
IOSR Journal of Engineering (IOSRJEN) www.iosrjen.org

ISSN (e): 2250-3021, ISSN (p): 2278-8719

Vol. 04, Issue 06 (June. 2014), ||V1|| PP 25-29

International organization of Scientific Research 25 | P a g e

Area Optimization in Masked Advanced Encryption Standard

R.Vijayabhasker, K.Mohankumar
1
, S.R.Barkunan,

Assistant Professor Depatrment of ECE Anna University Regional Centre,Coimbatore

P.G Scholar, Anna University Regional Centre, Coimbatore

Assistant Professor Depatrment of ECE Anna University Regional Centre,Coimbatore

Abstract: - The Advanced Encryption Standard (AES) a symmetric-key block ciphertext published by National

Institute of Standards and Technology (NIST)[1]. Order to protect a data high throughput masked Advanced

Encryption Standard (AES) is used. The masked AES engine uses the unrolling techniques which required
extreme level in large field programmable gate array (FPGA). The area optimization in masked AES with an

unrolled structure. The mapping of operation from GF(28) to GF(24) as much as possible in order to optimize

area. The number of mapping is reduced [GF(28) to GF(24)] and inverse mapping [GF(24) to GF(28)] operation

of the SubBytes by step from zero to nine. In order to compatible, the masked MixColumns, masked

AddRoundKey, and masked ShiftRows including the redundant masking values are carried over GF(24). By

moving, mapping and inverse mapping outside the masked AES‟s round function, area can be reduced by 20%.

Keyword: - Advanced Encryption Standard(AES), Field Programmable Gate Array(FPGA), throughput, Galios

Field(GF).

I. INTRODUCTION
The development of information technology protect sensitive information‟s via encryption is more and

more important. The Advanced Encryption Standard (AES) is a symmetric-key block ciphertext published by

the National Institute of Standards and Technology (NIST) in December 2001 [1]. The criteria is defined by

NIST for selecting AES drop into three areas i) Security ii) Cost and iii) Implementation. Based on the criteria

NIST selected Rijndale algorithm as Advanced Encryption Standard(AES) [1]. AES is a non-Feistel cipher that

encrypts and decrypts a data block of 128 bits. It uses 10, 12, or 14 rounds. The key size, which can be 128, 192,

or 256 bits, depends upon the number of rounds. The standard AES key size is 128 bits and 10 rounds. To

provide security for the data, AES uses four types of transformations: substitution, permutation, mixing, and

key-adding. AES has been widely used in various applications, such as secured communication systems. In high

performance database, Radio Frequency Identification (RFID) tags and smart cards.

II. ADVANCE ENCRYPTION STANDARD
AES is a symmetric algorithm, it takes 128-bit data blocks input performs several rounds of

transformations to generates the ciphertext output. Each 128-bit data block are processed in 4 X 4 array of bytes,

This process is denoted as state [3]. The round key size can be 128, 192 or 256 bits. The number of rounds can

be 10, 12 or 14 depending upon the length of the round key respectively. There are four basic transformations

applied for encrypting the data.

2.1 SUBBYTES
This subBytes operations is a nonlinear bytes substitution. Each byte from input state is replace by

another byte according to the substitution of S-box. S-box is generated based upon a multiplication inverse in
the finite field GF(28) and a bitwise affine transformation. The affine transformation is the sum of multiple

rotation of the byte as a vector, where additions is performed using the XOR operation.

SubByte → Multiplicative Inversion in GF(28) → Affine Transformation

2.2 SHIFT ROWS

Shift rows operation is used to shift the rows of the state. The bytes of data are cyclically shifted with a

certain offset. The first row is left unchanged and the second, third and fourth row is shifted to one, three bytes

to the left simultaneously. Shiftrow „n‟ is shifts left circular by „n-1‟ bytes. Each column output state of

the ShiftRows step is composed on bytes from each column of the input state [1].

2.3 MIXCOLUMNS

Area Optimization in Masked Advanced Encryption Standard

International organization of Scientific Research 26 | P a g e

Each column considered state over a polynomial GF(28), after multiplying modulo X4 + 1 with fixed

polynomials a(x), given by a(x) = {03}x3 + {01}x2 + {01}x1 + {02} the results corresponding column of the

output state.

2.4 ADD ROUNDKEY
Each byte array is added (respect to GF(2)) to a bytes corresponding of the array round subkeys.

Excluding the first and the last round, the AES with 128 bits round key proceeds nine iterations. First round

iteration of the encryption perform XOR with the original key at last round iteration skips MixColumn

transform [5]. Round keys are generated by a procedure call round key scheduling or key expansion. Those

sub-keys are derive from the original key by XOR two previous columns. Columns that are in multiples of

four, the process involves round constants addition, S-Box and shiftrow operations [6].

All the four layers described above key scheduling have corresponding inverse operations. Deciphering is the

process of converting the cipher text back to plain text, it is the inverse of cipher process. However, it should

be noted that the MixColumn reverse operation required matrix elements that are quite complicated compared
to {01}, {02} or {03} of the forward one.

 This results are more complex deciphering hardware compared with the ciphering hardware. In the next

section we demonstrate how the standard procedure for MixColumn transform is rewritten in order to ease its

hardware implementation.

III. MASKED AES FOR UNROLLED STRUCTURE
The intermediate value X is concealed by exclusive-ORing it with the random mask m, in the Boolean

masking implementation. The round function of the AES contains ShiftRows, Mix-Columns and AddRoundKey

which are linear transformations, while SubBytes is the only nonlinear transformations of the AES. The linear

transformations is defined as Operation; then, the masked Operation can be written as Operation(x m) =

Operation(x) Operation(m). The masked nonlinear transformation SubBytes has the characteristic as S-

box(x m) ≠ S-box(x) S-box(m). To mask the nonlinear transformation, a new S-box, denoted as S-box1,

is recomputed as S-box1 (x m) = S-box(x) m' , where m and m' are the input and output masks of the

SubBytes. In order to mask a 128-bit AES, it usually needs 6-byte random values. These 6-byte random values

are defined as m, m', m1, m2, m3, and m4. m1234 = {m1,m2,m3,m4} is defined as the mask for one 32-bit

MixColumns transformation, and it also holds that m'1234 = MixColumns(m1234).

 The Galois field GF(28) is an extension of the Galois field GF(24) over which to perform a modular

reduction needs an irreducible polynomial of degree 2, x2 + {1}x + {e}, and another irreducible polynomial of

degree 4, x4 + x + 1. In order to reduce the hardware resources, we calculate the masked AES engine mainly
over GF(24). The plaintext and the masking values are mapped once from GF(28) to GF(24), and all the

intermediate operations are computed over GF(24). Finally, the ciphertext is mapped back from GF(24) to the

original field GF(28). All the masking values need to be mapped from GF(28) to GF(24), and we denote m84 =

map(m), m'84 = map(m'), m1234,84= map(m1234), and m1234,84 = map(m'1234). The masked ShiftRows and masked

AddRoundKey remain the same.

Fig 1.1 Encryption

Area Optimization in Masked Advanced Encryption Standard

International organization of Scientific Research 27 | P a g e

Fig 1.2 Decryption

IV. OPTIMIZED MASKED S-BOX OVER GF(2
4
)

In order to move the mapping and inverse mapping outside AES‟s round operation, we exchange the

computational sequence of masked affine and inverse mapping functions within masked S-box. The masked

affine function needs to be adjusted with new scaling factors. The map operation is the mapping transformation

of 8 × 8 matrix, and map−1 is constructed by the inverse map operation. We denote that the input values of the

map function are (z + m) and m, and the output values of the map function are (z + m)' and m' , where {(z +

m),m} € GF(28) and {(z + m)',m'} € GF(24)

It holds that

 (1)

where

As discussed before, m-affine and m-affine' are needed for scaling the output values and the output masking

values. The following steps introduce the procedure to obtain the scaling values. The normal affine function (Ax

+ b) can be applied to the left and the right sides of (1) as

' + b

 (2)
When mapping Equation (2) from GF(28) to GF(24), we

can get map (A(z + m + m) + b) = map' Amap−1(z + m + m)'+ b' (3)

map(A(z + m) + b) + mapAm = mapAmap−1 (z + m)' + mapb + mapAmap−1 m' (4)

Therefore, we deduce that m-affine = mapAmap−1 + mapb and m-affine' = mapAmap−1. The four tables in

masked sbox remains the same in our previous work[11].

These four tables are the following:

1) Td1 : ((x + m),m) → x2 × e + m;

2) Td2 : ((x + m), (y + m')) → ((x + m) + (y + m')) × (y + m');

3) Tdm : ((x + m), (y +m')) → (x + m) × (y + m'); and
4) T'inv : ((x + m),m) → Tinv(x) + m.

Area Optimization in Masked Advanced Encryption Standard

International organization of Scientific Research 28 | P a g e

Fig 2 Masked Sbox GF(24)

V. MASKED MIXCOLUMNS OVER GF(2
4
)

Scaling of Masked MixColumns is done by adjusting the operations over GF(24), and it needs to

deduce the scaling factor of a modular multiplication with the fixed coefficients 0X02 and 0X03. If S is 1 byte
of MixColumns, it holds that S = map(Sh, Sl) ~Shx + Sl, where S € GF(28) and Sh, Sl € GF(24). Therefore,

scaling factors 2x + 6 and 2x + 7 of S = (4Sh + 2Sl)x + (fSh + 6Sl) and (5Sh + 2Sl)x + (fSh + 7Sl). Fig. 4 shows

the scaling computation for the masked MixColumns.

Fig 3 Masked Sbox

Area Optimization in Masked Advanced Encryption Standard

International organization of Scientific Research 29 | P a g e

Fig 4 COMPUTATION OF MASKED MIXCOLUMN

VI. CONCLUSION
Throughputs can be enhanced by inserting pipeline registers for latency careless designs. In order to

enhance the throughputs of each masked AES's round six-stage pipelines are inserted. Three pipelines to each
round of the masked AES, called outer three pipelines are inserted. The pipeline registers are inserted at the

output of each transformation. Three pipelines to the masked S-box, called inner three pipelines are inserted.

Note that the maximum pipelined stages for the design is six. In order to be compatible with the encryption

procedure, we also insert six-stage pipelines to the key expansion in order not to affect the critical path of the

main encryption. High throughput is an important factor for large data transformation systems. Masked AES

only needs to map the plaintext and masking values from GF(28) to GF(24) once at the beginning of the

operation and map the ciphertext back from GF(24) to GF(28) once at the end of the operation. By moving,

mapping and inverse mapping outside the masked AES‟s round function, area can be reduced by 20%. The

output for Masked Sbox GF(24) is shown in fig 2 and the

REFERENCES
[1] NIST, “Advanced Encryption Standard (AES),” http://csrc.nist.gov/publications/fips/fips-197.pdf, Nov-

2001.

[2] S. Mangard, N. Pramstaller, and E. Oswald, “Successfully attacking masked AES hardware

implementations,” in Proc. CHES LNCS, 2005, vol. 3659, pp. 157–171.

[3] E. Oswald, S. Mangard, N. Pramstaller, and V. Rijmen, “A side-channel analysis resistant description of

the AES S-box,” in Proc. FSE LNCS, Setubal, Potugal, 2005, vol. 3557, pp. 413–423.

[4] L. Goubin and J. Patarin, “DES and differential power analysis (the „duplication‟ method),” in Proc.

CHES LNCS, 1999, vol. 1717, pp. 158–172.

[5] S. Messerges, “Securing the AES finalists against power analysis attacks,” in Proc. FSE LNCS, 2000,
vol. 1978, pp. 150–164.

[6] K. Gaj and P. Chodowiec, “Fast implementation and fair comparison of the final candidates for advanced

encryption standard using field programmable gate arrays,” in Proc. CT-RSA LNCS, 2001, vol. 2020, pp.

84–99.

[7] A. Hodjat and I. Verbauwhede, “A 21.54 Gbits/s fully pipelined processor on FPGA,” in Proc. IEEE 12th

Annu. Symp. Field-Programm. Custom Comput. Mach., 2004, pp. 308–309.

[8] NIST, “Data Encryption Standard (DES),” http://csrc.nist.gov/ publications/fips/fips46-3/fips46-3.pdf,

Oct. 1999.

[9] I. Verbauwhede, P. Schaumont, and H. Kuo, “Design and Performance Testing of a 2.29 gb/s Rijndael

Processor,” IEEE J. Solid-State Circuits, vol. 38, no. 3, pp. 569-572, Mar. 2003.

[10] J. Daemen and V. Rijmen, The Design of Rijndael. Springer-Verlag, 2002.

[11] Z. Yuan, Y. Wang, J. Li, R. Li, and W. Zhao, “FPGA based optimization for masked AES
implementation,” in Proc.IEEE 54th Int. MWSCAS, Seoul, Korea, 2011, pp.1–4

http://csrc.nist.gov/publications/fips/fips-197.pdf
http://csrc.nist.gov/

