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Abstract: - This paper describes the simulation result of biomass gasification-based crematory’s secondary 

combustion chamber via CFD analysis. The chamber models, which were rectangular and cylinder type, were 

implemented, whereas ANSYS FLUENT with standard k-omega viscous model and SIMPLE algorithm were 

taken place. The results show that an average residence time of gas and particle if simulating by using 

rectangular chamber displays as 2 and 3 second, respectively, whereas the average residence time of cylinder 

chamber type presents 2 second for particle and 4 second for gas. Furthermore, the residence time of cylinder 

chamber type can be increased by lengthening the chamber’s height, which the benefits, such as efficient 

pollution control, will be earned.   
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I. INTRODUCTION 
A double-chambered crematory has been widely introduced, due to its efficiently pollution control and 

combustion performance promotion. This crematory’s type consists of two main chambers: the primary chamber 

is used to burn human corpse and coffin, and the secondary chamber is used to eliminate dust particle and 

combustion gas released from the primary chamber before exhausts to the atmosphere. Generally, petroleum 

fuels, such as diesel oil or liquefied petroleum gas, are used as main fuel in cremation process. However, the 

operation cost per each cremation becomes higher due to the increasing price of global petroleum. Hence, 

research and study for alternative energy application for cremation should be carried out.    

Biomass gasification is a thermo-chemical conversion process that turns organic fuels into gaseous 

compounds (called producer gas or syngas) by supplying oxygen, of which less is needed, to complete fuel 

combustion. The main product of the syngas contains flammable gas such as carbon monoxide (CO), hydrogen 

(H2) and some traces of methane (CH4), which can be used as fuel in a gas engine for electricity generation or 

heat production in a small or medium scale factory[1]. Owing to the biomass producer gas that can be 

combusted more easily than solid biomass, it is possible to apply biomass gasification for cremation, especially 

in the double-chambered crematory. 

The secondary combustion chamber, as described earlier, plays an important role for emission 

elimination occurred from cremation before exhaust to the outside, thus, it is necessary to conduct the 

simulation of combustion and flow characteristics inside the chamber. Accordingly, Computational Fluid 

Dynamics (CFD) analysis was applied in this research. Due to the study of S. Thavornun[2], the temperature of 

this chamber must be maintain at above 920 K that the gas causing of unpleasant odor will be destroyed.     

Y. Achawangkul et.al.[3] have analyzed combustion characteristics inside the double-chambered 

crematory using biomass producer gas as fuel by using CFD and found that the angle of primary burner should 

be 25 degree downward with the air nozzles’ angle should be is 30 and 30 degree along the z-axis and  

y-axis respectively. By these conditions, the maximum temperature of the primary chamber was 1,700 K, while 

the temperature inside the secondary chamber achieved 1,300 K approximately.  

W. Bubpamala [4] has used CFD to analyze the shape of energy-saving crematories using diesel oil as 

fuel. The results showed that the crematory in which the secondary chamber is installed above the primary 

chamber can achieve higher efficiency.  

 

II. RELATED EQUATIONS 
2.1 Governing equations 

Fundamental governing equations used for simulation were Navier-Stokes Equations, which consist of 

mass conservation and momentum conservation. 
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2.2 Heat transfer model 

An energy conservation equation was used for heat transfer inside a control volume prediction. 
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2.3 Standard k  models 

Standard k  models [5] were applied in this research, which are represented in (6)-(7). 
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where Gk represents the generation of turbulent kinetic energy that arises due to mean velocity gradients, and 

G is the generation of  . Yk and Y  represent the dissipation of k and  due to the turbulence, whereas Sk and 

S are defined source terms.   

The turbulent viscosity was defined using a damping coefficient  * . 
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2.4 SIMPLE algorithm 

Because the flow inside the crematory mainly follows the implicit non-linear Navier-Stokes Equations, the well-

known Semi-Implicit Method for the Pressure-Linked Equation (SIMPLE) algorithm was used to solve for the 

model’s velocity flow field [6]. 

 

III. METHODOLOGIES 
SolidWorks was used to implement the crematory model. The primary chamber had a total volume of 

2.03 m
3
. Five auxiliary air nozzles were arranged on both the left and right sides of the chamber, with incline 

angles of 30 degrees along both the z-axis and y-axis. On the chamber’s backside wall, the primary producer gas 

burner was placed at a 25-degree downward angle in order to provide maximum impingement of the flame onto 

the coffin and corpse.  

Concerning the secondary combustion chamber’s model, the shapes were classified into two types: 

rectangular and cylinder. Regarding the rectangular shape, the chamber’s volume was 2.0 m
3
, while a U-shape 

was introduced for efficient dust particle precipitation. Figure 1 shows the implemented crematory’s model with 

the secondary chamber with a rectangular shape. 

For the cylinder-type secondary chamber, the total volume was equal to 0.78 m
3
, with a diameter of 1.0 

m, and a height of 1.0 m. One of these types of chambers was located above the primary chamber (Model C1), 

in which the gas flow (combustion gas and particle) released from the primary chamber was injected at the 

bottom of the secondary chamber, as shown in Fig. 2(a). The other chamber was located beside the primary 

chamber (Model C2), so that gas flow from the primary chamber would be injected beside the cylinder 

secondary chamber, as shown in Fig. 2(b).    

 

 

 

 

 

 

 

 

 

Fig.1 Crematory’s model with a rectangular-prism secondary chamber 
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(a) Secondary chamber located above the primary                    (b) Secondary chamber located beside the primary     

      chamber (Model C1)      chamber (Model C2) 

 

Fig.2 Location of the cylinder-type secondary chamber  

 

After the model implementation, ANSYS FLUENT was used to simulate flow characteristics inside the 

model. A pressure outlet boundary condition was applied to the outlet and the walls were treated at a constant 

wall temperature or adiabatic wall temperature. The wall was assumed to be stationary with non-slip conditions 

applied to the wall surface (Vx = Vy = Vz = 0). The boundary conditions of simulation are presented in Table 1. 

 

Table 1 Boundary conditions input for the crematory simulation 

Velocity of producer gas at 1
st
 burner 5.0 m/s 

Velocity of producer gas at 2
nd

 burner 5.0 m/s 

Velocity of air injected into 1
st
 burner 5.6 m/s 

Velocity of air injected into 2
nd

 burner 5.6 m/s 

Velocity of primary chamber auxiliary air  20.0 m/s 

Temperature of producer gas 300 K 

Temperature of combustion air 300 K 

 

IV. RESULTS AND DISCUSSION 
4.1 Temperature contours 

Figure 3 shows the temperature contour of each secondary chamber type. The simulation shows that the 

maximum temperature of the rectangular chamber (Model A) occurred at approximately 1,700 K, as shown in 

Fig. 3(a), while the average temperature throughout the chamber was 1,300 K. 

For the temperature inside the cylindrical chamber, when the secondary chamber was located above the 

primary chamber (Model C1), the average temperature reached 1,300 K. From Fig. 3(b) as well as Model C2, it 

can be observed that the highest temperature occurring inside the secondary chamber is influenced by the heat 

released from primary chamber combustion. These phenomena contribute to the merit of the combustion inside 

the secondary chamber, which reduces the fuel input at the secondary burner in order to maintain the 

temperature of the chamber at the highest point.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                     (a) Model A                                                                       (b) Model C1 
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(c) Model C2 

Fig.3 Temperature contour inside the crematory models 

 

4.2 Velocity and turbulent scheme 

Figure 4 presents the distribution of the velocity vector inside the Model A crematory. The velocity at 

the secondary chamber’s entrance becomes mainly 2.5 m/s until reaching the U-shaped turning point. After that, 

a majority of the velocity increases to approximately 7 m/s, and gradually increases before exiting the 

crematory’s stack. The occurring velocity in the stack is 8.5 m/s.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 Velocity profile and backflow of Model A 

 

In addition, the backflow occurring at the chamber’s inlet could be investigated. This result explains the 

efficient swirling of the gas flow, which can also increase the residence time of the chamber’s exhaust gas flow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5 Turbulent intensity distribution inside Model A 

 

The result of the turbulent intensity is shown in Fig. 5. The turbulent intensity inside the chamber 

before reaching the turning point was approximately 60%. Likewise, the turbulent intensity decreased to 30% in 
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the stack. The result of the high turbulent intensity occurring in this type of chamber contributed to the 

effectiveness of combustion gas circulation, also resulting in efficient dust particle impingement at the 

chamber’s wall that could decrease the amount of particles released into the atmosphere.       

The velocity simulation results when using Model C1 are shown in Figs. 6(a) and 6(b). It was observed 

that the generality of the model’s velocity profile was a radial velocity, which became 20 m/s in the middle of 

the chamber, while the radial velocity beside the chamber’s core measured as 2.0-3.0 m/s. The axial velocity, on 

the other hand, resulted in 2.0 m/s in the middle of the model.    

 

 

 

 

 

 

         

 

 

 

 

                                (a) Model C1         (b) Model C2 

  

Fig. 6 Velocity profile of models C1 and C2 

 

 

 

 

 

                  

 

 

 

 

 

   

                               (a) Model C1         (b) Model C2 

Fig. 7 Turbulent intensity of models C1 and C2 

 

Concerning the turbulent intensity scheme of this model (Fig. 7), it can be observed that Model C2 

performed at a higher turbulent intensity compared to Model C1, because the majority of the flow inside Model 

C2 showed a centrifugal shape.  

 

4.3 Residence time 

The residence time represents the time allotted for the combustion process to be completed while the 

gas levels are maintained [7]. The constituents of combustion gas, especially during cremation, contain dust 

particles, soot, toxic gas and an unpleasant odor. The secondary combustion chamber, therefore, is necessary to 

eliminate this matter by the proper residence time. The residence time of the crematory’s secondary chamber 

must be at least 1 second in order to prevent emissions from being released into the atmosphere [8].   

Simulation of the secondary chamber’s residence time assumed that the dimension of particles released from the 

primary chamber has a 1  m diameter. The residence time observation occurred from when the particles were 

starting to exit the inlet of the secondary chamber until they reached the stack.   

Figure 8 presents the results of the residence time of the rectangular-shaped secondary chamber. It was 

found that the residence time of the gas flow inside the chamber was 2.54 s on average, whereas the average 

residence time of the particle was 3.05 s. This chamber’s type was beneficial due to its long length, allowing an 

increase in the residence time.  
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(a) Particle residence time            (b) Gas residence time 

 

Fig. 8 Simulation results of the residence time of Model A 

 

 

 

 

 

 

 

 

 

 

 

                                (a) Particle residence time           (b) Gas residence time 

 

Fig. 9 Simulation results of the residence time of Model C1 

 

For the cylinder-type chamber, it was investigated that if the secondary chamber was located above the 

primary chamber (Model C1), the maximum residence time of particles occurred at 2.18 s, and the average 

particle’s residence time was 1.20 s, as shown in Fig. 9. These residence time phenomena could explain why the 

majority of the flow inside the chamber presented a radial flow, and thus, both the released combustion particles 

and gas flow behavior were swirled causing a residence time increase. 

Concerning the simulation results of Model C2 (Fig. 10), it was found that this chamber’s type resulted 

in a shorter residence time compared with the residence time of Model C1. For this model, the average residence 

time of particles and gas results were 0.70 and 1.02 s, respectively. These results occurred because the position 

of the chamber’s inlet was located beside the main combustion chamber, forcing gas and the particle flow to be 

mixed. However, most particles and gas revealed only a few swirling flows before exiting the stack, and thus 

caused a shorter residence time.   

 

 

 

 

 

 

 

 

 

 

 

                                    (a) Particle residence time                           (b) Gas residence time 

Fig. 10 Simulation results of the residence time of Model C2 
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The simulation of the chamber’s dimensions were also carried out in this study in order to investigate 

the gas and particle flow behavior, and the changing of the residence time that is effected by several chamber’s 

dimensions. Figure 11 shows a comparison of the residence times obtained from the simulation when changing 

the chamber’s volume by increasing the chamber’s height to 1.1, 1.2 and 1.3 m. The simulation results of Model 

C1 display a high residence time increase rate, particularly the residence time of gas that increased gradually 

when the chamber’s height was lengthened, as well as the particle residence time. These phenomena can be 

explained by the increasing of the chamber’s volume by extending the height, which allowed gas and particles 

to be maintained in the chamber for a longer time.  

0.00

2.00

4.00

6.00

8.00

10.00

0 1.1 1.2 1.3

chamber's height (m)

 (
s)

Particle Gas

0.00

2.00

4.00

6.00

8.00

10.00

0 1.1 1.2 1.3

chamber's height (m)

 (
s)

Particle Gas

 
                          (a) Model C1                       (b) Model C2 

Fig. 11 Simulation results of the residence time when increasing the chamber’s volume 

 

  Concerning Model C2, it could be observed that the majority of the residence time became rather 

constant, especially the residence time of gas. The particle residence time, on the other hand, resulted in a small 

increase, which reached a maximum of 2.5 s when the height was adjusted to 1.3 m. This model’s results can be 

explained by the increase in the chamber’s height, which affected the circulation of particles; thus, the simulated 

residence time of particles became higher. In contrast, most combustion gas flow behavior did not achieve a 

circulation flow. Consequently, the trend of the gas’s residence time when simulated by Model C2 was fairly 

constant.          

 

V. CONCLUSION 
Besides the temperature inside the crematory’s chamber that must be maintained at a high point, the 

residence time of the secondary chamber, which must be at least 1.0 second, according to pollution control 

regulations, plays an important role to prevent emissions from being released into the atmosphere during 

cremation. Moreover, the pollution elimination efficiency of the crematory will increase if the residence time 

increases. From the simulation results, it can be found that the rectangular type of chamber presents the highest 

residence time due to its longer length. On the other hand, the cylinder type, in which the combustion gas and 

particle inlet are located at the chamber’s base, can achieve a more efficient residence time compared with the 

rectangular shape. In addition, the cylinder-shaped chamber is also advantageous in that it will be able to reduce 

the cremation’s construction costs and simultaneously reduce the space needed for installation. 

 

VI. ACKNOWLEDGEMENTS 
The authors would like to acknowledge the Dean of the Faculty of Engineering, Chiang Mai 

University, the faculty’s lecturers and staff members for all their assistance during the experiment conduction, as 

well as Assoc. Prof. Kulachate Pienthong (Ubon Rajathani University) and Mr. Thanadej Kantachote, Manager 

of J.E.N. Construction CO. LTD, for all of their valuable comments and suggestions. 

 

REFERENCES 
[1] A.K. Rajvanshi, Biomass gasification, Alternative Energy in Agriculture, Vol. II, 1986, 83-102.  

[2] S. Thavornun, Study and research on crematory for energy saving, Research’s report, Energy Policy and Planning 

Office, Bangkok, Thailand, 2007. 

[3] Y. Achawangkul, N. Maruyama, C. Chaichana, M. Hirota, A. Nishimura, P. Teeratitayangkul, CFD analysis of 

double-chambered crematories using biomass producer gas as a fuel source, Int. J. of Modern Engineering Research, 

Vol. 3, Issue. 6, 2013, 3493-3499. 

[4] W. Bubpamala, Research and development of human crematory for energy saving, Master Degree dissertation, King 

Mongkutt’s University of Technology North Bangkok, Bangkok, 2007. 

[5] D.C. Wilcox, Turbulence Modeling for CFD (DCW Industries, Inc., La Canada, California, 1998).  

[6] S.V. Patanka, Numerical heat transfer and fluid flow (Hemisphere Publishing Corporation, NY: Taylor & Francis, 

1980). 

[7] F. Hasselriis, Practical design of waste incineration, Handbook of Environmental Engineering Calculations, (New 

York: McGraw-Hill, 2007). 

[8] Pollution Control Department of Thailand, Situation of air pollution from crematory. Department publishing’s 

document, 2005. 

s s 


