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l. INTRODUCTION

Let L be alattice with 0. We recall ([1],[2]) that an element & € L is pseudocomplemented if there is a
largest member of L which is disjoint with a. If such an element exists, it is denoted by a” and is called
pseudocomplement of @ (thatis, @ = max{x e L:aA x=0}).

A pseudocomplemented lattice is a lattice with O in which every element has a pseudocomplement. Clearly,
a pseudocomplemented lattice is bounded, where 1= 0"

If (L,A,v,0,1) is a bounded lattice, we recall ([1],[3],[7].[21]) that an element aeL is called
complemented if there isan element b e L suchthat aAb =0 and avb=1; ifsuchan element exists it is

called a complement of a. Complements are, in general, not unique, unless the lattice is distributive (see
Lemma 2.6.2, [3]). In residuated lattices ([21]) the complements are unique, although the underlying lattice need
not be distributive ([9]).

A boolean element of a residuated lattice L isa complemented element of the underlying lattice of L . Itis

proved in [21] that for a boolean element € € L, its complement is e" =e—0. In the same paper is proved
that the set of boolean elements of L form a subalgebraof L, thatisaboolean algebradenoted by B(L), and
that € € L belongsto B(L) if, and only if, v e” =1. These results are also presented in [3], [7] and [24].
For a residuated lattice L, the boolean subalgebra B(L) is called the boolean center of L.

In some situations (see [1],[2]) L is supposed to be distributive.

A pseudocomplemented lattice L iscalled Stonean lattice if X vx =1 for every X € L.
In [1] is given the following theorem of characterization for Stonean distributive lattices:
Theorem 1 For a pseudocomplemented distributive lattice L with O, the following are equivalent:

(i) L isa Stonean lattice;

(i) (xXAy) =X vy forevery X,yel;

(i) (xvy)  =x" vy forevery x,yel;

(iv) Every prime ideal in L contains at most one minimal prime ideal;

(v) If I and J are distinct minimal prime idealsin L, then 1vJ =L.

The study of pseudocomplemented distributive lattices commenced with a paper by V. Glivenko in 1929 (see
[15]). Although in the 1937 classic paper of M. H. Stone ([25]) there is a reference to what we now call Stone
algebras, there were G. Grétzer and E. T. Schmidt ([16]) who first solved a problem of M. H. Stone and thereby
generated widespread interest in the topic. G. Birkhoff [[2], 1948 edition], in fact, was the first paper in which the
term Stonean lattice is used.

We recall that a residuated lattice ([14],[28]) is an algebra (L,v,A,®,—,0,1) of type (2,2,2,2,00)

equipped with an order < such that
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LR, : (L,v,A,0,1) isabounded lattice relative to <;
LR, : (L,®,1) isacommutative ordered monoid;

LR,: ® and — form an adjoint pair,ie, a®x<b iff x<a—b, forall a,b,xelL.

For examples of residuated lattices see [6],[7],[13],[14],[19].[24],[26].
In what follows (unless otherwise specified) by L we denote a residuated lattice.

For Xe L wedefine X’ =x—0 and X =(x)".
Taking as a guide line the case of lattices with 0, the residuated lattice L is called Stonean

([11],[12],[201.[27]) if X v X~ =1 forevery Xe L.
We recall ([19],[24]) that in general residuated lattices need not be distributive.

Every Stonean residuated lattice ([8]) L is pseudocomplemented, where for X e L, X is the
pseudocomplement of X.
In the absence of distributivity of L, it is possible that Theorem 1 be not true in the case of L. Indeed, in [8]

we put in evidence some properties of i-ideals in a Stonean residuated lattice L, in connection with properties

(if) and (iv) (for the dual form) from Theorem 1.

Residuated lattices and Stone algebras are two topics much studied in lattice theory, with impact on logic. One
of the topics studied in residuated lattices is the theory of the so-called implicative ideals and filters. This paper
deals with algebras that are both residuated lattices and Stone algebras, the subject-matter is the detection of
properties of some special types of implicative filters (i-filters for short) that are specific to Stonean residuated
lattices. We mention that we introduce the notions of i-filter’s radical and boolean i-filter in Stonean ressiduated
lattices. Several interesting results are obtained.

1. PRELIMINARIES
For XeL and n>1 wedefine X =x—0, X =(x)", xX°=1and x" =x""®Xx for n>1.

Proposition 1 Let L be a residuated lattice. Then for every X,Y,Z € L, we have:
() X®Y<X,Y,SOX®YXAY,
() X<y x—>y=landy<x—y;
(c)) If x<y, thenx®z<y®z
(C) XSYy=>z>x<z>y,andx<y=>y—>z2<x—>7z
) X>(Yy—>2)=(X®Y) > 2,50 X>(y—>2)=y—>(X—>2);
(ce) X®(YvZ)=(Xx®Y)v(x®2),andXx®(YAZ) < (X®Y)A(X® 2);

x>2)A(y—>2)=(xvy)>zand (x> 2)v(y—>2)<(XAY) >z,
X2 (YAZ)=(X> Y)A(X—> 2);

(c7)

) XV (Yy®2z)=(XVvy)®(Xv2);

) (XvY) =X Ay, x>y ) =xosy,andx 5>y =y 5XxX =x>Yy";
o) X®X =0,1"=0,0"=1, x<x ", x> y<y —»x,andx” =x".

Consider the following identities:
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XAY=X®(X—>Y) (divisibiliy), (11)
xXx—>y)v(y—>x)=1 (pre—linearity), (12)
X®Y=XAY (idempoten).  (13)
Definition 1 A residuated lattice L is called:
(i) Divisible if L verifies (11),
(i) MTL-algebraif L verifies (12),

(iii) BL-algebraif L verifies (11) and (12),
(iv) G-algebraif L isa BL-algebraand verifies (13).

We present some examples of residuated lattices that we will use in the sequel, for illustrating various properties
and various classes of residuated lattices.

Example 1. Let L={0,a,b,c,1} with 0<a,b<c<1, but & and b are incomparable.

1

\
7\
\,

Then (L,A,v,®,—,0,1) is a residuated lattice ([19], page 187), where — and & are defined as in the
tables:

- 0 ab c1 ® 0 a b c 1
0 11111 0 0 0 00O
a b 1 b 1 1 a 0 a 0 a a
b a all1 b 0 0O b b b
c 0 a b 11 c 0 abcc
1 0 ab c1 1 0 a b c 1

Example2. L={0,a,b,c,d,e, f,g,1} with 0<a<b<e<l, O<a<d<e<l],
O<a<d<gc<l, 0O<c<d<exl, 0<c<d<g<l, 0<c<f<g<1l andelements {a,c},
{b,d}, {d, f}, {e,g} and {b, f} are pairwise incomparable.
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Then ([19], page 166) L becomes a residuated lattice relative to the following operations:

— 0O a bc d e f g1 ® 0O abcde f g1
0 1111 1 11 11 0 00 0 OO0 0O O O O
a g1 1 g1 1 g 1 1 a 0 0 a 00 a 0 0 a
b f g1 f g1 f gl b 0O ab 0 ab 0 a b
c e e e 1 1 11 1 1 c 0 0 00O 0 c ¢ c
d d e e gl 1 g1l 1 d 0 0Oa 0O ac c d
e c d e f g1 f g 1 e 0O ab 0 ab c d e
f b b be e e 1 1 1 f 0 0 0cc c f f f
g a b b d e e gl 1 g 0 0O0acc d f f g
1 0O a bc d e f g1 1 0 abcde f g1

Example3. L={0,a,b,c,d,e, f,g,1} with 0<a<b<e<l, O<a<d<e<l],
O<a<d<gc<l, 0<c<d<exl, 0<c<d<g<l, 0<c<f<g<1 andelements {a,c},
{b,d}, {d, f}, {e,g} and {b, f} are pairwise incomparable (see the diagram from Example 2).

Then ([23]) L becomes a residuated lattice relative to the following operations:

— 0O a b c d e f g 1 ® 0O a b c d e f g 1
0 1 1 11 1 1 1 1 1 0 0O 0 OOO 0 0O 0 O
a f 1 1 f 1 1 f 1 1 a 0O a a 0 a a 0 a a
b f g1 f g1 f g 1 b O a b 0a b 0 a b
c b b b1 1 1 1 1 1 c 0 0 O cc c c c c
d O b b f 1 1 f 1 1 d 0 a acd d c d d
e 0O a b f g1 f g 1 e 0O a b ¢c d e ¢ d e
f b b b e e e 1 1 1 f 0 0 0O cc c f f f
g O b b c e e f 1 1 g 0O a acd d f g g
1 0O a b c d e f g 1 1 O ab c d e f g1

Example 4 Let L={0,a,b,n,c,d,1} with 0<a<n<d<l, O<b<n<c<l, but (a,b) and
(c,d) are pairwise incomparable.
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Then ([19], page 191) L becomes a distributive residuated lattice relative to the operations:

HO_O:USDO\L
CooopUTkFO
PO MDY PRPPDY
cocookrOPRDT
J0oakRrPRPPRPPS3
0O0FRPPFPPPPDO
aoRPrakFRPRPFRPRAa
PRRPRRPPRPPPP
Foo3sopog
O0O0O0O0O0OO0O0
Q0P O O
CoOOoOoTU0O0OO0CUT
333309 053
0O 3J030T® OO0
Q03309000
FPaoosocop ok

2. 1. i-Filters in residuated lattices

We say that an ordered set L is a lattice if for every two elements a,b L there exista Aband avbin

L.
In lattice theory a lattice filter is defined as follows:
Definition 2 A non-empty subset F will be called a lattice filter ( filter, for short) of L if

(F) 1f a<b and aeF, then beF;
(F,) If a,beF, then anbeF.
We denote by F(L) the set of all filters of L.

In residuated lattice theory we have the following notions:
Definition 3 An implicative filter (i-filter, for short) is a nonempty subset F of L such that

(F) 1f x<y and xeF, then yeF;
(F) If x,yeF, then x®yeF.
We denote by F (L) the setof all i-filters of L.

Remark1l 1. F isan implicative filterof L iff 1le F and X,Xx >y eF, then yeF (that is, F

isa deductive system of L).
2. Every i-filter is a filter in the lattice (L,A,V), but the converse is not true (see [8],[20]).

So, if we denote by F(L) (F, (L)) the set of all lattice filters (i-filters) of L, then F, (L) < F(L).

Remark 2 There are residuated lattices in which lattice filters are not i-filters.
Indeed, we consider the Example 2. Clearly, F ={d,e, g,1} is a lattice filter.

If F isani-filter,since d ® d =0, and an i-filter is closed with respect to the operation &, then we deduce
that O € F, acontradiction, so, F isnotan i-filter.

We have ([6]), F (L) =F(L) iff X®Y=XAY forevery X,y e L.
For a nonempty subset S of L we denote by (S) the i-filter generated by S. If aeL, the i-filter
generated by {a} will be denoted by (@) (also, (@) is called principal). If F eF (L) and ae L\F,
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then (F w{a}) will be denoted by F(a).

Proposition 2 ([6],[7],[24]) Let L be a residuated lattice, S < L anonempty subset, F € K (L) and

aelL\F.
Then:

(i) (S)={xelL:s ®..®s, <x,forsomes,,.., s, €S},

(i) (a)y={xelL:a" <x, forsomen>1};

(iii) F(@)={xelL:a" — xe F,forsome n>1};

(iv) F@ynF({b)=F(avb);

(v) (forevery PeF. (L)), aeP iff (a)c P iff a" € P, forany n>1.

Proposition 3 ([22]) Let L be a residuated lattice and a,b e L. Then:
(i) a<b implies (b) =(a);

(i) (@ v(b)=(anb)=(a®by

(iii) (@) ~(by =(avb).

Proposition 4 ([6],[7],[24]) For P € F,(L) the following are equivalent:
(i) f P=FKnF, with F,F, eFR (L), then P=F or P=F,;
(i) If FNF, <P with F,F, eFR (L), then FF <P or F, cP;
(i) If x,yeL and xvyeP, then XeP or yeP.

Definition 4 Wesay that P e F (L) is primei-filterif P =L and P verifies one of the equivalent
conditions of Proposition 4. We denote by Spec; (L) the set of all prime i-filters of L.

Remark 3 We notice that following Proposition 4, (i) in order to prove that an i-filter P €F, (L) is not
prime it suffices that:
If there exist X,y €L suchthat XvyeP with X¢P and y¢P, then P isnot prime.

We recall that an i-filter M of L is called maximal if M =L and M is not strictly contained in a
proper i-filter of L. We denote by Max; (L) the set of all maximal i-filters of L.

Remark 4 In any residuated lattice L, maximal i-filters are prime.
Indeed, following Proposition 4, we deduce that every maximal i-filter M of a residuated lattice L is prime
because, if there exist two proper i-filters N,P € F (L) such that M =N NP, then M <N and

M < P, by the maximality of M we deduce that M = N = P, thatis, M is an inf-irreducible, so prime
element in the lattice of i-filters (F (L), <) of L (by the distributivity of the lattice of i-filters (F (L), <)
of L).

In literature for maximal i-filters in any residuated lattice we have the following characterizations:

Corollary 1 ([4],[7]) For a residuated lattice (L,A,v,—,®,0,1) and M aproper i-filter of L we have the
following equivalent assertions:

(i) M e Max(L);

(ii) Forany XM thereexist d e M,n>1 suchthat d ® x" =0;

(iii) Forany xeL,xegM iff (X") €M, forsome n>1;
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(iv) Forany X¢M thereis n>1 suchthat X" —ye M, forevery y e L.

Remark 5 ([7]) If M is a maximal i-filter of a residuated lattice L, then XeM iff X~ € M.

Definition 5 The intersection of the maximal i-filters of a residuated lattice L is called the radical of L and
will be denoted by Rad(L).

Proposition 5 ([13])
Rad(L) ={x e L:for everyn >1there isk, >1such that [(x”)*]kn =0}.

3. 1. i-Filter’s radical in Stonean residuated lattices

Following the papers [8], we may define an additive operation @ on any residuated lattice L by setting for all
X,yel,

xX@y=xX"®y). 4

Clearly, following (cs) for all X,y €L, the equation (14) is equivalent with
XOy=x >y =y —>x". (15

In what follows we will establish the properties of operation @ in any residuated lattice.
Proposition 6 ([8]) In any residuated lattice L, the operation (14) has the following properties:

(i) 0=00, x®Y=y®DX;

(i) x®y) " =x@y=x"@Yy";

(iii)) x®@0=0®x=x";

(iv) x®&(y®z)=(xDYy)D7Z

(v) x@1=1®x=0 =1;

(Vi) xvy=l=x®y=1,

(i) X®(yvz) =(x®y)A(x®z");

(vii) x®(y'vz) =(x®y)A(xD2),

(ix) X®X =X ®dx=1;

(X) (X®Y) ®y=(y ®x) @x is equivalent with
X" >y ) oy =@ o>x) X7, forall x,y,z€ L.
Proof. (). 0®0=(0"®0) =1 =0,x@y=(X ® y*)*(L—:Z)(y* Rx) =y®x

C10
(i), (XY =X ®Y)" = (K ®y) =x®y=[x") ®()T =x" By,
(iii). x®0=(x" ®0")" (czm) X",
(iv). By (15), (cy), (cs) and point (ii) , we have
(15) . o 1 L) () . Ly o

XO(YyDz) =X -5z -y ) =X >(2Z®Yy) =X >@ZBY)=X -5 -y )=xX ®z)>Yy
e ()(15) . 1 i) (15) . RO N
X@Y)®z =z 5X oy ) =7 >(XBy) =7 >(xX®Yy)=72 >(X -y )=x ®z)>y ,
hence our claim holds.

) . (€1 (C2)
(V). x®@1l=x -1 =x —>1=1.
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(vi). Since X< X ,y<y~ and X,y <X@Y implies Xvy<Xx@®Yy. Thus,
l=xvy<x®y=x®dy=1.
(vii). By (cy), (c10) and (cg), We obtain successively

*(15) * M(CIO) * *(Cg) * * * (C7) * * * * (Cg)
X®(Yyvz) =x >(yvz) =X o>(yv) =X 5y rz)=XX 2>y)AX >z2) =

(15)
(Y 5 xX)IA@  >x) =Dy )A(Xx® ).

(viii).We obtain successively

* * * (15) * * * KKk (Clo) * * * * (Cg) * *k *k (C7) * K,k * Kk (15)
XO(y vz) =x o(yvz) =X ->(vz) =X o5y Az )= 2y )A(x 2 )=
(X®Y)A (XD 2).

@ as . . (€2

(ix). x®x =x"@®@x=x" ->x =1
N N (15) — o (15) - . -
(X).(x ®y) ®y=(x >y ) Oy=(xx —>y ) -y
. . (15) - —— (15) - . -
and (y ©X) ©x=(y —>x ) ®x=(y —>X ) —X . Thus, our claim holds.

For XeL and n>0, wedefine 0-Xx=0 and nx=(n—-1)x® x.

Corollary 2 If X,yeL and m,n>1, then
() If m<n, then Mx<nx;

(i) If x<vy, then mx<my;
) () €2 L. (15)
Proof. (i). Since X< X =X <X —>X =X®X=2X, wededucethat X <2X, thatis,if m<n,

then mx < nx, for any natural numbers m,n>1.

- *(CA) * * *(CB) * *

(if). Since X<y we obtainsuccessively y < X, ¥y ®Yy < X ®X,
(14)

* * * (C4) * * *
(X ®x) <(y ®Yy ), XX ydDy. Hence 2x<2y.
By induction, we deduce that mxX < my, for every natural number m=>1.

Lemmal Let L be aresiduated lattice and X,Y,Z € L.
Then:
(cy) If X<y, then X®z<ydz.

Proof. (Cy;). If X<y we obtainsuccessively ¥ <X, X =2 <Yy —>2Z . Hence X®z<yDz.

Corollary 3 ([8]) Let L be a Stonean residuated lattice. If X,y €L and n>2, then
(€2) xA(ny) <n(x®y).

Proof. Mathematical induction relative to n.

Corollary 4 ([8]) Let L be a Stonean residuated lattice. If X,y €L and m>2 or n>2, then
(C3) (MX) A (ny) < (MN)(X®Y).

Proof. Suppose m>2. If N=0 in (C;) we have equality. If n=1, (Cy;) follows from (C,,).
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If n>2, by (C,) wededucethat (MX) A (ny) < N[(MXx) A y]<NM(X®y)]= (MN)(X® y).
Analogously, if N> 2.

Corollary 5 ([8]) Let L be a Stonean residuated lattice. If X,y € L and m,n are natural numbers, then
(Cn) (MX)®(ny) <(MN)(X®y);

(Ci5) (MX) A(ny) <(MN)(xAY).

Proof. (Cy,). If m=0, then in (C,) we have equality for every natural number n.

If m=1 and n=0,1, we have also equality in (C,). If m=1 and n>2, then we have

(012)
X®(ny)<xa(ny) < n(x®y).

(C13)

If m>2, then (MX)® (ny) <(Mx)A(ny) < (MN)(x®y).
(C5). Asinthe case of (Cy ), using (Cy).

Following the paper [30] we extend the notion of filter’s radical to residuated lattices, as i-filter’s radical.
Initially, the filter’s radicals were defined and studied in lattice implication algebras (see [30]), we extend this
notion to residuated lattices as i-filter’s radicals and we present some specific properties of them in Stonean
residuated lattices.

Definition6 Let D eF (L) beani-filter of L. The subset
{x e L:thereis n € N such thatnx € D}

is called an i-filter’s radical, and it is denoted by \/B .

In [30], the authors define a lattice implication algebra as follows:
Definition 7 ([30]) By a lattice implication algebra we mean a bounded lattice (L,A,v,0,1) with

order-reversing involution 1 and O the greatest and the smallest element of L respectively, and a binary
operation —> satisfying the follow axioms:

(1) x=>(y—>2)=y—>(x—>2);
(1,) x—>x=1;

(1) x=>y=y ->X;

(I,) f x>y=y—>x=1, then X=y;
(1) X=>y)>y=(y—->x)->X
(L) (xvy)—>z=(X>2)A(y—>2);
(L) (xAy)—>z=(x—>2)v(y—>2)
forall X,y,z e L.

Corollary 6 There are Stonean residuated lattices which are not lattice implication algebras, so, it is proper
to study i-filter’s radicals in Stonean residuated lattices.

Proof. In Example 3wehave 0 v 0~ =1, 1'v1" =1 a’va =fvb=1 b vb " =fvb=1,
cve =bvf=1 dvd =0vl=l e ve =0vl=l f v =bvf=1

g'vg  =0v1=1, thatis, L is Stonean.

We consider the Stonean residuated lattice from Example 3, where (a— f) > f =f — f =1 and

(f >a)>a=b—>a=g, so, (@a—>f)>f=1xg=(f >a)—>a, thatis, the axiom (I;)
from Definition 7 is not satisfied.
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Remark 6 In aresiduated lattice L, an i-filter’s radical is not always an i-filter.
Indeed, see Example 2, for D ={1} we have VD = {1,e,0,d}
By Remark 2, we deduce that \/B is not an i-filter.

Following Remark 6, we deduce that an i-filter’s radical is not closed with respect to the operation €.

Remark 7 The residuated lattice from Example 2 is not Stonean.
Indeed, the Example 2 is not Stonean, because d vd™~ =d #1.

Proposition 7 Let D € F (L) be an i-filter of a residuated lattice L. Then D < JD.

Proof . Let D e, (L) beani-filter of L and X & D. Since D isani-filterand X e D, X< X@® X, we
deduce that X® X =2X e D, that s, Xe\/B.

Lemma?2 Let DeF(L) be ani-filter of a residuated lattice L. Then:
(i) 1evD;
(i) If xev/D and X<V, then ye/D;
(iii) 1f X,y e~/D, then x>y e~/D.

Proof. (i). Since for every i-filter D € (L) wehave 1€ D, and n-1=1, forevery n>1, we deduce

that 1e \/B

(in). If xe D, then there exists N>1 suchthat nX € D. Because X < Yy, by Corollary 2, (ii) we
have NnX<ny, since D isani-filterand nxe D,nx<ny, then ny € D, thatis, y € JD.

(). 1f X,ye\/B, then there exist m,N>1 suchthat mxe D and ny € D. Since
(C2)
mx e D,mx < m(X — Y), we deduce that m(x — y) € D, thatis, X — y €/D.

Following Lemma 2 we conclude that:
Theorem 2 In any residuated lattice L, the i-filter’s radicals are lattice filters closed with respect to the
operation — .

Since in any residuated lattice L, the i-filter’s radicals are lattice filters, then they are closed with respect to the
operation A . Inthe case of Stonean residuated lattices we establish that:

Lemma3 Let D eF, (L) beanifilter of a Stonean residuated lattice L. Then X,y € VD if and only if,
xAyeA/D.

Proof. Let D € F,(L). Assumethat X € VD and ye VD, then there exist m,n>1 suchthat mx e D
and ny € D. Without restricting the generality we can assume that m<n. By Corollary 2, (i) we have
mx<nx. Since D eF, (L) isani-filterof L and mxe D, then nxe D.

(C7) (C2)
By (7), we have nx — (NXx A ny) = (nX — nx) A (X — ny) = nX — ny. Since nXx —>ny e D, we

deduce that NXx — (NXx ANy) € D. Since D isani-filterand nXxe D,nx — (nXAny) € D, then
nx ANy e D. Following Corollary 4, (C,) we have nXAny < (n’)(XAY) e D, then we deduce that
xAyeA/D.

Conversely, if XA Y € VD, thenthereexists N>1 such that n(XAYy) e D. ByCorollary2, (ii) we have
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N(XAY)<nx,ny, and since D isan ifilter,then NXe D and ny e D, that is, X,ye\/B.

Following Lemma 3 we conclude that an i-filter’s radical in a Stonean residuated lattice is closed relative to the
operation A.

Theorem 3 Let P,Q eF(L) be two i-filters of a residuated lattice L. Then
(1) 1f PcQ, then \/Bg\/a;
(i) VPnJQ=PnQ;
(i) VP < (WP,

Proof. (i). We notice that forall X € JP thereexists N>1 suchthat Nx e P < Q. Therefore, X € \/6,

that s, \/Bg\/a

(i1). Clearly, PnQ is an i-filter of L. Since PNQcP and PNQcQ, by (i) we have

JPNQ < \/Bm\/a
Conversely, for any X e\/Bm\/a we have X ¢€ \/E and Xe\/ﬁ, so, there exist m,N>1 such that
mXe P and nxeQ. Clearly, by Corollary 2, (i) we deduce that (m+n)xe P NQ. Therefore,

xe PNQ.
(iii). Following Proposition 7 we have P JP, by (i), we deduce that \/BQ\I(\/E>.

Following the properties of a principal i-filter from Proposition 3 we obtain:

Corollary 7 Let L be a residuated lattice. Then

(i) If a<b, then (b) =+/(a);
(i) (@b =(avb);
(iii) If avb=1, then \(a)(b) = {1}.

Proof. (i). and (ii). are obvious.

(iii). By (ii), we deduce that ~/{@) " {b) :\/@.

Lemma4 Let P be aprime i-filter of a residuated lattice L. If \/E is an i-filter of L, then not always

\/E is prime.

Proof. We consider the Example 1, where P ={1} is a prime i-filter and its i-filter’s radical is JP = {1, c}.
Clearly, {c,1}{a,c,1} and {b,c,1} are i-filters of L.

Following Proposition 4, since JP ={1,c}={a,c,1} n{b,c,1} with {1,c}={a,c,1} and
{1,c}={b,c,1}, we deduce that JP isnota prime i-filter.

As a second proof, we can follow the Remark 3, since avb=cCe \/E with a ¢ \/E and b ¢ \/E, then

\/E is not a prime i-filter.
We say that a residuated lattice has the double negation property if forall X € L hold X" =X
Remark 8 Let P be aprime i-filter of a G-algebra L with double negation property. If \/E is an i-filter of
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L, then JP s prime.
Indeed, it is well known that in a BL-algebra L we have the following rule of calculus: (X A y)* =X v y*.
Since

(14) (13) (C9)
2(xvy) = (xvy)®(xvy) =[(xvy) ®@(xvy)T =(xvy)" =X Ay) =x" vy  =xvy
and 2X=X@® X=X =X, wededucethat n(xv y) =nxvny, forany n>1.
In order to prove that \/E is prime, we consider X,y € L suchthat Xv ye JP and X & \/E Then there
exists N>1 such that N(xv y) e P. Since P is prime and n(Xvy)=nxvnyeP and nxg P, we

deduce that ny € P, thatis, ye\/E. So, JP s prime.

Proposition 8 ([8]) If L is a Stonean residuated lattice then for every X,y e L:
(ce) (XA y) =X vy

Lemma5 Let L aStonean residuated lattice. If M € Max; (L) is amaximal i-filter of L, then

M =M.

Proof. By maximality of M, it is sufficient to prove that M € F (L) isani-filter of L.

For that, we consider X,y e N Then there exist m,n>1 such that mMxeM and
nye M = (mx)®(ny) e M. Following (C,) we deduce that (MN)(X®y)e M, that is,

X®yeM. Thus, NEE(L).

The following results (Theorem 4, Theorem 5) represent new characterizations for maximal i-filters in Stonean
residuated lattices.

Theorem 4 Let L be a Stonean residuated lattice and a € L. Then the following assertions are equivalent:
(i) M e Max(L);

(i) M eSpec (L), xeM iff X~ eM.

Proof. (i) = (ii). Clear by Remarks 4 and 5.
(ii)= (i). Let X&M. Then X~ ¢ M. Since L is a Stonean residuated lattice we have X v X~ =1.

Since M e Spec;(L) and X vX =1eM, X &M, then X e M.
* * (C4) *
If X’ e M. Since X" <X, for every n>1, then X < (X"). Since M is an i-filter we deduce that

(x") e M.

If forany xeL, (X")" €M, for some n>1, then X& M. If by contrary X M, then X" € M, for
every n>1, and X" ®(x")" =0e M, acontradiction.

We deduce that for any xelL, xeM iff (X") €M, for some n>1, thatis, M e Max (L) (see
Corollary 1, (ii)).

Theorem5 Let M e Spec, (L) be a proper i-filter of a Stonean residuated lattice L. Then M = M i,
and only if, M e Max; (L).

Proof. Following Lemma 5, we deduce that if M € Max; (L), then M = NIYR

Conversely, if M = VM, then VM e F (L) isani-filter of L. Thus, by (cy), if X € VM, then

X" eM. If X" /M thenthereis N>1 such that
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- (C2) . - (14)
nx eM=n(x >x )eM=n(2x) e M = (2n)x e M, thatis, xeM.

Therefore, XM iff X~ €+/M, following Theorem 4 we deduce that M e Max (L). Thus,

M e Max; (L).
Lemma 6 Let L be a non-degenerate residuated lattice. If M =~/M, then M e Max; (L).

Proof. See the proof ("=") of Theorem 5.
We propose to solve the following exercise.

Remark 9 On a given Stonean residuated lattice L, showthat: If M € Max; (L), then M =M.

Indeed, if we choose the Example 3. For any natural number N >1 we have
nl=1,ng=1,nf = f,ne=1,nd =1,nc= f,nb=Db,na=b. Clearly, (a) ={a,b,d,e, g,1} and

(cy ={c,d, f,e, g,1} are the maximal i-filter of L. Itiseasy toseethat (@) =./(@) and (C) =/{C).

Remark 10 In a Stonean residuated lattice L, if vM € Max (L) isamaximal i-filter of L, then not

always vM =M.
Indeed, for that we consider the Example 3. Clearly, (b) ={b,e,1} isan i-filter of L and /(b)

={a,b,d,e, g,1} =(a) isamaximal i-filter of L. Thus, \/@eMa)g(L) and \/@;é(b).

Definition 8 Let L, and L, be two residuated latticesand f :L, — L, beamapping from L, to L,.
Wecall f a morphism of residuated lattices if for all X,y € L it satisfies:

(M) f(0)=0and f(1)=1;

(M) f(xay)=f(x)A f(y);

(M) f(xvy)=f(x)v f(y);

(M) f(x®y)=f(x)® f(y);

(M) f(x—>y)=f(x)—> f(y);

(Mg) F(X)=(f(x)"

Lemma7 Let L, and L, be two residuated lattices. If f :L, — L, isamorphism of residuated lattices,

then f(nx) =nf(x), forall X e L, and every natural number n>1.
(14) . o (Mg)(My)
Proof. Since f isamorphism of residuated lattices, then f(X® x) = f((Xx ®x) ) =
(M)

. . N N *(14)
(FX®x) =(f(xXH®F(X) = (X)) @F(X)) = f(X)® f(X), by the associativity of
@ (see Proposition 6, (iv)), we deduce that nf(x) = f(nx), for all Xe L, and every natural number
nx1.

Let f be a morphism of residuated lattices from L, to L, and 1L2 be the greatest element of L,. We
define the dual kernel of f denoted by D —Kker(f), as

D—ker(f)={xeL : f(x) :1L2}.
Theorem6 Let f:L, — L, beanontomorphism of residuated lattices. If D € F,(L,) isa proper i-filter of

L,, and D—ker(f) = D, then f(vD)=./f(D).
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Proof. Clearly, f(D)eF(L,) isa proper i-filterof L,.
Firstly, we prove that f (/D) =/ f (D).

For that we consider Y e f (v/D), then there exists X € VD such that f(x)=y. Since Xe VD, then
there is N>1 such that nXe D. Following Lemma 7 we have f (nx)=nf(x)=nye f(D), that is,

y e, f(D).
Conversely, we consider Yy €,/ f (D), then thereis N>1 such that ny e f (D). Since D is morphism of

residuated lattices, then there exists Xe€Ll, such that f(X)=1y. Following Lemma 7 we have
f(nx) =nf(x) =ny, and by the fact that f is onto, we deduce that there exists zZe D such that

f(nx) = f(z). Itfollows that f(z —, nx) = f(z) >, f(nX) :1L2, thatis, z—, nxe D—Kker(f).
Because D—ker(f)c D=2z —, nxe D=nxeD, thatis, Xe JD. Therefore,
y = f(x)e f (/D).

In what follows we present an easy but important consequence of Theorem 6:

Corollary 8 Let f :L, — L, be an onto morphism of residuated lattices. Then:
(i) If VD eF(L,) and D—ker(f) <D, then /(D) eF(L,);
(i) 1f /D eSpec (L,) and D—ker(f)< D, then \/f (D) e Spec, (L,).

In what follows we present an easy but important consequence of Theorem 5 and Theorem 6:

Corollary 9 Let f :L, — L, be an onto morphism of Stonean residuated lattices. If D € Max;(L,) and
D—ker(f)< D, then \/f(D) e Max (L,).

Proof. Obvious, by Theorem 4.

Theorem7 Let f:L — L, beamorphism of residuated lattices. If D € F(L,) is a proper i-filter of L,
then f(vD)= \/fT(D)

Proof. Clearly, if D, e F(L,), then f*(D,) eF,(L,).

Firstly, we prove that f *(+/D) < \/fT(D)

For that we consider X € f ’l(\/B), then f(X)e VD. Then there exists n>1 such that

Lemma?7

nf(x) = f(nx)eD. so, nxe f (D), thatis, x e+ f (D).
Lemma?
Conversely, we consider X € 4/ f (D). Thenthereis N>1 suchthat nxe f (D), then f(nx) =

nf(x) e D, thatis, f(x)e~/D. Hence xe f (¥D). so, /f *(D) < f *(+/D).
1. BOOLEAN I-FILTERS IN STONEAN RESIDUATED LATTICES

An important goal in the residuated lattice theory is to investigate under which conditions every prime
i-filter P € Spec, (L) is contained in a unique maximal i-filter.

This fact is true for BL-algebras as we can see in what follows. Also, we prove that it is true for Stonean residuated
lattice, but it is not true in any residuated lattice.
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Corollary 10 There are residuated lattices in which prime i-filters are not contained in a unique maximal i-filter.

Proof. We consider Example 4, where (C) ={C,1} is prime i-filter which is contained in the maximal i-filters
<a'> :{a’ n’ C’ dil} and <b> :{bl nl Cl d 11}-

Proposition 9 ([26],Prop. 25,page 19) Let P be a prime i-filter of a BL-algebra L. If D is a proper i-filter
suchthat P < D, thenalso D is prime.

Theorem 8 ([26],Th. 3,page 19) In a non-degenerate BL-algebra L, any proper i-filter can be extended to a
maximal, prime i-filter.

And our goals follow:
Theorem 9 In a non-degenerate BL-algebra L, any proper prime i-filter P € Spec; (L) can be extended to
an unique maximal, prime i-filter.

Proof. Following Theorem 8 we deduce that P can be extended to a maximal, prime i-filter M. It remains to
prove the uniqueness.

Supposing by contrary, there are M;, M, € Max; (L) two maximal i-filters of L suchthat P < M, and
PcM,, then P M, nM,. Since the intersection of two i-filters is an i-filter, if we consider
D=M;M,, then P < D. Following Proposition 9 we deduce that D is a prime i-filter. Following
Proposition 4, (i) we deduce that D =M, or D=M,, then P M, or P < M,, acontradiction.

Theorem 10 ([8]) If L isa Stonean residuated lattice then every prime i-filter is contained in an unique maximal
i-filter.

Proof. Let P be a prime i-filter and suppose by contrary that there are two distinct maximal i-filters I\/Il and
M, suchthat P M, and P = M,. Since M, #M,, thereis X M, suchthat X & M,. Following
Corollary 1, (iii), thereis N>1 suchthat (x")" € M,. Then (x")” & M,, hence (x")” & P. Since
XeM,, then X" € M,, hence (X")" ¢ M, and (X")" & P. Since L issupposed Stonean residuated
lattice, (X")" v (x")”" =1eP, hence (X") €P or (x")” €P, acontradiction.

Corollary 11 Let L be a Stonean residuated lattice, then X A X =0 forall xelL

Proof. If xeL, then X v X =1, hence X € B(L), so X AX~ =0. Then XAX <X AX =0,
hence XA X =0.

Proposition 10 For a residuated lattice L, the following conditions are equivalent:
(i) (xX*) =x" forevery xeL;
(i) xAX =0 forevery XelL.

Proof. (i) = (ii). Let XeL and teL suchthat t<X,t <X". Then we obtain successively

N . N " (c10)
t?<x®x =0, t*=0, (t?) =0"=1, t'=1, t7=0. Sincet <t~ then t=0.

Hence XA X =0,
(ii)) = (i). Let X e L. We obtain successively X® (X > X )<XAX =0, Xx®(X—>x")=0,
x> X <x, x> x =x", then (x*) =x".
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If a residuated lattice L satisfies one of the equivalent conditions from Proposition 10, then it is called a
SRL-algebra. In ([8]), the following result was proved for Stonean residuated lattices, but it is avaible, also, for
SRL-algebras. It is known ([8]) that the class of Stonean residuated lattices is a subclass of SRL-algebras.

Lemma8 InaSRL-algebra L, the following are equivalent:
(i) {0} is a prime lattice ideal;

(i) X" =0 forevery x=0;
(it) L\{O} is a maximal i-filter.

Definition 9 A nonempty subset F of L iscalled Boolean i-filter if F isani-filter of L and
xvXx eF, forevery Xe L.

Lemma 9 In a Stonean residuated lattice L, if there is a Boolean i-filter F of L then F < Rad(L).

Proof. Clearly, the radical of any residuated lattice is an i-filter, because it is the intersection of all maximal
i-filters.

Following Proposition 5, for any residuated lattice L we have that

Rad(L) ={x e L:foreveryn>1thereis k, >1such that [(x“)*]kn =0}.

Following Proposition 10, (i) we deduce that for any Stonean residuated lattice L we have (X")" =X, for
every N>1. Thus, Rad(L) ={x e L:thereis k, >1 such that (x*)kn =0}.

Let Xe L. Since L isaSRL-algebrawehave (Xv X ) = X AX =0, thatis, (Xv X )eRad(L),

for every X e L. Since F is supposed a Boolean i-filter, that is, XV X e F, for every X e L, then we
deduce that F < Rad(L).

Theorem 11 (Boolean i-filter theorem)
In a Stonean residuated lattice L, if there is a prime Boolean i-filter F of L, then F e Max;(L).

Proof. Following Lemma 9, we deduce that F < Rad(L).

Let X e Rad(L), then (X*)n =0, forsome n>1, thatis, X is of finite order, even more there is no
i-filter to contain X . Since F is supposed to be a Boolean i-filter, then forevery xe L, Xxv X eF.
Even more, since X ¢ F, xvx eF and F is supposed to be prime, then X € F, that is,

Rad(L) c F.

Hence Rad(L)=F.

Because F isprime, then Rad(L) is prime. Let (M), € Max, (L) be a sequence of maximal i-filters of
L. Since m; M, =Rad(L)=F and applying successively the Proposition 4, (i) we deduce that
F=M,or F=M, or..or F=M,..,, thatis, F must to be a maximal i-filter.

Corollary 12 In a Stonean residuated lattice L, if L\{O} isa maximal i-filter , then it is a Boolean i-filter.
Proof. Following Lemma 8, (ii) we deduce that forany X €L wehave xv X =xv0=xe L\{0},
hence Xv X e L\{0}, that is, L\{O} isaBoolean i-filter.
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