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I. INTRODUCTION    

 

  Let L  be a lattice with 0.  We recall ([1],[2]) that an element La  is  pseudocomplemented if there is a 

largest member of L  which is disjoint with .a  If such an element exists, it is denoted by 
*a  and is called  

pseudocomplement of a  (that is, 0}=:{=* xaLxmaxa  ). 

  A  pseudocomplemented lattice is a lattice with 0  in which every element has a pseudocomplement. Clearly, 

a pseudocomplemented lattice is bounded, where .0=1 *
 

If ,0,1),,( L  is a bounded lattice, we recall ([1],[3],[7],[21]) that an element La  is called  

complemented if there is an element Lb  such that 0=ba  and 1;=ba  if such an element exists it is 

called a  complement of .a  Complements are, in general, not unique, unless the lattice is distributive (see 

Lemma 2.6.2, [3]). In residuated lattices ([21]) the complements are unique, although the underlying lattice need 

not be distributive ([9]). 

  A  boolean element of a residuated lattice L  is a  complemented element of the underlying lattice of L . It is 

proved in [21] that for a boolean element Le , its complement is 0=* ee . In the same paper is proved 

that the set of boolean elements of L  form a subalgebra of ,L  that is a boolean algebra denoted by ),(LB  and 

that Le  belongs to )(LB  if, and only if, 1.=*ee  These results are also presented in [3], [7] and [24]. 

For a residuated lattice ,L  the boolean subalgebra )(LB  is called the  boolean center of .L  

  In some situations (see [1],[2]) L  is supposed to be distributive. 

  A pseudocomplemented lattice L  is called  Stonean lattice if 1=*** xx   for every .Lx  

In [1] is given the following theorem of characterization for Stonean distributive lattices:  

Theorem 1  For a pseudocomplemented distributive lattice L  with 0,  the following are equivalent: 

)(i  L  is a Stonean lattice; 

)(ii  
*** =)( yxyx   for every ;, Lyx   

)(iii  
****** =)( yxyx   for every ;, Lyx   

)(iv  Every prime ideal in L  contains at most one minimal prime ideal; 

)(v  If I  and J  are distinct minimal prime ideals in ,L  then .= LJI    

 

  The study of pseudocomplemented distributive lattices commenced with a paper by V. Glivenko in 1929 (see 

[15]). Although in the 1937 classic paper of M. H. Stone ([25]) there is a reference to what we now call Stone 

algebras, there were G. Grätzer and E. T. Schmidt ([16]) who first solved a problem of M. H. Stone and thereby 

generated widespread interest in the topic. G. Birkhoff [[2], 1948 edition], in fact, was the first paper in which the 

term  Stonean lattice is used. 

  We recall that a  residuated lattice ([14],[28]) is an algebra ,0,1),,,,( L  of type ,0)(2,2,2,2,0  

equipped with an order   such that 
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:1LR  ,0,1),,( L  is a bounded lattice relative to  ; 

:2LR  ,1),( L  is a commutative ordered monoid; 

:3LR    and   form an adjoint pair, i.e., bxa   iff ,bax   for all .,, Lxba   

  For examples of residuated lattices see [6],[7],[13],[14],[19],[24],[26]. 

  In what follows (unless otherwise specified) by L  we denote a residuated lattice. 

For Lx  we define 0=* xx  and .)(= **** xx  

  Taking as a guide line the case of lattices with 0,  the residuated lattice L  is called  Stonean 

([11],[12],[20],[27]) if 1=*** xx   for every .Lx  

  We recall ([19],[24]) that in general residuated lattices need not be distributive. 

  Every Stonean residuated lattice ([8]) L  is pseudocomplemented, where for ,Lx  
*x  is the 

pseudocomplement of .x  

  In the absence of distributivity of ,L  it is possible that Theorem 1 be not true in the case of .L  Indeed, in [8] 

we put in evidence some properties of i-ideals in a Stonean residuated lattice ,L  in connection with properties 

)(ii  and )(iv  (for the dual form)  from Theorem 1. 

  Residuated lattices and Stone algebras are two topics much studied in lattice theory, with impact on logic. One 

of the topics studied in residuated lattices is the theory of the so-called implicative ideals and filters. This paper 

deals with algebras that are both residuated lattices and Stone algebras, the subject-matter is the detection of 

properties of some special types of implicative filters (i-filters for short) that are specific to Stonean residuated 

lattices. We mention that we introduce the notions of i-filter’s radical and boolean i-filter in Stonean ressiduated 

lattices. Several interesting results are obtained. 

 

II. PRELIMINARIES   

For Lx  and 1n  we define 0,=* xx  ,)(= **** xx  1=0x  and xxx nn 1=  for 1.n   

 

Proposition 1  Let L  be a residuated lattice. Then for every ,,, Lzyx   we have: 

 

 (c1) ;so,, yxyxyxyx   

 

 (c2) ;and1,= yxyyxyx   

 

 (c3) ;then,If zyzxyx   

 

 (c4) ;and, zxzyyxyzxzyx   

 

 (c5) );(=)(  so,)(=)( zxyzyxzyxzyx   

 

 (c6) );()()( and),()(=)( zxyxzyxzxyxzyx   

 

         (c7) 
);()(=)(

,)()()(  and,)(=)()(

zxyxzyx

zyxzyzxzyxzyzx




     

 

 (c8) );()()( zxyxzyx   

  

         (c9) ;==and,=)(,=)( ***************** yxxyyxyxyxyxyx 

  

 (c10) .=and,,1,=00,=10,= *********** xxxyyxxxxx   

 

Consider the following identities:  
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 ),()(= tydivisibiliyxxyx   (11) 

 

 ),(1=)()( linearityprexyyx   (12) 

 

 ).(= eidempotencyxyx   (13) 

  

Definition 1  A  residuated lattice L  is called:   

    )(i   Divisible if L  verifies (11),  

    )(ii   MTL-algebra if L  verifies (12),  

    )(iii   BL-algebra if L  verifies (11) and (12),  

    )(iv   G-algebra if L  is a BL-algebra and verifies (13).  

  

We present some examples of residuated lattices that we will use in the sequel, for illustrating various properties 

and various classes of residuated lattices. 

 

Example 1.  Let ,1},,{0,= cbaL  with 1,<<,<0 cba  but a  and b  are incomparable.  

 

      1 

c 

     a  b 

      0 

 

Then ,0,1),,,,( L  is a residuated lattice ([19], page 187), where   and   are defined as in the 

tables: 

101

0

00

00

000000

10

101

110

111

111

111110

10

cba

ccbac

bbbb

aaaa

cba

cba

bac

aab

bba

cba 

 

Example 2.  ,1},,,,,,{0,= gfedcbaL  with 1,<<<<0 eba  1,<<<<0 eda  

1,<<<<0 gda  1,<<<<0 edc  1,<<<<0 gdc  1<<<<0 gfc  and elements },,{ ca  

},,{ db  },,{ fd  },{ ge  and },{ fb  are pairwise incomparable. 
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      1 

     e   g 

    b  d  f 

     a  c 

      0 

 Then  ([19], page 166) L  becomes a residuated lattice relative to the following operations:  

 

101

00

000

00

0000

000000

000

000000

0000000000

10

101

11

111

11

1111

111111

111

111111

1111111110

10

gfedcba

gffdccag

fffcccf

edcbabae

dccaad

cccc

bababab

aaaa

gfedcba

gfedcba

geedbbag

eeebbbf

gfgfedce

ggeedd

eeec

gfgfgfb

ggga

gfedcba 

 

Example 3.  ,1},,,,,,{0,= gfedcbaL  with 1,<<<<0 eba  1,<<<<0 eda  

1,<<<<0 gda  1,<<<<0 edc  1,<<<<0 gdc  1<<<<0 gfc  and elements },,{ ca  

},,{ db  },,{ fd  },{ ge  and },{ fb  are pairwise incomparable (see the diagram from Example 2). 

  

 Then  ([23]) L  becomes a residuated lattice relative to the following operations:  

 

101

0

000

0

0

000

000

000

0000000000

10

101

110

111

110

11110

111111

111

111111

1111111110

10

gfedcba

ggfddcaag

fffcccf

edcedcbae

ddcddcaad

ccccccc

bababab

aaaaaaa

gfedcba

gfedcba

feecbbg

eeebbbf

gfgfbae

ffbbd

bbbc

gfgfgfb

fffa

gfedcba 

Example 4  Let ,1},,,,{0,= dcnbaL  with 1,<<<<0 dna  1,<<<<0 cnb  but ),( ba  and 

),( dc  are pairwise incomparable. 
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1 

     c  d 

      n 

     a  b 

      0 

Then  ([19], page 191) L  becomes a distributive residuated lattice relative to the operations:  

 

 

101

0

0

0

00

00

00000000

10

101

110

110

11110

11111

11111

11111110

10

dcnba

ddnnbad

cncnbac

nnnnban

bbbbbb

aaaaaa

dcnba

dcnba

ccbad

ddbac

ban

aab

bba

dcnba 

 

2. 1.  i-Filters in residuated lattices  

 

We say that an ordered set L is a lattice if for every two elements Lba , there exist ba and ba in 

 .L  

In lattice theory a lattice filter is defined as follows:  

Definition 2  A non-empty subset F will be called a lattice filter ( filter, for short) of L  if 

)( 1F  If ba   and ,Fa  then ;Fb  

)( 2F  If ,, Fba   then .Fba   

We denote by )(LF  the set of all filters of .L   

 

In residuated lattice theory we have the following notions:  

Definition 3  An  implicative filter ( i-filter, for short) is a nonempty subset F of L such that 

)( 1F  If yx   and ,Fx  then ;Fy  

)( 3F  If ,, Fyx   then .Fyx   

We denote by )(LiF  the  set of all i-filters of .L   

Remark 1  1.  F  is an  implicative filter of L  iff F1  and ,, Fyxx   then Fy  (that  is, F  

is a  deductive system of L ). 

2.  Every i-filter is a filter in the lattice ),,,( L  but the converse is not true (see [8],[20]).  

So, if we denote by ))(()( LL iFF  the set of all lattice filters (i-filters) of ,L  then ).()( LLi FF   

Remark 2  There are residuated lattices in which  lattice  filters are not  i-filters. 

Indeed,  we consider the Example 2. Clearly, ,1},,{= gedF  is a lattice filter. 

If F  is an i-filter, since 0,=dd   and an i-filter is closed with respect to the operation ,  then we deduce 

that ,0 F  a contradiction, so, F  is not an  i-filter.  

 

 We have  ([6]), )(=)( LLi FF  iff yxyx  =  for every ., Lyx   

For a nonempty subset S  of L  we denote by S  the i-filter generated by .S  If ,La  the i-filter 

generated by }{a  will be denoted by a  (also, a  is called  principal). If )(LF iF  and ,\ FLa  
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then  }{aF  will be denoted by .aF  

 

Proposition 2 ([6],[7],[24]) Let L  be a residuated lattice, LS   a nonempty subset, )(LF iF  and 

.\ FLa  

Then: 

)(i  };,...,somefor ,...:{= 11 SssxssLxS nn   

)(ii  1}; somefor ,:{=  nxaLxa n
 

)(iii  ;1}somefor ,:{=  nFxaLxaF n
 

)(iv  ;=  baFbFaF  

)(v  PaLP i  )),(everyfor ( F  iff Pa   iff ,Pan   for any 1.n   

 

Proposition 3 ([22]) Let L  be a residuated lattice and ., Lba   Then: 

)(i  ba   implies ; ab  

)(ii  ;==  bababa  

)(iii  .=  baba   

 

Proposition 4 ([6],[7],[24]) For )(LP iF  the following are equivalent: 

)(i  If 21= FFP   with ),(, 21 LFF iF  then 1= FP  or ;= 2FP  

)(ii  If PFF  21  with ),(, 21 LFF iF  then PF 1  or ;2 PF   

)(iii  If Lyx ,  and ,Pyx   then Px  or .Py   

 

Definition 4  We say that )(LP iF  is  prime i-filter if LP   and P  verifies one of the equivalent 

conditions of  Proposition 4. We denote by )(LSpeci  the set of all prime i-filters of .L   

 

Remark 3  We notice that following Proposition 4, )(i  in order to prove that an i-filter )(LP iF  is not 

prime it suffices that: 

 If there exist Lyx ,  such that Pyx   with Px  and ,Py  then P  is not prime.  

 

  We recall that an i-filter M  of L  is called  maximal if LM   and M  is not strictly contained in a 

proper i-filter of .L  We denote by )(LMaxi  the set of all maximal i-filters of .L   

Remark 4  In any residuated lattice ,L maximal i-filters are prime. 

Indeed, following Proposition 4, we deduce that every maximal i-filter M  of a residuated lattice L  is prime  

because, if there exist two proper i-filters )(, LPN iF  such that ,= PNM   then NM   and 

,PM   by the maximality of M  we deduce that ,== PNM  that is, M is an inf-irreducible, so prime 

element in the lattice of  i-filters )),(( LiF  of L  (by the distributivity of the lattice of  i-filters )),(( LiF  

of L ).  

 

In literature for maximal i-filters in any residuated lattice we have the following characterizations: 

 

Corollary 1 ([4],[7]) For a residuated lattice ,0,1),,,,( L  and M  a proper i-filter of L  we have the 

following equivalent assertions:   

    )(i  );(LMaxM i   

    )(ii  For any Mx  there exist 1,  nMd  such that 0;=nxd    

    )(iii  For any MxLx  ,  iff ,)( * Mxn   for some 1;n   
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    )(iv  For any Mx  there is 1n  such that ,Myxn   for every .Ly   

   

Remark 5 ([7]) If M  is a maximal i-filter of a residuated lattice ,L  then Mx  iff .** Mx    

 

Definition 5  The intersection of the maximal i-filters of a residuated lattice L  is called the radical of L  and 

will be denoted by )(LRad .  

  

Proposition 5 ([13]) 

0}.=])[( such  that1 is  there1everyfor  :{=)( * n
kn

n xknLxLRad    

 

3. 1.  i-Filter’s radical in Stonean residuated lattices   

 

Following the papers [8], we may define an additive operation   on any residuated lattice L  by setting for all 

,, Lyx   

 .)(= *** yxyx   (14) 

 

Clearly, following (c5) for all ,, Lyx   the equation  (14)  is equivalent with  

 .== ****** xyyxyx     (15) 

 

In what follows we will establish the properties of operation   in any residuated lattice.  

Proposition 6 ([8]) In any residuated lattice ,L  the operation  (14) has the following properties:   

    )(i  0,0=0   ;= xyyx    

    )(ii  ;==)( ****** yxyxyx    

    )(iii  ;=0=0 **xxx    

    )(iv  ;)(=)( zyxzyx    

    )(v  1;=0=1=1 *xx    

    )(vi  1;=1= yxyx    

    )(vii  );()(=)( *** zxyxzyx    

    )(viii  );()(=)( *** zxyxzyx    

    )(ix  1;== ** xxxx    

    )(x  xxyyyx  **** )(=)(  is equivalent with 

,)(=)( **************** xxyyyx   for all .,, Lzyx   

 Proof. ).(i  .=)(=)(=0,=1=)0(0=00 ***
)

2
(

******* xyxyyxyx
Lr

  

).(ii  .=])()[(==)(=)(=)( **************
10)(

******* yxyxyxyxyxyx
C

  

).(iii  .=)0(=0 **
10)(

*** xxx
C

  

).(iv  By (15), (c9), (c5) and point )(ii , we have 

****
5)(

****
(15)

*
)(

***
15)(

******
(15)

)(=)(=)(=)(=)(=)( yzxyzxyzxyzxyzxzyx
Cii



 and 

,)(=)(=)(=)(=)(=)( ****
(15)

****
(15)

*
)(

***
(15)

******
(15)),(

yzxyxzyxzyxzyxzzyx
iii



 hence our claim holds. 

).(v  1.=1=1=1
2)(

*
10)(

***
(15) CC

xxx   
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).(vi  Since 
**** , yyxx   and yxyx **** ,  implies .yxyx   Thus,  

1.==1 yxyxyx   

).(vii  By (c7), (c10) and (c9), we obtain successively 

).()(=)()(

=)()(=)(=)(=)(=)(

**
(15)

********

9)(
****

7)(
***

9)(
**

10)(
****

(15)
*

zxyxxzxy

zxyxzyxzyxzyxzyx
CCCC





 

).(viii We obtain successively 

).()(

=)()(=)(=)(=)(=)(
15)(

******
7)(

*****
9)(

****
10)(

******
(15)

***

zxyx

zxyxzyxzyxzyxzyx
CCC




 

).(ix  1.===
2)(

****
(15)

*
)(

*
Ci

xxxxxx   

 

).(x
********

(15)
*****

(15)
** )(=)(=)( yyxyyxyyx    

and .)(=)(=)( ********
(15)

*****
(15)

** xxyxxyxxy   Thus, our claim holds.  

 

For Lx  and 0,n  we define 0=0 x  and .1)(= xxnnx   

 

Corollary 2  If Lyx ,  and 1,, nm  then 

)(i  If ,nm   then ;nxmx   

)(ii  If ,yx   then ;mymx    

Proof. ).(i  Since ,2==
(15)

***
2)(

**
(10)

xxxxxxxx
C

  we deduce that ,2xx   that is, if ,nm    

then ,nxmx   for any natural numbers 1., nm  

).(ii  Since yx   we obtain successively ,*
4)(

* xy
C

  ,**
3)(

** xxyy
C

  

 ,)()( ***
4)(

*** yyxx
C

  .
(14)

yyxx   Hence .22 yx    

By induction, we deduce that ,mymx   for every natural number 1.m   

  

Lemma 1  Let L  be a residuated lattice and .,, Lzyx   

Then: 

)( 11c  If ,yx   then .zyzx    

  

Proof. ).( 11c  If yx   we obtain successively ,** xy   .****** zyzx   Hence .zyzx    

 

Corollary 3 ([8]) Let L  be a Stonean residuated lattice.  If Lyx ,  and 2,n  then 

)( 12c  ).()( yxnnyx    

  

Proof. Mathematical induction relative to .n   

 

Corollary 4 ([8]) Let L  be a Stonean residuated lattice. If Lyx ,  and 2m  or 2,n  then 

)( 13c  ).)(()()( yxmnnymx    

  

Proof. Suppose 2.m  If 0=n  in )( 13c  we have equality. If 1,=n  )( 13c  follows from ).( 12c  
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If 2,n  by )( 12c  we deduce that =)]([])[()()( yxmnymxnnymx   ).)(( yxmn   

Analogously, if 2.n   

 

Corollary 5 ([8]) Let L  be a Stonean residuated lattice. If Lyx ,  and nm,  are natural numbers, then 

)( 14c  );)(()()( yxmnnymx   

)( 15c  ).)(()()( yxmnnymx    

Proof. ).( 14c  If 0,=m  then  in )( 14c  we have equality for every natural  number .n  

If 1=m  and 0,1,=n  we have also equality in ).( 14c  If 1=m  and 2,n  then we have  

)
12

(

)()(
c

nyxnyx   ).( yxn   

If 2,m  then 

)
13

(

)()()()(
c

nymxnymx   ).)(( yxmn   

).( 5c  As in the case of ),( 14c  using ).( 13c   

 

  Following the paper [30] we extend the notion of  filter’s radical to residuated lattices, as i-filter’s radical. 

Initially, the  filter’s radicals were defined and studied in lattice implication algebras (see [30]), we extend this 

notion to residuated lattices as  i-filter’s radicals and we present some specific properties of them in Stonean 

residuated lattices.  

 

Definition 6  Let )(LD iF  be an i-filter of .L  The subset  

 }such thatis there:{ DnxNnLx   

is called an  i-filter’s radical, and it is denoted by .D   

 

 In [30], the authors define a lattice implication algebra as follows:  

Definition 7 ([30]) By a  lattice implication algebra we mean a bounded  lattice ,0,1),,( L  with 

order-reversing involution 1 and 0  the greatest and the smallest element of L  respectively, and a binary  

operation   satisfying the follow axioms: 

)( 1I  );(=)( zxyzyx   

)( 2I  1;=xx  

)( 3I  ;= ** xyyx   

)( 4I  If 1,== xyyx   then ;= yx  

)( 5I  ;)(=)( xxyyyx   

)( 1L  );()(=)( zyzxzyx   

)( 2L  )()(=)( zyzxzyx   

for all .,, Lzyx    

 

Corollary 6  There are  Stonean residuated lattices which are not  lattice implication algebras, so, it is proper  

to study i-filter’s radicals in Stonean residuated lattices.  

  

Proof. In Example 3 we have 1,=00 ***   1,=11 ***   1,==*** bfaa   1,==*** bfbb    

1,==*** fbcc   1,=10=***  dd  1,=10=***  ee  1,==*** fbff    

1,=10=***  gg  that is, L  is Stonean. 

We consider the Stonean residuated lattice from Example 3, where 1==)( ffffa   and  

,==)( gabaaf   so, ,)(=1=)( aafgffa   that is, the axiom )( 5I   

from Definition 7 is not satisfied.  
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Remark 6  In a residuated lattice ,L  an  i-filter’s radical is not always an  i-filter. 

Indeed, see Example 2, for {1}=D  we have }.,,{1,= dgeD  

By Remark 2, we deduce that D  is not an i-filter.  

 

Following Remark 6, we deduce that an i-filter’s radical is not closed with respect to the operation .e  

 

Remark 7  The residuated lattice from Example 2 is not Stonean. 

Indeed, the Example 2 is not Stonean, because 1.=***  ddd   

 

Proposition 7  Let )(LD iF  be an i-filter of a residuated lattice .L  Then .DD    

  

Proof . Let )(LD iF  be an i-filter of L  and .Dx  Since D  is an i-filter and ,, xxxDx   we  

deduce that ,2= Dxxx   that is, .Dx   

 

Lemma 2  Let )(LD iF  be an i-filter of a residuated lattice .L  Then:   

    )(i  ;1 D   

    )(ii  If Dx  and ,yx   then ;Dy   

    )(iii  If ,, Dyx   then .Dyx    

  

Proof. ).(i  Since for every i-filter )(LD iF  we have ,1 D  and 1,=1n  for every 1,n  we deduce  

that .1 D  

).(ii  If ,Dx  then there exists 1n  such that .Dnx  Because ,yx   by Corollary 2, )(ii  we  

have ,nynx   since D  is an i-filter and ,, nynxDnx   then ,Dny  that is, .Dy  

).(iii  If ,, Dyx   then there exist 1, nm  such that Dmx  and .Dny  Since  

),(,
2)(

yxmmxDmx
C

  we deduce that ,)( Dyxm   that is, .Dyx    

Following Lemma 2 we conclude that:  

Theorem 2  In any residuated lattice ,L  the i-filter’s radicals are lattice filters closed with respect to the 

operation .   

 Since in any residuated lattice ,L  the i-filter’s radicals are lattice filters, then they are closed with respect to the 

operation .  In the case of Stonean residuated lattices we establish that:  

Lemma 3  Let )(LD iF  be an i-filter of a Stonean residuated lattice .L  Then Dyx ,  if,  and only if, 

.Dyx    

Proof. Let ).(LD iF  Assume that Dx  and ,Dy  then there exist 1, nm  such that Dmx   

and .Dny  Without restricting the generality we can assume that .nm  By Corollary 2, )(i  we have  

.nxmx  Since )(LD iF  is an i-filter of L  and ,Dmx  then .Dnx  

 

By (7), we have .=)()(=)(
2)(7)(

nynxnynxnxnxnynxnx
CC

  Since ,Dnynx   we 

deduce that .)( Dnynxnx   Since D  is an i-filter and ,)(, DnynxnxDnx   then  

.Dnynx   Following Corollary 4, )( 7c  we have ,))(( 2 Dyxnnynx   then we deduce that  

.Dyx   

Conversely, if ,Dyx   then there exists 1n  such that .)( Dyxn   By Corollary 2, )(ii  we have  
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,,)( nynxyxn   and  since D  is an  i-filter, then Dnx  and ,Dny  that  is, ., Dyx    

 

Following Lemma 3 we conclude that an i-filter’s radical in a Stonean residuated lattice is closed relative to the 

operation .  

 

Theorem 3  Let )(, LQP iF  be two i-filters of a residuated lattice .L  Then   

    )(i  If ,QP   then ;QP    

    )(ii  ;= QPQP    

    )(iii  . PP   

  

Proof. ).(i  We notice that for all Px  there exists 1n  such that .QPnx   Therefore, ,Qx  

that  is, .QP   

).(ii  Clearly, QP  is an i-filter of .L  Since PQP   and ,QQP   by )(i  we have 

.QPQP   

Conversely, for any QPx   we have Px  and ,Qx  so, there exist 1, nm  such that 

Pmx  and .Qnx  Clearly, by Corollary 2, )(i  we deduce that .)( QPxnm   Therefore, 

.QPx   

).(iii  Following Proposition 7 we have ,PP   by ),(i  we deduce that . PP   

 

Following the properties of a  principal i-filter from Proposition 3 we obtain: 

 

Corollary 7  Let L  be a residuated lattice. Then   

    )(i  If ,ba   then ; ab   

    )(ii  ;=  baba   

    )(iii  If 1,=ba  then .{1}= ba   

  

Proof. ).(i  and ).(ii  are obvious. 

).(iii  By ),(ii  we deduce that .{1}= ba  

 

Lemma 4  Let P  be a prime i-filter of a residuated lattice .L  If P  is an i-filter of L , then not always 

P  is prime.  

  

Proof. We consider the Example 1, where {1}=P  is a prime i-filter and its i-filter’s radical is }.{1,= cP  

Clearly, ,1},{,1},{ cac  and ,1},{ cb  are i-filters of .L  

Following Proposition 4, since ,1},{,1},{=}{1,= cbcacP   with ,1},{}{1, cac   and 

,1},,{}{1, cbc   we deduce that P  is not a prime i-filter. 

As a second proof, we can follow the Remark 3, since Pcba  =  with Pa  and ,Pb  then 

P  is not a prime i-filter.  

 We say that a residuated lattice has the  double negation property if for all Lx  hold .=** xx   

Remark 8  Let P  be a prime i-filter of a G-algebra L  with double negation property. If P  is an i-filter of 
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L , then P  is prime. 

Indeed, it is well known that in a BL-algebra L  we have the following rule of calculus: .=)( *** yxyx   

Since 

yxyxyxyxyxyxyxyxyx
C

 ==)(=)(=])()[(=)()(=)2( *******
9)(

**
(13)

***
(14)

 and ,===2 ** xxxxx   we deduce that ,=)( nynxyxn   for any 1.n  

In order to prove that P  is prime, we consider Lyx ,  such that Pyx   and .Px  Then there 

exists 1n  such that .)( Pyxn   Since P  is prime and Pnynxyxn  =)(  and ,Pnx  we 

deduce that ,Pny  that is, .Py  So, P  is prime.  

 

Proposition 8 ([8]) If L  is a Stonean residuated lattice then for every :, Lyx   

)( 16c  .=)( *** yxyx   

 

Lemma 5  Let L  a Stonean residuated lattice. If )(LMaxM i  is a maximal i-filter of ,L  then 

.= MM   

Proof. By maximality of ,M  it is sufficient to prove that )(LM iF  is an i-filter of .L  

For that, we consider ., Myx   Then there exist 1, nm  such that Mmx  and 

.)()( MnymxMny   Following )( 14c  we deduce that ,))(( Myxmn   that is, 

.Myx   Thus, ).(LM iF   

 The following results (Theorem 4, Theorem 5) represent new characterizations for maximal i-filters in Stonean 

residuated lattices. 

 

Theorem 4  Let L  be a Stonean residuated lattice and .La  Then the following assertions are equivalent: 

)(i  );(LMaxM i  

)(ii  ),(LSpecM i  Mx  iff .** Mx    

 

Proof. ).()( iii   Clear by Remarks 4 and 5. 

).()( iii   Let .Mx  Then .** Mx   Since L  is a Stonean residuated lattice we have 1.=*** xx   

Since )(LSpecM i  and ,1=*** Mxx   ,** Mx   then .* Mx   

If .* Mx   Since ,xxn   for every 1,n  then .)( *
4)(

* n
C

xx   Since M  is an i-filter we deduce that 

.)( * Mxn   

If for any ,Lx  ,)( * Mxn   for some 1,n  then .Mx  If by contrary ,Mx  then ,Mxn   for 

every 1,n  and ,0=)( * Mxx nn   a contradiction. 

We deduce that for any ,Lx  Mx  iff ,)( * Mxn   for some 1,n  that is, )(LMaxM i  (see 

Corollary 1, )(ii ).  

 

Theorem 5  Let )(LSpecM i  be a proper i-filter of a Stonean residuated lattice .L  Then MM =  if, 

and only if, ).(LMaxM i   

Proof. Following Lemma 5, we deduce that if ),(LMaxM i then .= MM  

Conversely, if ,= MM  then )(LFM i  is an i-filter of .L  Thus, by (c10), if ,Mx then  

.** Mx   If ,** Mx  then there is 1n  such that  
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,)(2)(2)(
(14)

***
2)(

** MxnMxnMxxnMnx
C

  that is, .Mx  

Therefore, Mx  iff ,** Mx   following Theorem 4 we deduce that ).(LMaxM i  Thus,  

 

).(LMaxM i   

Lemma 6 Let L  be a non-degenerate residuated lattice. If ,= MM  then ).(LMaxM i   

Proof.  See the proof )"("  of  Theorem 5.  

 We propose to solve the following exercise.  

Remark 9  On a given Stonean residuated lattice ,L  show that: If ),(LMaxM i  then .= MM  

Indeed,  if we choose the Example 3. For any natural number 1n  we have  

.=,=,=1,=1,=,=1,=1,=1 bnabnbfncndnefnfngn  Clearly, ,1},,,,{= gedbaa  and  

,1},,,,{= gefdcc  are the maximal  i-filter of .L  It is easy to see that  aa =  and .=  cc   

 

Remark 10  In a Stonean residuated lattice ,L  if )(LMaxM i  is a maximal  i-filter of ,L  then not 

always .= MM  

Indeed, for that we consider the Example 3. Clearly, ,1},{= ebb  is an i-filter of L  and b   

,1},,,,{= gedba  a=  is a maximal  i-filter of .L  Thus, )(LMaxb i  and . bb  

 

Definition 8  Let 1L  and 2L  be two residuated lattices and 21: LLf   be a mapping from 1L  to .2L  

We call f  a  morphism of residuated lattices if for all 1, Lyx   it satisfies: 

)( 1M  0=(0)f  and 1;=(1)f  

)( 2M  );()(=)( yfxfyxf   

)( 3M  );()(=)( yfxfyxf   

)( 4M  );()(=)( yfxfyxf   

)( 5M  );()(=)( yfxfyxf   

)( 6M  .))((=)( ** xfxf   

 

Lemma 7  Let 1L  and 2L  be two residuated lattices. If 21: LLf   is a morphism of residuated lattices, 

then ),(=)( xnfnxf  for all 1Lx  and every natural number 1.n   

Proof. Since f  is a morphism of residuated lattices, then 

)
4

(),
6

(
***

(14)

=))((=)(
MM

xxfxxf    

*** ))(( xxf   

)
6

(
*** =))()((=

M

xfxf   ),()(=))()((
(14)

*** xfxfxfxf   by the associativity of 

  (see Proposition 6, )(iv ), we deduce that ),(=)( nxfxnf  for all 1Lx  and every natural number 

1.n   

 

Let f  be a morphism of residuated lattices from 1L  to 2L  and 
2

1L  be the greatest element of .2L  We 

define the dual kernel of f  denoted by ),( fkerD   as  

 }.1=)(:{:=)(
2

1 LxfLxfkerD   

Theorem 6  Let 21: LLf   be an onto morphism of residuated lattices. If )( 1LD iF  is a proper i-filter of 

,1L  and ,)( DfkerD   then .)(=)( DfDf   
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Proof.  Clearly, )()( 2LDf iF  is a proper i-filter of .2L  

Firstly, we prove that .)()( DfDf   

For that we consider ),( Dfy  then there exists Dx  such that .=)( yxf  Since ,Dx  then 

there is 1n  such that .Dnx  Following Lemma 7 we have ),(=)(=)( Dfnyxnfnxf   that is, 

.)(Dfy  

Conversely, we consider ,)(Dfy  then there is 1n  such that ).(Dfny  Since D  is morphism of 

residuated lattices, then there exists 1Lx  such that .=)( yxf  Following Lemma 7 we have 

,=)(=)( nyxnfnxf  and by the fact that f  is onto, we deduce that there exists Dz  such that 

).(=)( zfnxf  It follows that ,1=)()(=)(
2

21 Lnxfzfnxzf   that is, ).(1 fkerDnxz   

Because ,)( 1 DnxDnxzDfkerD   that is, .Dx  Therefore,  

).()(= Dfxfy    

 

In what follows we present an easy but important consequence of Theorem 6: 

 

Corollary 8 Let 21: LLf   be an onto morphism of residuated lattices. Then: 

)(i  If )( 1LD iF  and ,)( DfkerD   then );()( 2LDf iF  

)(ii  If )( 1LSpecD i  and ,)( DfkerD   then ).()( 2LSpecDf i   

 

In what follows we present an easy but important consequence of Theorem 5 and Theorem 6: 

 

Corollary 9 Let 21: LLf   be an onto morphism of Stonean residuated lattices. If )( 1LMaxD i  and 

,)( DfkerD   then ).()( 2LMaxDf i   

  

Proof. Obvious, by Theorem 4.  

  

Theorem 7  Let 21: LLf   be a morphism of residuated lattices. If )( 1LD iF  is a proper i-filter of ,1L  

then .)(=)( 11 DfDf 
  

  

Proof. Clearly, if ),( 22 LD iF  then ).()( 12

1 LDf iF
 

Firstly, we prove that .)()( 11 DfDf    

For that we consider ),(1 Dfx   then .)( Dxf   Then there exists 1n  such that  

.)(=)(
7

Dnxfxnf
Lemma

  So, ),(1 Dfnx   that is, .)(1 Dfx   

Conversely, we consider .)(1 Dfx   Then there is 1n  such that ),(1 Dfnx   then 

7

=)(
Lemma

nxf   

,)( Dxnf   that is, .)( Dxf   Hence ).(1 Dfx   So, ).()( 11 DfDf     

 

III. BOOLEAN I-FILTERS IN STONEAN RESIDUATED LATTICES   

 
An important goal in the residuated lattice theory is to investigate under which conditions every prime 

i-filter )(LSpecP i  is contained in a unique maximal i-filter. 

This fact is true for BL-algebras as we can see in what follows. Also, we prove that it is true for Stonean residuated 

lattice, but it is not true in any residuated lattice. 
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Corollary 10 There are residuated lattices in which prime i-filters are not contained in a unique maximal i-filter.  

  

Proof. We consider Example 4, where ,1}{= cc  is prime i-filter which is contained in the maximal i-filters 

,1},,,{= dcnaa  and ,1}.,,,{= dcnbb   

 

Proposition 9 ([26],Prop. 25,page 19) Let P  be a prime i-filter of a BL-algebra .L  If D  is a proper i-filter 

such that ,DP   then also D  is prime.  

 

Theorem 8 ([26],Th. 3,page 19) In a non-degenerate BL-algebra ,L  any proper i-filter can be extended to a 

maximal, prime i-filter.  

 

 And our goals follow:  

Theorem 9 In a non-degenerate BL-algebra ,L  any proper prime i-filter )(LSpecP i  can be extended to 

an unique maximal, prime i-filter.  

  

Proof. Following Theorem 8 we deduce that P  can be extended to a maximal, prime i-filter .M  It remains to  

prove the uniqueness. 

Supposing by contrary, there are )(, 21 LMaxMM i  two maximal i-filters of L  such that 1MP   and  

,2MP   then .21 MMP   Since the intersection of two i-filters is an i-filter, if we consider  

,= 21 MMD   then .DP  Following Proposition 9 we deduce that D  is a prime i-filter. Following  

Proposition 4, )(i  we deduce that 1= MD  or ,= 2MD  then 1MP   or ,2MP   a contradiction.  

 

Theorem 10 ([8]) If L  is a Stonean residuated lattice then every prime i-filter is contained in an unique maximal 

i-filter.  

Proof. Let P  be a prime i-filter and suppose by contrary that there are two distinct maximal i-filters 1M  and  

2M  such that 1MP   and .2MP   Since ,21 MM   there is 1Mx  such that .2Mx  Following  

Corollary 1, )(iii , there is 1n  such that .)( 2

* Mxn   Then ,)( 2

** Mxn   hence .)( ** Pxn   Since  

,1Mx  then ,1Mxn   hence 1

*)( Mxn   and .)( * Pxn   Since L  is supposed Stonean residuated  

lattice, ,1=)()( *** Pxx nn   hence Pxn *)(  or ,)( ** Pxn   a contradiction.  

 

Corollary 11  Let L  be a Stonean residuated lattice, then 0=*xx  for all Lx   

 

Proof. If ,Lx  then 1,=*** xx   hence ),(* LBx   so 0.=*** xx   Then 0,=**** xxxx   

hence 0.=*xx   

 

Proposition 10  For a residuated lattice ,L  the following conditions are equivalent: 

)(i  
**2 =)( xx  for every ;Lx  

)(ii  0=*xx  for every .Lx   

  

Proof. ).()( iii   Let Lx  and Lt  such that ., *xtxt   Then we obtain successively  

0,=*2 xxt   0,=2t  1,=0=)( **2t  1,=*t  0.=**t  Since ,**
10)(

tt
C

  then 0.=t   

Hence 0.=*xx  

).()( iii   Let .Lx  We obtain successively 0,=)( ** xxxxx   0,=)( *xxx    

,** xxx   ,= ** xxx   then .=)( **2 xx   

 



Some properties of filters in Stonean residuated lattices 

International organization of Scientific Research                        59 | P a g e  

   If a residuated lattice L  satisfies one of the equivalent conditions from Proposition 10, then it is called a  

SRL-algebra. In ([8]), the following result was proved for Stonean residuated lattices, but it is avaible, also, for 

SRL-algebras. It is known ([8]) that the class of Stonean residuated lattices is a subclass of SRL-algebras. 

Lemma 8  In a SRL-algebra L , the following are equivalent: 

)(i  {0} is a prime lattice ideal; 

)(ii  0=*x  for every 0;x  

)(iii  {0}\L  is a maximal i-filter.  

 

Definition 9  A nonempty subset F  of L  is called  Boolean i-filter if F  is an i-filter of L  and 

,* Fxx   for every .Lx   

 

Lemma 9  In a Stonean residuated lattice L , if there is a Boolean i-filter F  of L  then ).(LRadF    

  

Proof. Clearly, the radical of any residuated lattice is an i-filter, because it is the intersection of all maximal 

i-filters. 

Following Proposition 5, for any residuated lattice L  we have that  

is there,1everyfor :{=)(  nLxLRad  such that1nk  0}.=])[( * n
knx  

Following Proposition 10, )(i  we deduce that for any Stonean residuated lattice L  we have ,=)( ** xxn
 for 

every 1.n  Thus, 1is there:{=)(  nkLxLRad  such that 0}.=)( * n
k

x  

Let .Lx  Since L  is a SRL-algebra we have 

9)(
** =)(

C

xx   0,=*** xx   that is, ),()( * LRadxx   

for every .Lx  Since F  is supposed a Boolean i-filter, that is, ,* Fxx   for every ,Lx  then we 

deduce that ).(LRadF    

 

Theorem 11 (Boolean i-filter theorem) 

In a Stonean residuated lattice L , if there is a prime Boolean  i-filter F  of L ,  then ).(LMaxF i   

Proof.  Following Lemma 9, we deduce that ).(LRadF   

Let ),(LRadx  then 0,=)( * nx  for some 1,n  that is, 
*x  is of finite order, even more there is no  

i-filter to contain .*x  Since F  is supposed to be a Boolean i-filter,  then for every ,Lx  .* Fxx   

Even more, since ,* Fx   Fxx  *
 and F  is supposed to be prime, then ,Fx  that is,  

.)( FLRad    

Hence .=)( FLRad  

Because F  is prime, then )(LRad  is prime. Let )()( 1 LMaxM iii   be a sequence of maximal i-filters of 

.L  Since FLRadM ii =)(=1  and applying successively the Proposition 4, )(i  we deduce that 

1= MF  or 2= MF  or ... or ...,= iMF  that is, F  must to be a maximal  i-filter.  

 

Corollary 12 In a Stonean residuated lattice L , if {0}\L  is a maximal i-filter , then it is a Boolean i-filter.  

Proof. Following Lemma 8, )(ii  we deduce that for any Lx  we have {0},\=0=* Lxxxx    

hence {0},\* Lxx   that  is, {0}\L  is a Boolean  i-filter.  
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