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Abstract: - In this paper we study the travelling wave solutions of a reaction-diffusion system with a  slow 

reaction and a slow diffusion  for one component. We use a semi-implicit method and finite element method 

(COMSOL software) for solving this system. We compare both methods and we found an excellent agreement 

between the solutions. 
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I. INTRODUCTION 
Traveling wave is a wave that move with constant speed without changes of its shape (see for example 

[9,10]). A Reaction-Diffusion models have many applications in biology, chemistry, ecology and physics. The 

travelling wave solutions are the key fact to translate these applications to a mathematical equations see [4-8].  

One of the reaction-diffusion model has been derived from the reaction between two chemical species 𝐴 and 𝐵 

that react via the single autocatalytic step  

  𝐴 + 𝐵 → 2𝐵,   rate 𝑘𝑎𝑏, where 𝑎 =  𝐴  and 𝑏 =  𝐵 . The mathematical system that derived from these 

interactions is the governing equations for the one-dimensional chemical system [1,2], 

               

                         
𝜕𝑢  

𝜕𝑡
= 𝐷𝑢  𝜆

𝜕2 𝑢

𝜕𝑥2 − 𝑘𝑢𝜆 𝑢𝑤, 

                          
𝜕𝑤  

𝜕𝑡
= 𝐷𝑤  

𝜕2 𝑤

𝜕𝑥2 + 𝑘𝑤𝑢𝑤, …… . . (1) 

                                                            

where  −𝑘𝑢   𝜆𝑢𝑤, 𝑘𝑤𝑢𝑤, are the reaction terms and the rests of the terms are the diffusion terms,  amd 𝜆 ≪
1,   𝑘𝑢   ,   𝑘𝑤  are positive. The travelling wave connects stable steady states to other states. When 𝜆 ≪ 1, the 

equation of 𝑢 has a slow reaction and slow diffusion. It was shown in [1] that when 𝜆 = 1 there exists a 

travelling wave solution in (1) that connects a stable steady state (1,0) to (0,1) . In the section 2, we use a finite 

difference method to solve (1) and find the traveling wave solutions, in section 3, we use COMSOL finite 

element method package to solve the reaction diffusion system and compare it to the numerical method in 

section 2. We conclude in section 4. We assume in what follows 𝑘𝑢 = 𝑘𝑤 = 1. 
  

II. NUMERICAL METHODS 
In this section we solve (1) numerically and try to find the travelling wave solutions that connect (1,0) 

to (0,1) and generated by the initial conditions. A semi-implicit finite difference method provides a sufficiently 

accurate numerical solution since it is unconditionally stable. An implicit method is used to discretise the 

diffusion operator. For the non linear reaction part we use an explicit method. Finite difference method can be 

derived using Taylor series expansion 𝑢 𝑥0 + Δ𝑥  and 𝑢 𝑥0 − Δ𝑥 , where Δ𝑥 is the step size of  𝑥. The 

discretization equation of (1) is 
𝑢𝑛
𝑡+∆𝑡−𝑢𝑛

𝑡

∆𝑡
= 𝜆

𝑢𝑛+∆𝑥
𝑡+∆𝑡 −2𝑢𝑛

𝑡+∆𝑡+𝑢𝑛−∆𝑥
𝑡+∆𝑡

 ∆𝑥 2 − 𝜆𝑢𝑛
𝑡  𝑢𝑛

𝑡𝑤𝑛
𝑡  , 

𝑤𝑛
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𝑡
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= 𝐷

𝑤𝑛+∆𝑥
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These equations simplify to give us 

𝐷𝜆𝑟𝑢𝑛+∆𝑥
𝑡+∆𝑡 −  1 + 2𝜆𝑟 𝑢𝑛

𝑡+∆𝑡 + 𝑟𝐷𝜆𝑢𝑛−∆𝑥
𝑡+∆𝑡 = −𝑢𝑛

𝑡 +  ∆𝑡 𝜆𝑢𝑛
𝑡  𝑢𝑛
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𝑟 𝑤𝑛+∆𝑥
𝑡+∆𝑡 −  1 + 2𝐷𝑟 𝑤𝑛

𝑡+∆𝑡 + 𝑟𝑤𝑛−∆𝑥
𝑡+∆𝑡 = −𝑤𝑛

𝑡 −  ∆𝑡 𝑤𝑛
𝑡 𝑢𝑛

𝑡𝑤𝑛
𝑡  , 

where 𝑟 =
Δ𝑡

 Δ𝑥 2. The domain of solution 0 < 𝑥 < 𝑙 is divided into 𝑁 discrete equally spaced points 𝑥 = 𝑥𝑖 =

 𝑖 − 1 Δ𝑥, where 𝑖 = 1,2,… ,𝑁 and Δ𝑥 = 𝑙  𝑁 − 1  . The length of domain 𝑙 should be much larger than 𝑂  
1

𝜆
 , 

when 𝜆 ≪ 1 to capture the travelling wave solutions. The initial conditions are 𝑢 𝑥, 0 = 𝑢0 𝑥  and 𝑤 𝑥, 0 =
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𝑤0 𝑥 . The boundary conditions are no flux Neumann boundary, 𝑢𝑥 = 𝑤𝑥 = 0 at 𝑥 = 0, 𝑙, which are imposed 

using three point formula (this is a second order accuracy stable). 

𝑢′ 𝑥 =
−3𝑢𝑛

𝑡+∆𝑡+4𝑢𝑛+∆𝑥
𝑡+∆𝑡 −𝑢𝑛+2∆𝑥

𝑡+∆𝑡

2∆𝑥
= 0 ,                                         

𝑤 ′ 𝑥 =
−3𝑤𝑛

𝑡+∆𝑡+4𝑤𝑛+∆𝑥
𝑡+∆𝑡 −𝑤𝑛+2∆𝑥

𝑡+∆𝑡

2∆𝑥
= 0.                            2.1 

From discretization we get a system of algebraic equations which can be written in the form 

𝐴𝑈𝑡+1 = 𝑏𝑈𝑡                                                                               2.2 
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Where 

𝐴 =

 

 
 
 
 
 

3
 

−𝐷𝜆𝑟
 

−4
 

 1 + 2𝐷𝜆𝑟 
 

⋱
 

⋱
 

1
 

−𝐷𝜆𝑟
 

 
 

⋱
 

 

 
−𝐷𝜆𝑟

 
 1

 1 + 2𝐷𝜆𝑟 
 

−𝐷𝜆𝑟
 

−4 3  

 
 
 
 
 

                                                     

 

 

𝑏𝑈𝑡 =

 
 
 
 
 
 
 
 
 

0
 

𝑢2
𝑡 −  ∆𝑡 𝑢2

𝑡  𝑢2
𝑡  𝑤2

𝑡 𝑘 
 
⋮
 

𝑢𝑁−1
𝑡 −  ∆𝑡 𝑢𝑁−1

𝑡  𝑢𝑁−1
𝑡  𝑤𝑁−1

𝑡  𝑘 
 
0  

 
 
 
 
 
 
 
 

  ,    𝑈𝑡+1 =

 
 
 
 
 
 
 
 
 
𝑢1
𝑡+1

 
𝑢2
𝑡+1

 
⋮
 

𝑢𝑁−1
𝑡+1

 
𝑢𝑁
𝑡+1  

 
 
 
 
 
 
 
 

   

In the case of 𝑤 
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The initial condition that is used for solving (2.1) and (2.2)  are, 
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𝑢 𝑥, 0 = 1 + tanh 𝑥 , 
                                                             𝑤 𝑥, 0 = 1 − tanh 𝑥 , 
We solve the linear system (2.2)  and (2.3) at each time step using the backslash operator in MATLAB.  

 

III. RESULTS AND DISCUSSION: 
  We applied our codes to the problem (1) when 𝝀 = 𝟏,𝑫 = 𝟏, and we get the same results as in [1]. For  

𝝀 ≪ 𝟏 , the results shown in Fig. (1), explains the travelling wave solutions for both 𝒖 and 𝒘 when 𝑫 = 𝟏. It is 

clear that with small 𝝀 ≪ 𝟏, the traveling wave of 𝒘  grows exponentially and there is no effects on 𝒖. The 

travelling wave solutions are also found for this system using COMSOL, the finite element tool (for more 

details about COMSOL see [3]) as shown in Fig. (2-3). A comparison between these results in the two methods 

has shown first in Fig. (4) for 𝒖, and for 𝒘 in Fig. (5). Finally, a comparison between the travelling wave 

solution in the two methods for 𝒖 and 𝒘 is shown in Fig. (6). From these figures its clear that there are an 

excellent agreement between the results in both methods.  

 
       Figure 1: Travelling wave solutions for 𝒖 and 𝒘 in (1) from semi-implicit method.  

 

 
Figure 2: Travelling wave solutions for 𝒖 in (1) from COMSOL finite element solution. 
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                  Figure 3: Travelling wave solutions for 𝒘 in (1) from COMSOL finite element solution.  

 
Figure 4: Comparison between travelling wave solutions for 𝒖 in (1) in both methods. 
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Figure 5: Comparison between travelling wave solutions for 𝒘 in (1) in both methods. 

 

 
Figure 6: Comparison between travelling wave solutions for 𝒖 and 𝒖 in (1) in both methods. 

 

IV. CONCLUSIONS 
We have found the travelling wave solution for the reaction-diffusion system (1) using semi-implicit 

method and finite element method. It has been found that for slow reaction and diffusion, the traveling wave of 

𝒘  grows exponentially and there are no effects on the wave  𝒖. The results are agree in both methods. 
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