+06 164000 2.24E+07 1.24E+07 1.55E+07 

84000 -5.64E+06 -6.38E+06 -4.95E+06 180000 4.08E+07 2.63E+07 2.81E+07 

 

L = 2.5 m 

y P/2 

x D = 1 m 

P/2 



Use of Logarithmic Strains to Evaluate “True” Cauchy Stresses in Finite Deformation Problems 

www.iosrjen.org                                                    39 | P a g e  

 

Figure (2): Average Nodal Stress in                            Figure (3): Average Nodal Stress in 

x-direction at mid span                                                y-direction at mid span 

 

Table (2): Average Nodal Stress in y-direction at mid span 

LOAD 
(N) 

Stress (N/mm2) LOAD 
(N) 

Stress (N/mm2) 
Log Log Ref19 Eng Log Log Ref19 Eng 

0 0 0 0 92000 2.05E+06 1.01E+06 1.99E+06 

4000 2.43E+04 2.44E+04 2.43E+04 100000 3.31E+06 1.90E+06 3.02E+06 

20000 1.30E+05 1.38E+05 1.20E+05 116000 7.28E+06 4.82E+06 6.08E+06 

36000 2.28E+05 2.77E+05 1.77E+05 132000 1.39E+07 9.81E+06 1.09E+07 

52000 2.10E+05 3.65E+05 9.64E+04 148000 2.39E+07 1.76E+07 1.80E+07 

68000 1.35E+05 2.34E+05 2.89E+05 164000 3.84E+07 2.88E+07 2.79E+07 

84000 1.15E+06 3.91E+05 1.22E+06 180000 5.79E+07 4.42E+07 4.11E+07 

 

Table (3): Average Shear Stress at mid span 

LOAD 
(N) 

Stress (N/mm2) LOAD 
(N) 

Stress (N/mm2) 
Log Log Ref19 Eng Log Log Ref19 Eng 

0 0 0 0 92000 -1.08E+06 -9.87E+05 -9.32E+05 

4000 -2.18E+04 -2.17E+04 -2.17E+04 100000 -1.33E+06 -1.22E+06 -1.12E+06 

20000 -1.11E+05 -1.10E+05 -1.11E+05 116000 -1.95E+06 -1.83E+06 -1.54E+06 

36000 -2.13E+05 -2.06E+05 -2.12E+05 132000 -2.56E+06 -2.53E+06 -1.98E+06 

52000 -3.48E+05 -3.29E+05 -3.40E+05 148000 -2.75E+06 -3.08E+06 -2.25E+06 

68000 -5.50E+05 -5.10E+05 -5.18E+05 164000 -1.71E+06 -2.90E+06 -2.06E+06 

84000 -8.65E+05 -7.92E+05 -7.71E+05     

 

 

Figure (4) Average shear stress at mid span               Figure (5) Average Nodal Stress in  

x- direction at support 
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Figure (6) Average Nodal Stress in                              Figure (7) Average shear stress at Support 

                          y-direction at support             

 

3.2 Cantilever under pure bending at free end: 

A cantilever subjected to pure moment is considered. The cantilever is of dimensions L = 3000mm, D 

= 300 mm and thickness t = 60 mm as shown in Figure (8). The numerical values of material property 

parameters are Young's modulus, E = 210 GPa, and Poisson’s ratio, υ = 0.3. The structure is modeled with a 

mesh of 40-isoparametric elements. The mesh is of equal size elements of 150x150mm. The variations in the 

stresses at the support and at mid-span with load increments as computed by Log formulation are compared with 

the Eng formulation results from Ref [20] and the Log Re19 formulation result presented in Ref [19]. The 

results are presented in Figures (9) to (14) and tables (4) to (9).   
As can be seen from the tables the values of the stresses are generally small. The stresses in the x-

direction are in close agreement for all formulations up to the 18000N load with a difference of about 3%. The 

Log and Eng values clearly agree for all loads. The stresses in the y-direction and the shear stresses at mid-span 

are small and show a similar trend. The stresses at the support vary almost linearly and are all in close 

agreement for all loads. This is mainly due to the small strain values at the support. 

 

 
Figure (8): Cantilever under pure bending 

 

Table (4): Average Nodal Stress in x-direction at mid span 

Stress (N/mm2) 
LOAD (N) 

Eng Log Log Re19 
0 0 0 0 

1.23E+00 1.24E+00 1.24E+00 6000 
2.43E+00 2.47E+00 2.50E+00 12000 
3.37E+00 3.46E+00 3.58E+00 18000 
3.63E+00 3.63E+00 3.94E+00 24000 
2.61E+00 2.60E+00 2.71E+00 30000 
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Figure (9): Average Nodal Stress in                                Figure (10): Average Nodal Stress in 

x-direction at mid span                                          y-direction  at mid span 

 
Table (5): Average Nodal Stress in y-direction at mid span 

Stress (N/mm2) 
LOAD (N) 

Eng Log Log Re19 
0 0 0 0 

9.13E-02 9.23E-02 9.62E-02 6000 

7.57E-02 7.32E-02 1.05E-01 12000 

3.18E-01 4.00E-01 2.86E-01 18000 

1.54E+00 1.96E+00 1.67E+00 24000 

4.18E+00 5.54E+00 4.92E+00 30000 

 
Table (6): Average Shear Stress at mid span 

Stress (N/mm2) 
LOAD (N) 

Eng Log Log Re19 
0 0 0 0 

2.67E-03 1.96E-03 4.47E-05 6000 

2.23E-02 2.34E-02 1.50E-02 12000 

8.97E-02 1.09E-01 8.82E-02 18000 

2.48E-01 3.20E-01 2.83E-01 24000 

5.40E-01 6.91E-01 6.39E-01 30000 

 

 

Figure (11) Average shear stress  at mid-span                Figure (12) Average Nodal Stress in 

                                                                                        x-direction  at support 
 

 

Table (7): Average Nodal Stress in x-direction at support 
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Stress (N/mm2) 
LOAD (N) 

Eng Log Log Re19 
0 0 0 0 

1.82E+00 1.79E+00 1.78E+00 6000 

3.66E+00 3.54E+00 3.50E+00 12000 

5.54E+00 5.28E+00 5.19E+00 18000 

7.44E+00 7.00E+00 6.86E+00 24000 

9.36E+00 8.73E+00 8.52E+00 30000 

 
Table (8): Average Nodal Stress in y-direction at support 

Stress (N/mm2) 
LOAD (N) 

Eng Log Log Re19 
0 0 0 0 

1.24E+00 1.25E+00 1.23E+00 6000 

2.50E+00 2.51E+00 2.44E+00 12000 

3.77E+00 3.80E+00 3.64E+00 18000 

5.05E+00 5.12E+00 4.81E+00 24000 

- - - 30000 

 

 
Figure (13): Average Nodal Stress in                                   Figure (14): Average Shear Stress at 

y-direction at support                                                        support 
 

Table (9): Average Shear Stress at support 

Stress (N/mm2) 
LOAD (N) 

Eng Log Log Re19 
0 0 0 0 

1.24E+00 1.25E+00 1.23E+00 6000 

2.50E+00 2.51E+00 2.44E+00 12000 

3.77E+00 3.80E+00 3.64E+00 18000 

5.05E+00 5.12E+00 4.81E+00 24000 

6.36E+00 6.46E+00 5.97E+00 30000 

 

3.3 Clamped beam under point force 

A beam with two-fixed ends is considered. The beam is of length L = 200mm, height D = 10mm and 
thickness 1 mm as shown in Figure (15). The numerical values for material property parameters are Young's 

modulus, E = 210 GPa, Poisson's ratio, υ = 0.3. The beam is modeled with a mesh of 20-elementes. 

The variation of the stresses at the support and at mid-span with the load increments as computed from 

the Log formulation are compared with the Eng formulation results (Ref.[20]), and the Log Re19 formulation 

results(Ref.[19]) in Figures (16) to (21).   
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Figure (15):Clamped beam under point force 

 

Tables (10), (11) and (12) show the values for average nodal stresses at mid-span. Very large loads 

were applied in this example resulting in large strains.  
The Log values are the closest to the LogRe19 values for direct stresses at the support. A similar trend 

is shown by the values of the stresses in the x-direction at mid span with a maximum  percentage difference 

between the Log  and  Log Re19 values of about  3% (around 10% for Eng). The stress at mid-span in the y-

direction shows a similar variation  with the three stress values  in close agreement and  continuously increasing. 

The maximum difference between the Log values and Eng values is around 7% and that between the Log values 

and the Log R19 values is 9%. The Eng shear stress  at mid-span values are large, compared to the values for 

Log Re19 and for Log, and all three formulations show  almost a linear variation. The Log Re19  shear values 

differ from the Eng values by about 104%  as a result of the large strains and the assumption that the 

Engineering shear strain is small in the Log R19 formulation. The maximum difference between the Log shear 

values and Log R19 values is 32% as a result of this assumption. Thus, the assumption that the shear strain is 

small limits the use of the Log Re19 formulation for cases of small shear strain. The maximum difference of 

38% between the shear values of the Log and Eng formulations is mainly due to the effect of large strains. Table 
(13) and Figure (22) show the maximum principal stresses at mid-span for the three formulations. These are 

almost identical for small and medium strain values with a maximum difference of about 3% between the Log 

and the Log R19 values. The maximum difference between the Log and Eng values is 9.5%. Hence, the stresses 

obtained using the Log formulation are considered to be  an accurate measure of the true Cauchy stresses in 

large strain GNL.    

 

 
              Figure (16): Average Nodal Stress in                           Figure (17): Average Nodal Stress in 

x-direction at support                                                  y-direction at support 
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                 Figure (18): Average Shear Stress                                   Figure (19): Average Nodal Stress in 

                               at   support                                                                          x-direction at mid-span  

 
Table (10): Average Nodal Stress in x-direction at mid span 

LOAD 
(N) 

Stress (N/mm2) LOAD 
(N) 

Stress (N/mm2) 
Log Ref19 Log Eng Log Ref19 Log Eng 

0 0 0 0 17800 7.47E+03 7.48E+03 7.52E+03 

1000 1.23E+03 1.25E+03 1.23E+03 19400 8.40E+03 8.43E+03 8.50E+03 

2600 3.32E+03 3.46E+03 3.31E+03 21000 9.44E+03 9.50E+03 9.55E+03 

4200 4.10E+03 4.23E+03 4.10E+03 22600 1.06E+04 1.07E+04 1.07E+04 

5800 4.12E+03 4.15E+03 4.13E+03 24200 1.18E+04 1.19E+04 1.19E+04 

7400 4.12E+03 4.07E+03 4.14E+03 25800 1.31E+04 1.33E+04 1.31E+04 

9000 4.27E+03 4.18E+03 4.29E+03 27400 1.45E+04 1.48E+04 1.43E+04 

10600 4.57E+03 4.47E+03 4.59E+03 29000 1.60E+04 1.63E+04 1.56E+04 

12200 5.01E+03 4.93E+03 5.03E+03 30600 1.75E+04 1.79E+04 1.69E+04 

13800 5.57E+03 5.52E+03 5.59E+03 32200 1.91E+04 1.96E+04 1.82E+04 

15400 6.25E+03 6.24E+03 6.26E+03 33800 2.07E+04 2.13E+04 1.95E+04 

17000 7.04E+03 7.07E+03 7.04E+03 35400 2.23E+04 2.30E+04 2.07E+04 

 

Table (11): Average Nodal Stress in y-direction at mid span 

LOAD 
(N) 

Stress (N/mm2) LOAD 
(N) 

Stress (N/mm2) 
Log Ref19 Log Eng Log Ref19 Log Eng 

0 0 0 0 17800 1.76E+03 1.85E+03 2.20E+03 
1000 3.21E+02 3.21E+02 3.39E+02 19400 2.35E+03 2.47E+03 2.90E+03 
2600 7.52E+02 7.51E+02 8.76E+02 21000 3.03E+03 3.20E+03 3.68E+03 
4200 6.43E+02 6.39E+02 7.71E+02 22600 3.80E+03 4.02E+03 4.54E+03 
5800 3.39E+02 3.33E+02 3.94E+02 24200 4.65E+03 4.94E+03 5.45E+03 
7400 1.52E+02 1.45E+02 1.58E+02 25800 5.58E+03 5.94E+03 6.41E+03 
9000 1.13E+02 1.08E+02 1.10E+02 27400 6.58E+03 7.03E+03 7.40E+03 

10600 1.98E+02 1.98E+02 2.23E+02 29000 7.65E+03 8.21E+03 8.43E+03 
12200 3.87E+02 3.96E+02 4.69E+02 30600 8.77E+03 9.45E+03 9.47E+03 
13800 6.69E+02 6.92E+02 8.33E+02 32200 9.93E+03 1.08E+04 1.05E+04 
15400 1.04E+03 1.08E+03 1.30E+03 33800 1.11E+04 1.21E+04 1.16E+04 
17000 1.50E+03 1.57E+03 1.88E+03 35400 1.23E+04 1.35E+04 1.26E+04 
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       Figure (20): Average Nodal Stress                                Figure (21): Average Shear Stress at 

                          in y-direction at  mid span                                                         at mid span 
 

Table (12): Average Shear Stress at mid span 

LOAD 
(N) 

Stress (N/mm2) LO AD 
(N) 

Stress (N/mm2) 
Log Ref19 Log Eng Log Ref19 Log Eng 

0 0 0 0 17800 2.42E+02 3.68E+02 5.14E+02 

1000 3.73E-01 1.50E+00 1.87E+00 19400 2.70E+02 4.16E+02 5.82E+02 

2600 2.11E+01 1.05E+01 3.90E+01 21000 3.01E+02 4.66E+02 6.52E+02 

4200 1.12E+01 8.32E+00 2.74E+01 22600 3.33E+02 5.18E+02 7.23E+02 

5800 2.74E+01 5.47E+01 3.50E+01 24200 3.66E+02 5.71E+02 7.94E+02 

7400 6.55E+01 1.01E+02 1.03E+02 25800 4.02E+02 6.25E+02 8.66E+02 

9000 9.75E+01 1.42E+02 1.66E+02 27400 4.38E+02 6.80E+02 9.38E+02 

10600 1.25E+02 1.81E+02 2.27E+02 29000 4.76E+02 7.35E+02 1.01E+03 

12200 1.51E+02 2.20E+02 2.88E+02 30600 5.16E+02 7.89E+02 1.08E+03 

13800 1.76E+02 2.59E+02 3.50E+02 32200 5.57E+02 8.43E+02 1.16E+03 

15400 2.01E+02 3.01E+02 4.14E+02 33800 5.99E+02 8.95E+02 1.23E+03 

17000 2.28E+02 3.45E+02 4.80E+02 35400 6.43E+02 9.46E+02 1.31E+03 

 

Table (13) Maximum Principal Stress at Mid-span 

LOAD (N) 
Stress (N/mm2) 

LOAD 
(N) 

Stress (N/mm2) 
LOAD 

(N) 

Stress (N/mm2) 
Log 

Ref19 
Log Eng 

Log 
Ref19 

Log Eng 
Log 

Ref19 
Log Eng 

0 0 0 0 12200 4935 5020 5048 24200 11819 11947 11996 

1000 1250 1230 1230 13800 5526 5584 5616 25800 13121 13353 13210 

2600 3460 3460 3311 15400 6248 6267 6294 27400 14524 14859 14425 

4200 4230 4100 4100 17000 7079 7062 7084 29000 16027 16366 15740 

5800 4150 4121 4130 18600 7931 7966 8054 30600 17530 17973 17054 

7400 4071 4123 4143 20200 8923 8982 9076 32200 19134 19680 18371 

9000 4182 4275 4297 21800 10015 10137 10178 33800 20737 21386 19687 

10600 4474 4577 4602 23400 11217 11343 11390 35400 22341 23093 20907 
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Figure (22) Maximum Principal Stress at Mid-span 

 

IV. CONCLUSIONS 
Based on the results of the numerical examples, it can be concluded that: 

1- The Total Lagrangian solutions based on the Engineering and the Logarithmic strains give almost identical 

results for small and moderately large strains. 

2- The Logarithmic strain formulation based on the assumption of small Engineering shear strains is not 

suitable for use in evaluating the true Cauchy stresses when the strains are large.  
3- The use of Logarithmic strains is necessary when the exact true stresses are required. The stress results from 

this formulation are to be used in constitutive relations based on Logarithmic strains for elasto-plastic finite 

strain analyses.   

4- The formulation based on the Engineering strains and Logarithmic strains can be easily extended to three-

dimensional analysis. 
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