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Abstract: - The effect that the choice of suspension dampers has on a car‟s performance is an often 
misunderstood area. The increasing competitiveness of car category and the reduced opportunities for testing 

mean that the team that can optimise their damper setup the quickest is likely to have a large advantage across 

the entire usage. In the past the selection of dampers was done empirically. The increasing availability of 

computational power means that numerical simulation is now a viable method of optimising a vehicle before it 
arrives at the track. This paper outlines the development of the equations of motion for some simple vehicle 

models. It then demonstrates how these equations can be solved to estimate the road holding performance of a 

race car.  

Although results for one particular vehicle have been studied, the focus throughout is to demonstrate numerical 

and computational techniques that can be used to optimise car‟s dampers. A degree of generality has been 

maintained while analysing these techniques so that they can be applied to a variety of different categories of car 

models. 

 

I. INTRODUCTION 
To maximise road holding, a car‟s suspension must allow its tyres to follow the road profile. This is 

often achieved by using what is known as „soft‟ suspension, or using shock absorbers that employ a low 
damping coefficient. Another consideration in maximising the road holding of a vehicle is to minimise the body 

roll of the chassis. Typically, this can be achieved by employing „hard‟ suspension with higher damping 

coefficients. Both of these techniques are aimed at reducing the load fluctuations Most modern race cars employ 

dampers with non linear characteristics, which are often specified on a graph of force versus velocity, known as 

the damper curve. These are non-linear, in that they usually employ two different damping coefficients, one in 

the low velocity region of the curve, and another in the high speed region. Typically, these will have a higher 

damping coefficient at low velocities where body roll tends to occur, and a lower damping coefficient at higher 

velocity, where road disturbances tend to occur [1]. The damping coefficient is also often higher in rebound, 

which occurs as the damper is extending. between the tyre and the road. These adjustments can be made 

independently for each of the four dampers on the vehicle. This paper aims to select the most appropriate values 

for each of these four adjustable parameters. It also aims to outline a method of estimating the optimal damper 

characteristics, which can be used by car before they even arrive at the track, and also to account for the changes 
in the vehicle‟s setup due to changing track conditions [2]. This will therefore give these teams a big advantage 

for the entire motion.  

The primary role of a damper on a vehicle is to oppose the undesirable motions of the suspended vehicle body 

and to control the oscillation of the sprung masses. As one of the most fundamental contributors to a vehicle‟s 

handling, dampers have been studied at great length. This began with the introduction of internal combustion 

engine driven vehicles in the late nineteenth century [3], when the increased speed available due to these 

engines made an undamped vehicle inherently unsafe. Since this time, dampers have undergone a number of 

significant transformations. 

In modern vehicles, there are two major classifications of dampers, passive and active dampers. Passive 

damping systems function with fixed operating characteristics, such as damping coefficient. Although these 

characteristics may be nonlinear and can sometimes be adjusted by the operator, they will not change in real-
time to adjust to the road conditions or the behaviour of a vehicle. This is in contrast to an active suspension 

system, where an adaptive control system is used to ensure that the optimum damping force is produced in real 

time. 

A historical review of the development of active and semiactive suspension systems is presented by Karnopp 

[4]. Passive damping systems are still the more common system, used on most family vehicles and even a large 

majority of  cars. 

As explained by Nowlan [5], some assumptions may be made. These are: 

• The damping of the tyre is negligible 

• The spring rate of the tyre is much higher than the spring rate of the suspension elements 

• The sprung mass of the vehicle body is much higher than the unsprung mass of the wheel and axle. 
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II. MODELLING OF QUARTER CAR MODEL 
Although for most practical purposes, the single degree of freedom vehicle representation is too 

simplistic to be completely meaningful, its results, and the method of derivation of these results are a necessary 

building block when studying more complicated systems [6]. The next simplest model to study is the two degree 
of freedom system given in Figure 1. This is also known as the quarter car model, as it may be thought of a 

representing the dynamics of a quarter of the car (for example, the front left quarter). The advantage of the Two-

Degree of freedom quarter car model is that while still a relatively simple system to analyse, it allows a good 

approximation of the motion of both the chassis and the wheels of a vehicle. 

 
Figure 1 Free body diagram for a Two-Degree of freedom quarter car model 

 

2.1. Governing Equation of Motion 

Using Newton‟s second law of motion, the equations of motion for the system shown in Figure 3.1, becomes:  
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The frequency response function (FRF) of the sprung mass of the quarter car model may be defined as the ratio 

of magnitude of sprung mass to the road profile, as given by; 
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And the frequency response function of the unsprung mass of the quarter car model may be defined as the ratio 

of magnitude of unsprung mass to the road profile, as given by;  
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equation (5.11) becomes 






















))((

)(

det

1
2

ttss

ttsss

s

u

cjkjck

cjkjckM

Ax

x




                 

where: 
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the frequency response functions of the two degrees of freedom given by equation 
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Figure 2 Frequency response function of the unsprung mass of the quarter car model

 

                     

 

The frequency response functions show the ratio of magnitude of output displacement versus the 

input displacement. In this case the output displacement can be of any degrees of freedom of the system being 

studied. The input to the system is the amplitude of road profile fluctuations. Figure 2 shows the frequency 

response function of the unsprung mass for the two-degree of freedom quarter car model. Several different 

damping ratios have been plotted on the same axes to illustrate how the behaviour of the car may change due to 

different damping ratios. It is clearly visible in this graph that even a small change in damping ratio, from 0.46 

to 1.09, can have a very drastic effect on the motion of the unsprung mass [7]. In the frequency range between 0 
and approximately 3 Hz, the different damping ratios have very little effect. In the region approximately 

between 2 to 6 Hz, the lower damping ratio (of 0.62) will result in lower amplitude of displacement of the 

unsprung mass. In contrast, in the region beyond 6 Hz, the higher damping ratio of 1.09 will result in less 
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displacement of the unsprung mass. It can also be observed from this with the higher damping ratios there is a 

single local maximum for the FRF curve. Lowering the damping ratio may add a second local maximum at 

approximately 7 Hz, and the height of this increases as the amount of damping in the system decreases. 
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 Figure 3 Frequency response function of the sprung mass of the quarter car model

  

The frequency response function of the sprung mass of the quarter car model is shown in Figure 3. It 

can be seen that there is a single peak in the FRF for all of the damping ratios examined. This peak occurs at 

approximately at the same frequency that is 2Hz regardless of the amount of damping applied. One important 

factor to note is that the lower the damping ratio, the higher the peak amplitude of the FRF. That is, that if the 

vehicle is subjected to random broadband input, most of the motion of the sprung mass will occur at a low 

frequency, and in order to control the movement of the sprung mass, a higher damping ratio is required. 

 

III. MODELLING OF HALF CAR MODEL 
Building upon these models in levels of complexity, the next is the half car model as illustrated in 

Figure 4. It can represent the left half or right half of the car. This is a four degree of freedom system. This 

model is an improvement on the quarter car model as it allows consideration of potentially different responses 

between the front and rear unsprung masses, as well as the heaving and pitching motions of the vehicle. These 

may occur due to differing unsprung masses, damping coefficients or spring rates at the front to the rear of the 

vehicle, or because the centre of gravity is forward or backwards of the centreline of the vehicle. 

 
Figure 4 Four-Degree of freedom Half Car Model 

 

Using Newton‟s second law of motion, the equations of motion of each of the four degrees of freedom may be 

defined as: 
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Equations may be separated into their output and input components 
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Assuming that the input displacements, and hence the motion of each of the degrees of freedom is harmonic; 
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The motions xrr and xrf refer to the irregularity of the road profile, because both wheels are driving over the same 

piece of road, it is assumed that xrf is equal to xrr.  
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From above sets of equations D is the determinant of a‟s matrix from equations which is defines as 
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FIGURE 5 FRF FOR THE FRONT UNSPRUNG MASS FOR THE HALF CAR MODEL  
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Figure 6 FRF for the front unsprung mass for the half car model 
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Figure 7 FRF for the front unsprung mass for the half car model 
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Figure 8 FRF for the front unsprung mass for the half car model 

 

Figure 5 is the frequency response function of the front unsprung mass of the vehicle. Similar to the 

Two-Degree of freedom system there are three regions in this graph. From 0 to 2 Hz, where there is no 

meaningful difference in the response of the system due to varying damper properties. From 2 to 6 Hz, where 

the response is highest from the more highly damped system, Beyond 6 Hz, the response is greatest from the 

lesser damped systems. 
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The response of the rear unsprung mass also follows similar pattern, as shown in Figure 6. It should be 

noted that the only difference in the model between the front and rear of the vehicle is the mass distribution that 

is the unsprung mass of the rear wheels is higher and the unsprung mass at the front wheel is lower compared to 

the front of the car. This affects not only the magnitude of the displacements of the unsprung masses, but also 

the damped natural frequencies, where these peaks occur. 

Figure 7 and Figure 8 shows the frequency response functions for the heave and pitch modes of the 
sprung mass of the system respectively. The heave mode is the vertical displacement of the sprung mass, while 

the pitch mode refers to its angular displacement. The heave mode of the sprung mass of the Four-Degree of 

freedom system is very similar in meaning to the sprung mass of the Two-Degree of freedom quarter car model 

shown in Figure 1, and the frequency response functions confirm the same. In both cases, the peaks occur at 

approximately the same frequency. Also in both cases, the lower damping coefficients result in higher peak 

transmissibility, and the effect of this can be profound. Although it may be observed from Figure 4 that 

increasing the damping coefficients of the system will reduce the value of the peak heave response, it is evident 

from Figure 5.6 that the opposite is true when it comes to the pitching motion of the sprung mass.That is, 

increasing the damping coefficients of the system will increase the peak pitching response of the vehicle. 

Obviously, it is necessary to reach a compromise between these conflicting parameters.  

 

IV. TYRE LOAD FLUCTUATIONS 
The performance of a car tyre is inversely proportional to the variation of its contact force with the road. There 

have been many attempts at quantifying the effect of tyre load fluctuations. The evaluation criterion for the 

quarter car load fluctuation rate Ru as being, 
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This equation allows a quantitative analysis of the effect of varying the vehicle parameters. By 
minimising the value of Rs (or in the more general case R), the vehicle that has the lowest tyre load fluctuations 

can be considered. This will result in higher average traction available to the tyres. Obtaining the values of xr and 

xu in this equation depends on not only the FRF of the system, but also requires some information about the 

shape of the road profile. This is usually given in the form of a power spectral density of the size of the road 

profile irregularities. 

 

4.1 Power spectral density 

In order to make quantitative comparisons between different vehicle setups, it is necessary to have a 

realistic profile of the road surface characteristics [8]. This is most conveniently done by plotting the magnitude 

of displacement of the road profile in the frequency domain. This is known as the power spectral density (PSD) 

of the road surface. There have been many different attempts for creating a general PSD model for road profiles, 
and these have been studied at length. 

The comparison is to be made of the performance of the same vehicle with several different dampers 

over a generic stretch of road. Therefore, any realistic approximation of the PSD of the road profile will provide 

sufficient results to make a comparison between these different damper set-ups. Care must be taken in the 

interpretation of these results however, as cars are required to compete on roads with varying roughness and 

bump characteristics. The most appropriate damper for one PSD road profile is not necessarily the best for 

another road. 

Another complicating factor is that most approximations of road profile are given in terms of spatial 

frequency of the road profile disturbances. Spatial frequency is the inverse of the wavelength. It may be thought 

of as the number of cycles or road profile fluctuations per distance travelled. The number of fluctuations per 

second is therefore dependent upon the velocity of the vehicle across this road profile. In order to convert spatial 

frequency into radian frequency, it is necessary to multiply the special frequency by 2πv, where v is the velocity 
of the vehicle. The velocity of car is not constant and can vary anywhere up to 70kilometres per hour. The PSD 

used by Tamboli et al will be used, as it simplifies the problem somewhat by assuming a constant velocity. This 

PSD is defined as: 

 
)()( bfaefG   

where, 

a: describes the general roughness of the road. 

b: describes the wavelength distribution. 

f:  refers to frequency (Hz) 
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Tamboli et al [9] suggests the coefficients for PSD obtained in Table 1. These values are dependent upon both 

the quality of the road, and also the speed of the vehicle travelling on it. However the highway driving is likely 

to be the better approximation of the two, and will therefore be used for comparing the different dampers. 

 

Table 1 Coefficients of the PSD used by Tamboli 

Road type a (m2/Hz) b 

Highway 4.85 × 10-4 0.19 

City 23.0244 × 10-4 0.213 

 

The mean square displacement of the road irregularities may be found from the PSD: 
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Equation (7) may be discretised to find the root mean square displacements in a given frequency band: 
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where, 

fn = the centre frequency of the frequency band. 

ℎ = the width of the frequency band. 

 

Equation (8) may be used to represent the amplitude of displacement, or irregularity of the road profile 

within each given frequency band [10]. The mean value of the actual response of the vehicle must relate the 

amplitude of the road profile fluctuations to the frequency response of the vehicle in that same frequency band. 

The mean value of the FRF in each frequency band is given by. 
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where ω =2πf 

The amplitude of displacement of the unsprung mass can now be calculated for each frequency band using 
following relation, 

nnn ffrfu Hxx  ,,   ………9                   

 

Equations (7) and (8) can now be substituted into equation (9) and be rewritten as it is in equation (10). All of 

the information required to obtain the load fluctuation rate Ru of the vehicle is  

……10 

 

 

 

4.2 Evaluation Criterion 
Figure 9 shows the value of fluctuation load (Ru ) versus coefficient of damping for the quarter car 

model of the Quarter car. This indicates that a damping coefficient between 3500Ns/m and 4000Ns/m will result 

in a vehicle that produces the highest average traction at the tyres. That is, at these damping coefficients, the Ru 

value is minimised, indicating that tyre load fluctuations will be minimised. Also, the slope of the curve is 
steeper when the damping coefficient is below the optimal point, than when it is above the optimal damping 

point. This shows that the consequence of over damping the car does not have as large a negative impact on 

performance as at under damping. The analysis using the Four-Degree of freedom half car model, Figure 10, the 

damping coefficient at the front and the rear is assumed to be equal. Again, this model is solved using Mat Lab, 

and in this case the tyre load fluctuations at both the front and rear wheel are calculated separately. It is evident 

that the ideal level of damping is different at the front to what it is at the rear. It may be observed from Figure 10 

that to optimize the damping for the rear, a damping coefficient of 3000 Ns/m is an ideal value where as in order 

to minimize the front tyre load fluctuations, a damping coefficient of 4000Ns/m is an ideal value. As is the case 

for the quarter car model, the slope of the curve is steeper in the region below optimal damping, indicating that 

the negative consequence of over damping the vehicle is less than that of under damping. One thing that the 

analysis of Figure 10 does not take into consideration is the fact that the car can be engineered to use a different 
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damping coefficient at the front to the rear of the vehicle. Observing that a damping coefficient of 3250 Ns/m is 

optimal for minimising the rear tyre load fluctuations, the rear dampers are set to this value. The damping 

coefficient at the front can then be examined to determine its optimal value, as shown in Figure 10. From this 

figure the optimal damping at the front is now 4250Ns/m. Further, the above value of R at the front tyre has 

lowered to 2.125 as opposed to the value of 2.25 in the case of Figure 10. This represents a net improvement in 

performance for the vehicle. 
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Figure 9 Effect of damping coefficient on the evaluation criterion for a 

           Quarter car model 
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Front Tyre

Rear Tyre

 
Figure 10 Evaluation criterions for half car model, using the assumption that damping is equal at the front and 

rear 

 

The motion at the rear unsprung mass is dependent upon the motion at the front unsprung mass, and 

vice versa. So the next step is to continue this as an iterative process by setting the front damping coefficient to 

the new determined optimal value of 4250 Ns/m, and repeating the process for the rear tyre load fluctuations, as 
is done in Figure 12. The first thing to note is that in Figure 10, the optimal damping coefficient for the rear is 

found to be 3250 Ns/m that resulted in R value of 3.9 at the rear tyre. In Figure 12, the damping coefficient at 

the front of the vehicle has been further optimised, and this changed the optimal point of damping for the rear. 

Even so, if the rear was to be left at the value of 3250 Ns/m, the new value of R is 3.55. In other words, by 

improving the performance of the front of the car, the performance at the rear of the car has also improved, even 

without making any changes to the settings at the rear. This happens because the displacement fluctuations at 

the front of the vehicle transmit through the suspension, into the sprung mass of the vehicle, and ultimately to 

the rear tyre. So by reducing the tyre load fluctuations at the front, the tyre load fluctuations at the rear are also 

reduced. 
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R value of front tyre                                        
With damping coefficient of rear suspension set at 3250 N/m/s

 
Figure 11 Evaluation criterions at front tyre, first iteration 
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R value of rear tyre                                          
With damping coefficient of front suspension set at 4250 N/m/s

 
Figure 12 Evaluation criterions at rear tyre, second iteration 
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R value of front tyre                                        
With damping coefficient of rear suspension set at 3000 N/m/s

 
Figure 13 Evaluation criterions at front tyre, third iteration 

 

From Figure 12 the point of optimal damping for the rear of the vehicle can be read off as 3000 Ns/m, 

and this results in an R value of 3.5, which is a further improvement to the performance of the vehicle. This is 

again reiterated to observe how the new value of R at the rear of the car effects how the front of the car is 

performing. This analysis is shown in Figure 13, where it can be seen that the optimal damping coefficient still 

occurs at 4250 Ns/m, which is the same as it was before the modification made to the rear, signalling the end of 

the iteration process. Once again, it can be observed that even though the optimal amount of damping has not 

changed the degree of tyre load fluctuations have further decrease to a value of 2.1, due to the improved 

performance at the rear suspension. 
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