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Abstract: - This paper presents a robust compartmental mathematical model of (SVEIR) which incorporated 
area only. Where this area is the size of the environment where the study is being investigated. It shows that 

model has a disease free equilibrium which is globally asymptotically stable (GAS). There exists a unique 

endemic equilibrium point which is locally stable whenever the association threshold quantity (R0) exceeds 

unity i.e. R0 > 1. We solved the model numerically using Runge-kutta of order four (4). It is shown that as the 

area is increasing the total number of infected individual is decreasing. This implies that to reduce the spread of 

measles, measles patients are to be kept separately for treatment so as to reduce the effective contract rate. The 

results were presented graphically.  
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I. INTRODUCTION 
 Measles is caused by the measles virus. The measles virus is a paramyxovirus of the genus 

Morbillivirus. It is transmitted by close contact via airborne propagules and spread through droplet transmission 

from the nose, throat, and mouth of someone who is infected with the virus. These droplets are sprayed out 

when the infected person coughs or sneezes. Among unimmunized people exposed to the virus, over 90% will 

contact the disease. Infection leads to the development of a typical rash. The infected person is highly 

contagious with the rash appearing four days after the person has been infected. The measles virus can remain in 

the air (and still be able to cause disease) for up to two hours after an infected person has left a room. 

Individuals infected with measles virus are believed to be immune for life. Also, individual who have received 

two doses of vaccine after their first birthday has a 98% likelihood of being immune, that is, the probability of 
having measles even when in contact with those infected with measles is above 0.02, which is very low. Though 

infants receive some immunity from their mother, this immunity is not complete and they are at increased risk 

for infection until they receive the vaccinations at 12 to 15 months of age [3, 14]. 

 The infectious period is in the order of a week, after which the hosts recover and develop lifelong 

immunity. Hosts therefore, are normally infected only once in their lifetime and if the dose of the infectious 

agent is sufficiently large, this happens at a young age, hence measles is a childhood disease. Although in 

unvaccinated populations measles is a common disease, infection is not without danger [3, 14]. 

 Individuals at high risk for measles include but not limited to children less than 1 year of age who, 

though have some immunity passed from their mother, is not 100% effective;  

Individual who have not received the proper vaccination series; individual who received immunoglobulin at the 

time of measles vaccination and individual immunized from 1963 until 1967 with an older ineffective killed 
measles vaccine. Mortality rates from measles are often high in tropical Africa because of malnutrition, 

concurrent infection and inadequate case management. Mortality rates of 5% and 10% are common and rates of 

20% have been reported [3, 14]. 

 In Nigeria, measles is an important cause of childhood morbidity and mortality. Failure to deliver at 

least one dose of measles vaccine to all infants remains the main reason for high measles morbidity and 

mortality as 95% coverage is required to interrupt measles transmission. The National Program on 

Immunization aim of reducing measles case fatality to near zero has depended on the adoption and 

implementation of the WHO four prong strategy; improving routine immunization with at least one dose of 

measles vaccine at 9 months, providing a second opportunity for measles immunization through supplemental 

immunization activities, establishing case based surveillance with laboratory confirmation and improving case 

management (World Health Organization, 2001). 

Many physicians and scientists have studied the nature, characteristics, effect and spread of measles in many 
communities across the globe; these studies are either experimental or theoretical. Similarly, some mathematical 

modeling studies have been carried out to gain insight into the transmission dynamics and control of measles 

spread in human population. In this paper, we design a compartmental mathematical model which we sue to 

investigate the effect of habitat area in the control of the spread of measles in the society. The model designed is 



Mathematical Analysis Of Effect Of Area On The Dynamical Spread Of Measles 

International organization of Scientific Research                                                                  44 | P a g e  

an extension of some of the models described by previous researchers. The purpose of the current study is to 

provide a rigorous mathematical analysis of a model for measles spread, which sues standard incidence function 

for the infection rate and evaluate the conditions at which epidemics will occur and persist using the basic 

reproduction number concept. 

 

II. MATHEMATICAL MODEL FORMULATION 
 Following [3,7,8], the total homogenously mixing population at time t, denoted by N(t), is sub divided 

into mutually-exclusive compartments of susceptible (S(t)), Vaccinated (V(t)), exposed /latent (E(t)), intentions 

(I(t)), and recovered (R(t)) individuals, so that  

N(t)= S(t)+V(t)+I(t)+R(t) 

The susceptible population is increased by the recruitment of people (either by birth or immigration) into the 

population; all recruited individuals are assumed to be susceptible at a rate,π
 
Also the susceptible population 

increases by vaccinated individuals. Anyone who has had measles is believed to be immune for life. This 

population is decreased by infection, which can be acquired following effective contact with infections 

individuals only at a rate λ given by  

)1(
N

Id
 

 
 In (1)β represents the effective contact rate (i.e. contact capable of leaching to measles infection).ηd

 

is a 

modification parameter that compares the transmissibility of the diseases. Here also, we assume that 0<ηd <.1 

Thus the rate of change of the susceptible population is given by 
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The population of the vaccination individual increases by recruiting individual (either by birth or immigration) 

and vaccinated individuals into the vaccinated class. The population of vaccinated individual is decrease by the 

progression of the rate at which vaccine wanes )(  and vaccinated individuals is also reduced by natural death 

(at the rate µ). Thus  

)3(VV
dt

dV
   

 The population of the exposed individual is increased by susceptible individuals whom are infected by 

those who are infectious per habitat area. The population of the exposed individuals is decreased by exposed 

individuals whom are infectious and is also reduced by natural death of the exposed individual. Then, 
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The population of infected individual increased by the exposed individuals whom are infectious. The infected 

population is decreased by the infected individuals whom are treated and get recovered. The infected individuals 

are also reduced by those that died of measles and to mention of natural death of measles patient also reduced 

the population of infected individuals. 

Hence, 

)5(IIIE
dt

dI
   

Recovery here means recovery from diseases. The population of recovered individuals is increase by recovery 

of infected individuals after treatment. The population is reduced by natural death of recovered individual. 

Therefore 
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    

Thus, in summary, the measles dynamics transmission model, is given by the following system of non-linear 

differential equations, 
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Table 1: Description of parameters of the model 

Parameters Description. 

  Fraction of recruitment individuals who are vaccinated.  

  The recruitment rate of the individuals (either by birth or immigration). 

  The rate at which susceptible individuals become infected by those who are 

infectious. 
  Natural death rate. 

  
The rate at which vaccine wanes (i.e.


1 is the duration of the loss of immunity 

acquired by preventive vaccine or by infectious). 
  The rate at which exposed individuals becomes infectious. 
  The rate at which infected individuals are treated and recovered.  

A Area per Square meter.  

  Measles induced mortality rate. 

d  Modification parameter. 

 

III. ANALYSIS OF THE MODEL 

Theorem 1: The closed set D = 









 



NRIEVS :),,,,( 5

is positively invariant and attracting with 

respect to the model equation (7) above. 

Proof: Consider the biologically-feasible region (1), the rate of change of the total population obtained by 

adding all the equations of the model (7) above is given by 

)8(IRIEVS
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since N=S+V+E+I+R 

then 
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Therefore, 0
dt

dN
 whenever the sub total population N >




, Hence, for all t > 0, all the solutions of the 

model with the initial conditions in D will remain in D. Thus, the biologically feasible region D is positively-

invariant and attracting. 

 

3. 1 Disease Free Equilibrium (DFE) 
The DFE of the modeled equation i.e. (7) can be obtained by setting the right hand side of the model to zero 
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The stability of the DFE, 0  will be analysed using the next generation method. The non-negative matrix F (of 

the new infection terms) and the non singular matrix V( of the remaining transfer terms) are given respectively 

 by 
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Where 

 )();();( 321   kkk  

The associated reproduction number, denoted by 0R  is given by )( 1

0

 FVpR  where p  denote spectral 

radius (dominant eigenvalue in magnitude) of the next generation matrix )( 1FV  

It follows that )12(
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0
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R d
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where )();( 32   kk  

Hence, the result below follows, 

Lemma 1: The DFE of the model equation, given (7), is locally stable if R0<1.  

The threshold quantity R0, is the reproduction number for the model. It measures the average number of new 
measles infections generated by a single infectious individual in a population where some of the infected 

individuals have been immunized. The epidemiological implication of this lemma is that measles spread can be 

effectively controlled in the community (when R0<1). If the initial sizes of the sub-population of the model are 

in the basin of attraction of the diseases-free equilibrium 
























 0,0,0,0,

)1(
0

A

A




 . 

 Epidemiologically, if R0<1, the disease will dies out in the community and if R0>1, the disease spreads 

in the population. Hence, the basic reproduction number turned out to be an important factor in determining the 

transmission dynamics of any infectious diseases. 

 

3.2 Stability Analysis of the DFE 

 Hence, the stability property of the DFE of the model will be explored. At a steady state 

RIEVNS  *
, hence the stability of 0  can be established by considering the following mass 

action equivalent of the model given as  
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Here, the invariance region is given by  

   )14(:),,,( *4* NRIEVRIEVD    

Theorem 2: The DFE of model (13) given by (11) is global asymptotically stable (GAS) if 10 R . 

Proof: The equation (13) can be re-written as 
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where the matrices G1, G2 and G3 are given as: 
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Since matrix G3 is non-negative 
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If 10 R  then   11

21 GG  (from the local stability result given in Lemma 1), which is equivalent to G1-G2 

having all its eigenvalue in the left-half plane [13]. It follows that the linearized differential inequality system 

(14) is stable whenever 10 R  

3. 3 Existence of Endemic Equilibrium Point (EEP) 

 In this section, the possible existence and stability of endemic (positive equilibria of the modeled 

equation (7). where at least one of the infected components of the model is non-zero) will be considered. 

Let  *****

1 ,,,, RIEVS  represents any arbitrary endemic equilibrium of the model equation. Solving 

the equations of the system at the steady-state goes thus: 
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Substitute for E* in (18) to (19) 
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The component of the unique endemic equilibrium )( 1  can then be obtained by substituting the unique value 

of
* , given in (24), into the expressions in (16, 18, 20). Thus the following result has been established.  

 

3.4 Local stability of EEP 

 The local stability of the unique EEP, )( 1  will now be explored for the special case where the disease 

induced mortality is negligible (i.e. 0 ), setting 0  in the model (2-6) above shows that 
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RIEVNS  *
 (and noting that 0 ) in the model equation (2-6) gives the following reduced 

model. 
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 So, for the reduced model (26), the associated reproduction number denoted by 
*

0R  is given by 
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Using the same approach as in Existence of Endemic Equilibrium Point (EEP); it can be shown that the reduced 

model equation (26) has a unique endemic equilibrium given by 01 
 
whenever 10 R . The 

epidemiological implication of this is that once there is endemic situation of measles in a congested area of a 

community, the diseases will rapidly spread in that community whenever the associated reproduction 

number 10 R . Hence to avoid the endemic situation we should extend the area where those suffering from 

measles would be staying. In other words, the associated reproduction number 


0R less than unity. 

 

IV. NUMERICAL SIMULATIONS 

 Numerical Simulations of the dynamic model were carried out by maple 13, using the Rurge-Kutta of 

order four (4). The set of parameter values in table I were used to investigate the effect of habitat area in the 

control of the spread of Measles. Five (5) hypothetical cases were considered and in each case, the probability 

that individuals who are exposed to the diseases will progress fast to infectious class depends on the level of 

immunity individual has. It is prominent to note here that when measles patient are separated from non-infected 

(vaccinated or recovered) people and kept in a wider area, it is assumed that they will have herd immunity, (i.e. 

the level of immunity in a population which prevents epidemics). 
 

We considered five (5) cases as shown in the table below; 

Parameters Case 

1 

Case 

2 

Case 

3 

Case 

4 

Case 

5 

  
0.2 0.2 0.2 0.2 0.2 

  
0.02 0.02 0.02 0.02 0.02 


 

2000 2000 2000 2000 2000 


 

0.09 0.09 0.09 0.09 0.09

 


 

0.8 0.8 0.8 0.8 0.8 


 

0.04 0.04 0.04 0.04 0.04 

d
 

0.9 0.9 0.9 0.9 0.9 


 

0.1 0.1 0.1 0.1 0.1 


 

0.3 0.3 0.3 0.3 0.3 

A 1 10 100 200 300 

With the following initial conditions: 

S [0]: =2885; V [0]: = 4192; E [0]; = 15784 

I [0]: =1645; R[0]: = 14215
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Figure 1: when A =1,  =0.2, N=0.02,  =2000,  =0.04,  =0.09,      

 =0.8, d =0.9,  =0.1, and  =0.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: when A =10,  =0.2, N=0.02,  =2000,  =0.04,  =0.09,         

 =0.8, d =0.9,  =0.1 and  =0.3 
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Figure 3: when A =100,  =0.2, N=0.02,  =2000,  =0.04,  =0.09,   

 =0.8, d =0.9,  =0.1 and  =0.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: when A =200,  =0.2, N=0.02,  =2000,  =0.04,  =0.09,  

 =0.8, d =0.9,  =0.1 and  =0.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: when A =300,  =0.2, N=0.02,  =2000,  =0.04,  =0.09,  

 =0.8, d =0.9,  =0.1 and  =0.3 

Time (t) in days  

 

Time (t) in days  

 

 

Time (t) in days  

 

Time (t) in days  
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TABLE  1 

 
Time (t) in 

days 

Susceptible 

S (t) 

Vaccinated 

V (t) 

Exposed 

E (t) 

Infected 

I (t) 

Recovered 

R (t) 

 0 5800 4000 100 50 50 

1 0.1 6271.520335 2593.087043 1297.988830 22.66522106 87.78082640 

2 0.2 6718.303350 5153.725922 3438.973836 120.9093248 108.054041 

3 0.3 700.926740 5592.23625 3604.085427 236.9508916 207.159844 

4 0.4 7115.143696 5901.611624 4962.266560 360.3475078 397.445963 

5 0.5 7068.738118 6085.713794 8805.425189 497.7408976 685.2611298 

6 0.6 6884.478552 6052.1108612 7657.102472 637.26119151 1094.940321 

7 0.7 6593.265369 6034.600668 8978.811062 278.2909671 1568.480291 

8 0.8 628.928703 6042.293097 10228.64095 916.7278280 2164.613321 

9 0.9 5887.494554 5905.484602 11372.01806 1148.404573 2859.28413 

10 1.0 5444.258535 5747.831510 12383.33964 1169.598888 3644.89442 

11 1.1 5077.989405 5588.557841 13240.1087 1279.500813 4511.13652 

12 1.2 4755.168993 5441.114754 13968.30806 1370.51332 5445.91138 

13 1.3 4483.182625 5812.839625 14540.973112 1448.295776 6455.33837 

14 1.4 4262.240265 5206.668308 15000.3620 1311.604073 7466.77831 

15 1.5 4087.897965 5121.961808 15366.67804 1561.942984 8527.6864031 

16 1.6 3953.39265 5056.291443 15630.92748 1601.22548 9607.18465 

17 1.7 885.370500 5008.483232 15847.08749 1631.396171 10696.1343 

18 1.8 3774.938607 4969.329281 16003.18455 1654.327224 11382.1593 

19 1.9 3718.162555 4941.060392 16121.45786 1671.676993 12874.509 

20 2.0 3096.236098 4921.088885 16208.54162 1684.71183 13953.7985 
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TABLE 2 

 
Time (t) 

in days 

Susceptible 

S (t) 

Vaccinated 

V (t) 

Exposed 

E (t) 

Infected 

I (t) 

Recovered 

R (t) 

 0. 5800 4000 100 50 50 

1 0.1 6316.86462 4622.771029 1252.922656 22.46549259 87.77514150 

2 O.2 6784.613245 5200.202119 2380.0633056 116.9341504 107.738885 

3 0.3 7195.685297 5727.3193554 3488.224061 230.6755786 203.585442 

4 0.4 7533.718850 6206.270661 4571.985796 346.1474688 388.490820 

5 0.5 7863.962834 6640.372251 5625.063966 459.7921259 661.9114736 

6 0.6 8131.587253 7033.036420 6642.166903 570.4459598 1020.58139 

7 0.7 8361.406588 7387.574983 7619.173067 677.4530241 1460.37104 

8 0.8 8557.846721 7707.155916 8553.032763 780.3471722 1976.72960 

9 0.9 8724.951695 7994.787177 9441.637381 878.7875120 2564.82650 

10 1.0 8866.397017 8253.306918 10283.69473 972.5358023 3219.65933 

11 1.1 8985.504869 8485.377041 11078.61487 1061.441768 3936.13877 

12 1.2 9085.250963 8693.479793 11826.40590 1145.430717 4709.16009 

13 1.3 9168.333053 8879.917268 12527.57881 1224.492412 5533.66347 

14 1.4 9237.090954 9046.813575 13183.06093 1298.670946 6404.68414 

15 1.5 9293.627705 9196.119333 13794.11739 1368.055527 7317.38363 

16 1.6 9339.781455 9329.618074 14362.28063 1432.772132 8267.13266 

17 1.7 9377.157591 9448.934137 14889.28757 1492.975978 9249.0562 

18 1.8 9407.150674 9555.541647 15377.02415 1548.844819 10260.0562 

19 1.9 9430.965792 9650.774132 15827.47702 1600.573012 11294.9682 

20 2.0 9449.638994 9735.834654 16242.69198 1648.366342 12350.3863 
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V. DICUSION OF RESULT 
 The SVEIR model was considered to gain more insight into the effect of Habitat area on dynamic 

spread of measles. This Habitat area plays a crucial role in the control of spread of measles virus in the 

environment. It is observed from the results above that the higher the Habitat area, the lower will be spread of 

this measles virus and the higher will be the recovery rate. Also considered the possibility of measles outbreak 

in a community when certain threshold quantity, the basic reproduction number ( 0R ) exceeded unity (one). 

 We considered basic reproduction number which is an important tools for public health officials to 

determined the epidemic state of any deadly disease in a community. Using this threshold, we discovered that 

when the habitat area of measles patient is highly increased, the lesser would be the number of infected 

individuals and higher would be the number of recovered people. Conversely, when habitat area was low, for 

instance at A = 1 (Fig. 1), the 0R  is greater than one. This implies that there would be high level of epidemic 

within few days because of congestion of the area and the population of recovered people rise after six days. 
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 Theoretically, our results are based on the fact that the diseases free equilibrium (DFE) point is locally 

stable whenever the threshold quantity 10 R  and unstable when 10 R  (see lemma 1). We also showed that 

whenever the associated reproduction number 10 R in a community, there would be endemic situation of 

measles in that community unless there is quick intervention to keep the basic reproduction number less than 

unity.  
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