IOSR Journal of Engineering (IOSRJEN) Www.iosrjen.org
ISSN (e): 2250-3021, ISSN (p): 2278-8719
Vol. 04, Issue 05 (May. 2014), | V7| PP 38-43

New Homotopy Conjugate Gradient for Unconstrained
Optimization using Hestenes- Stiefel and Conjugate Descent

Salah Gazi Sharee, Hussein Ageel Khatab

Dept. of Mathematics, Faculty of Science, University of Zakho, Kurdistan Region-lraq

Abstract: - In this paper, we suggest a hybrid conjugate gradient method for unconstrained optimization by
using homotopy formula , We calculate the parameter g, as aconvex combination of p#5 (Hestenes Stiefel)[5]
and P (Conjugate descent)[3].
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l. INTRODACTION

Suppose that f: R" —R is continuously differentiable function whose gradient is denoted by g(x). Consider
the nonlinear following unconstrained optimization problem

Minf(x) XxeR" (1.1
The iterates for solving (1.1)are given by
Xp+1 = X +°<k dk ,k=0,1,.....,n (12)

Where «,is a positive size obtained by line search and d,, is a search direction. The search direction at the

very first iteration is the steepest descent d, = —g, , the directions along the iterations are computed according

to;

diy1 = =i T Bdg, k=0 1.3)
where 8, € Ris known as conjugate gradient coefficient and different 8, will yield different conjugate

gradient methods. Some well known formulas are given as follows:

T
PR — 9k Gk—9k-1) 1.4
k Nl —1112 (1.4)
T
FR — 9k+19k+1 15
k llgw!l® (15
IﬁIS — Jkt1 (gk+1_Tgk) (1.6)
Gk+1—9K)" di
DY glz+1gk+1 (1 7)
k Gr+1— 910" dk '
cD QZH Jk+1 (1 8)
ke —df gk '
T
LS _ 9k+1 @Gk+1—9k) 1.9
B =t G (L9)

Where g,,1 and g, are gradients Vf(x, ) and Vf(x;,) of Vf(x) at the point x; ,qand x,, respectively , ||||

denotes the Euclidian norm of vectors. The line search in the conjugate gradient algorithms often is based on

the standard Wolfe conditions:

fOo +apdy) = fOx) < Saygidy (1.10)
900 + @, d)"dy 2 0gi;dy. (1.11)

where 0 <6<o< 1.

The strong Wolfe line search corresponds to: that

fOo + apdy) = f(x) < Saygidy (1.12)
lgCx + adi)"d| < logidy| (1.13)

where 0 <6<o< 1.[10]

1. HYBRID CONJUGATE GRADIENT ALGORITHMS
The hybrid conjugate gradient algorithms are combinations of different conjugate gradient algorithms.
They are mainly purposed in order to avoid the jamming phenomenon.[1],these methods are an important class
of conjugate gradient algorithms.[6],[9]
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The methods of (FR)[4],(DY) [2] and (CD)[3] have strong convergence properties, but they may have
modest practical performance due to jamming.
On the other hand, the methods of (PR)[8],(HS)[5] and (LS)[7] may not always be convergent, but the often
have better computational performances.[1]

. NEW HYBRID SUGGESTION
our suggestion generates iterates x, , x;, x,,... computed by means of the recurrence (X1 = x; +, dy),
where the stepsize o > 0 is determined according to the Wolf line search condition (1.10) and (1.11), and the
directions d,, are generated by the rule :

Wh diy1 = =G + BV dy (3.1)
ere
NEW = (1- 0B+ 0,8 ,0<6<1
2
BYEW  =(1 — )(9k+1Yk) 0, IIZ;(T;(H (3.2)

Observe that , if 6, = 0 then BNEW = BHS if §, = 1, then BVEW = BCD,
On the other hand , if 0 < 6, < 1, then we can find YW as follows:
We know that

it = —Gis + (1~ ek)Md ekllik;n
k

Our motivation is to choose the parameter 0, in such a way so that the direction d,,, given (3.3) to be the
Newton direction. Therefore
M 0 Ilgk+1ll

—Vv? -1 = — 1—
Vof (k1) G i1+ (1 —6,) Ty, di — 0y gy

Multiply both sides of above equation by df V2 f(x,.1) , we get
(g Yk)
~dgisr = ~d[Vf (s i + (1= 0LV f () = dl
I 112
—0di VA f (ien) g — i

(9k+1J’k)

d, (3.3)

—r——dk

—d} Gir1 = =L VP f (Xps1) Grerr + (1 — 9k) (A V2 f (s dy)

—6, Al (dTVZf(ka)dk)

Since dIV?f(x,41) = ¥, then we have

lgiiell?
—digri1 = =V Grr1 + A= 011 k) — Oy dT+ Vi dy
g ll?

—di g1 = =6, (Gi 1) — 6 dT+ i dy
Implies that
9, = d£9k+1
k T ||9k+1||2 T4

(Gpr1Y0) + Pl Vi Ay

k9k
Or
d dr

6, = ( k9k+1)( k9k) (3.4)

(9k+1Yk)(d 9i) + g P di)

3.1. Convergence of the new hybrid conjugate gradient algorithm

Theorem 3.1.1 : Assume that d,, is a descent direction and o<, in algorithm (1.2) and (3.2) where 6, is given by
(2.4) ,is determined by the wolfe line search (1.10)and (1.11). If 0 < 8 < 1, then the direction d,,; given by
(3.3) is a descent direction.

Proof:-

From (3.3) and (3.4) we have
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d - —g + <1 (dkgk+1)(d£gk) )(QZH)’k) d
o o+t (gk+1yk)(d ) + 1G4t ”2()’k dy) dltyk ,
(dkgk+1)(dkgk) ||!]k+1”2
— T T T T (3.1.1)
sy )i gi) g 1P di) ) di g
Multiply both sides of (3.1.1) by g7, , we get
T _ 2
Jier19k+1 = _||9k+1”
+(1- (ngkH)(dng) )(91€+13’k)(91€+1dk)
Gr 1Y) dpgi) + 1 gisa 1P (i dy) di Vi
( (dkgk+1)(d£9k) ) lgk+1 ||2(91€+1dk) (3.1.2)
(9i 4170 gi) + N g P O di) di i .
17 Ghs1dr)
ngﬂdm = —llgrs1I* + = CI;T ik
kYK
( (di gie+1)(d] gi) )(ngﬂyk)(g;fﬂdk)
Gr1y)drgi) + g e dy) di Vi
( (dkgk+1)(d£9k) ) | G+1 ||2(gl€+1dk) (3.1.3)
(Gi 4170 gi) + N g P O di) di 9r .

The prove is complete if the step length o, is chosen by an exact line search which requires d? g, = 0.

Now, if the step length o, is chosen by an inexact line search which requires  df g,,; # 0,

We know that the first two terms of equation (3.1.3) are less than or equal to zero because the algorithm of
Hestenes — Stiefel (HS) is satisfies the descent condition (i.e)

grnall® + %ﬁhld“so, (3.1.4)
It remains to consider I'Ehe third and fourth terms
_ (dk9i+1) (A 91) Gis1Yi) Gier1 i) (di Gi+1) (i GO Grs1 II? (Gr1 i) _
(L@ +lgenlPOfdo)diye  (@hayd@go +lgial20f do) )dLg,
_ (drgi+1)*(di 91) (Gir1i) _ (drgi+1)*([di gl gpaa lI? _
((gk+1}’k)(d gi) + ”gk+1”2(3’dek))d£}’k ((glz+1yk)(d£gk)2 + ||gk+1||2(3’dek)(ngk))
—(di g1’ / (d91)(Giv171) N (@il gsll? \I
diyi | Gy (@iegd) gl Ordd ™ Gy degd® oy o ar gy
\ Ty, k+1 k Gk /
T 2
- —(dclz{,fgyk:l) (3.15)

We know that (dEng)z is greater than or equal to zero and
dly, > 0. Consequently, we have

—(dEng)z

<0
dEYk

Implies that

gE+1dk+1 <0.
Then the proof is completed. m
Theorem 3.1.2 :- Assume that the conditions in theorem (3.1.1) hold and Ww < |lgsI2. If there
exists a constant ¢; > 0, such that gl dy. < —c|| |I2, then the direction d,,, satisfies the sufficient
1 Bk+19k+1 10Gk+1 Kk+1
descent condition.

Proof:

From (3.3) and (3.4) we have
disr . .

(dkgk+1)(dk9k) (Gh+1Yi)
==k t|1- > T k
(gk+1yk)(d 91) +lgelPidy))  diyi
d d
( ( kgk+1)( kgk)z )||ng+1|| d, 42.1)
(9k+1Yk)(d g) g ?idy)) di gy
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Multiply both sides of (4.2.1) by g7, we get

T _ 2 (di 9ie+1)(d} gi) (9k1Y)(Gh+1d)
11 = =G ll> +{ 1 — = T T T
Gr+1YK) (@ gi) + NG 12 di) d Vi
3 ( (di g+1)(di gi) ) I gk+111? (Grs1di) (3.1.6)
(91€+1J’k)(d£gk) + g1 12 di) di gk o
i g+ (d} g) (Gh+1Y) (i 41d1)
b1dier < =llgeaI? + 11 IIZ—(
FienGien = 70k Jien (k1YL g0) + g I O di) iy
- ( (4] 9111 (d{ g1) ) g I (a1 i) 517
Gis1Y)@g1) + lgra 1P di) di g
T idy, < —(dlgm)z/ (4% 91)(Gis1i) N (di gl Gisa II? \I
T diye | @)@g) T g P0rd0 T 0eny)@igd? o iz
dltyk Jk+1 kYK
After some operations, we get
-—(dlgk+1)(dlgk+1)

Fdi < 3.1.8
gk+1 k+1 (d"llc"yk) ( )
Multiply and divided right hand side of above inequality by ¥/ g, , we get

—(dy 811 (A} 8k (Vh Gresr)

iy < 3.1.9
Bicr1crt (VT gern) @) (19
By hypothesis , (3.1.9) gives

—(dkGi+1)
ri1dir < ——7—= g ll?
Gi+1%k+1 ()’kTng) Ik+1
Multiply and divided right hand side by y[ g,.1 we get
—(dkrs) (Vi Gies1)
F i dier < Nl gpes1ll?
Gk+1Qk+1 (ykTgk+1)2 Gk+1
Since digis1 < diye ,then
(dey) (Vi Gerr)
G < - g 12 (3.1.10)
(Vi Gic+1)

Now, if ¥ ge1 >0,

_ @y (gt

Lete, = (v gr+1)?
Then ,(3.1.10) gives

8110k < —c1 Mg lI?

If 7 grs1 < 0and we know that dly, > 0, then,

ey (YE Gre) < diyic

lI'hen, (3.1.10) gives
i

—mllgmllz

T
ie+1k1 <

dryy
Let ¢; = —~5—

L ol gken)?
Hence

Fi+1dis1 < —Cc1llgrsrlI?
Then the proof is completed. m

3.2 Theorem of global convergence
Since the new hybrid conjugate gradient algorithm is satisfies the sufficient descent condition by using wolfe
conditions , then the new hybrid conjugate gradient algorithm is satisfies the global convergence property .
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3.3 Algorithm of New Hybrid Conjugate Gradient algorithm
step (1) :- set k=0, select the initial point x;, .

step(2) :- gy = ?f(xk) ,If g, =0 ,thenstop.

else

set d, =-9; -
step (3) :- compute a;, > 0 satisfying the wolfe Iline search condition to mini
Step (4) - X1 = Xg + akdk .

mize f(X+1).

step (5) - Gr41 = vf(xkﬂ) , If gy41 =0 ,then stop.

step (6):- compute 6, as in (3.4).
Step (7):-if 0 < 6, < 1, then compute BYEW asin (3.2). If 6, > 1, then set
BNEW = BD If 9, < 0, then set BYEW = gHS,
step (8) :- diy1 =G+ + BT i -
step (9) :- If k=n then go to step 2,
else
k=k+1 and go to step 3.
3.4 NUMRICAL RESULTS:-
This section is devoted to test the implementation of the new formula . We compare the hybrid algorithm with
standard Hestenes — Stiefel (HS) and conjugate direction (CD) ,the comparative tests involve well-known
nonlinear problems (standard test function) with different dimension 4 <n<5000, all programs are written in

-5
FORTRANO95 language and for all cases the stopping condition is ”gk””w <10 The results are given in
below table is specifically quote the number of functions NOF and the number of iteration NOI .experimental
results in below table confirm that the new CG method is superior to standard CG method with respect to the
NOI and NOF.

Table Comparative Performance of the three algorithms (Standard HS,CD and New formula)

Test fun. N Standard formula Standard formula (CD) | New formula
(HS)
NOI NOF NOI NOF NOI NOF
Powell 4 65 170 994 2077 30 74
100 105 276 3102 6942 108 242
500 502 1062 134002 270117 502 1011
1000 637 1332 * * 241 532
3000 879 1816 * * 249 568
5000 1008 2074 * * 409 913
Wood 4 26 59 353 709 26 61
100 27 61 928 2115 26 61
500 28 63 1008 2277 27 6
1000 28 63 561 1165 27 63
3000 28 63 500 1038 27 63
5000 28 63 517 1111 27 63
Cubic 4 15 43 540 1104 11 34
100 14 40 801 2060 11 32
500 14 40 1501 5287 11 32
1000 14 40 * * 11 32
3000 14 40 * * 11 32
5000 14 40 * * 11 32
Rosen 4 23 66 611 1262 23 64
100 17 52 461 1374 21 62
500 * * 2063 6612 21 62
1000 * * 4036 13523 21 62
3000 * * * * 21 62
5000 * * * * 21 62
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Mile 4 28 101 * * 18 50
100 142 346 * * 149 355
500 501 1108 * * 501 1092
1000 1001 2312 * * 998 2290
3000 1442 3252 * * 1270 2834
5000 1660 3688 * * 1418 3130

Non Digonal | 4 23 61 249 558 23 59
100 22 60 * * 18 51
500 22 59 * * 18 53
1000 22 59 * * 18 53
3000 22 59 * * 19 55
5000 22 59 * * 19 55

Woolf 4 12 27 49 99 12 27
100 49 99 901 1879 49 99
500 56 113 3893 8393 55 111
1000 70 141 8001 19675 69 139
3000 166 343 * * 166 343
5000 176 365 * * 175 363

V. CONCLUSION
In this paper we have presented a new hybrid conjugate gradient method in which a famous parameter g, is
computed as a convex combination of giSand BEP and comparative numerical performances of a number of
well known conjugate gradient algorithms Hestenes Stiefel (HS) and Conjugate decsent (CD). We saw that the
performance profile of our method was higher than those of the well established conjugate gradient algorithms
HS and CD.
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