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Abstract:- In this paper we study quarter- symmetric non-metric connection in a Lorentzian 𝛽 − kenmotsu 
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1. INTRODUCTION 

Let 𝑀 be an 𝑛 −dimensional differentiable manifold equipped with a linear connection ∇ . The torsion tensor 𝑇  

of ∇  is given by 

𝑇 𝑋, 𝑌 = 𝛻 𝑋𝑌 − 𝛻 𝑌𝑋 − [𝑋, 𝑌] 
 

𝑅 𝑋, 𝑌 𝑍 = 𝛻 𝑋𝛻 𝑌𝑍 − 𝛻 𝑌𝛻 𝑋𝑍 − 𝛻 [𝑋 ,𝑌}𝑍. 

 The connection ∇  is symmetric if its torsion tensor 𝑇  vanishes, otherwise it is non-symmetric. If there is 

a Riemannian metric 𝑔 in 𝑀 such that 𝛻 ̃𝑔 =  0, the connection ∇  is a metric connection, otherwise it is non-

metric. It is well known that a linear connection is symmetric and metric if and only if it is the Levi-Civita 

connection. 

 Hayden [24] introduced a metric connection ∇  with non-zero torsion on a Riemannian manifold. Such a 

connection is called a Hayden connection. On the other hand, in a Riemannian manifold  given a 1 −form 𝜔, the 

Weyl connection ∇  constructed with  and its associated vector 𝐵 (Folland 1970, [1]) is a symmetric non-metric 
connection. In fact, the Riemannian metric of the manifold is recurrent with respect to the Weyl connection with 

the recurrence 1 −form , that is,∇ g = g. Another symmetric non-metric connection is projectively related 
to the Levi-Civita connection (cf. Yano [19], Smaranda [25]). Friedmann and Schouten ([2], [20]) introduced 

the idea of a semi-symmetric linear connection in a differentiable manifold. A linear connection is said to be a 

semi-symmetric connection if its torsion tensor 𝑇  is of the form 

𝑇 (𝑋, 𝑌) = 𝑢(𝑌)𝑋 − 𝑢(𝑋)𝑌                                                                  (1.1) 

 where 𝑢 is a 1 −form. A Hayden connection with the torsion tensor of the form (1.1) is a semi-symmetric 

metric connection. In 1970, Yano [3] considered a semi-symmetric metric connection and studied some of its 

properties. Some different kinds of semi-symmetric connections are studied in [4], [5], [6] and [7].In 1975, S. 
Golab [8] defined and studied quarter-symmetric linear connections in differentiable manifolds.  A linear 

connection is said to be a quarter-symmetric connection if its torsion tensor 𝑇  is of the form 

 𝑇  𝑋, 𝑌 = 𝑢 𝑌 𝜑𝑋 − 𝑢 𝑋 𝜑𝑌          , 𝑋, 𝑌  𝑇𝑀                            (1.2) 

 where 𝑢 is a 1 −form and 𝜑 is a tensor of type (1,1). Note that a quarter-symmetric metric connection 

is a Hayden connection with the torsion tensor of the form (1.2). Studies of various types of quarter-symmetric 

metric connections and their properties include [9], [10], [11] and [12] among others. 

    On the other hand, there is well known class of almost contact metric manifolds introduced by K. Kenmotsu, 

which is now known as Kenmotsu manifolds [10]. An almost contact metric structure on a manifold 𝑀 is called 

a trans-Sasakian structure if the product manifold 𝑀   𝑅 belongs to the class 𝑊4. The class 𝐶6 𝐶5 ([13], [26]) 

coincides with the class of the trans-Sasakian structures of type (, ). In fact, in [13], local nature of the two 

subclasses, namely, 𝐶5 and 𝐶6 structures of  trans-Sasakian structures are characterized completely. 

We note that trans-Sasakian structures of type (0, 0), (0,) and (, 0) are cosymplectic [21], −Kenmotsu [14] 

and −Sasakian [14] respectively. The paper is organized as follows: 

 Section 2, deals with some preliminary results about quarter-symmetric non-metric connection. In this 

section the curvature tensor of the Riemannian manifold with respect to the defined quarter-symmetric non-

metric connection is also found. In the last of this section first Bianchi identity for the curvature tensor of the 

Riemannian manifold with respect to the given quarter-symmetric non-metric connection is found. In section 3, 

we study this quarter-symmetric non-metric connection in Lorentzian  −Kenmotsu manifold. We have given 
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the covariant derivative of a 1 −form and the torsion tensor. We also get the curvature tensor of the Lorentzian 

−Kenmotsu manifold with respect to the defined quarter-symmetric non-metric connection and find first 

Bianchi identity. Finally we have calculated Ricci tensor, scalar curvature and torsion tensor of the Lorentzian 

− Kenmotsu manifold with respect to the defined quarter-symmetric non-metric connection. 

 

2. A Quarter-Symmetric Connection 
 

In this section existence of quarter-symmetric non-metric connection has been discussed. 

Theorem-1 Let 𝑀 be an 𝑛-dimensional Riemannian manifold equipped with the Levi-Civita connection ∇  of its 

Riemannian metric 𝑔. Let  be a 1-form and 𝜑, a (1,1) tensor field in 𝑀 such that 

 𝑋 = 𝑔 , 𝑋 ,                                                                                     (2.1)  
𝑔 𝜑𝑋, 𝑌 =  −𝑔 𝑋, 𝜑𝑌                                                                      (2.2) 

for all 𝑋, 𝑌𝑇𝑀. Then there exists a unique quarter- symmetric non-metric connection ∇  in 𝑀 given by 

𝛻 𝑋𝑌 =  ∇𝑋𝑌 −  𝑋 𝜑𝑌 − 𝑔 𝑋, 𝑌  ,                                              (2.3) 
That satisfies 

𝑇  𝑋, 𝑌 =   𝑌 𝜑𝑋 −  𝑋 𝜑𝑌,                                                       (2.4)  
and 

𝛻 𝑋𝑔 𝑌, 𝑍 =  𝑌 𝑔 𝑋, 𝑍 +  𝑍 𝑔 𝑋, 𝑌                                    (2.5) 
 

where 𝑇  is the torsion tensor of  𝛻 . 
 

Proof: The equation (2.4) of [15] is 
𝛻 𝑋𝑌  =  ∇𝑋𝑌 + 𝑢(𝑌)𝜑1𝑋 − 𝑢(𝑋)𝜑2𝑌 − 𝑔(𝜑1𝑋, 𝑌)𝑈 

                      −𝑓1{𝑢1 𝑋 𝑌 + 𝑢1 𝑌 𝑋 − 𝑔 𝑋, 𝑌 𝑈1} − 𝑓₂𝑔(𝑋, 𝑌)𝑈₂ 

Taking  

𝜑1 = 0, 𝜑2 = 𝜑, 𝑢 = 𝑢1 = , 𝑓1 = 0, 𝑓2 = 1, 𝑈2 = ,                 (2.6) 

in above equation, we get (2.3). The equations (2.5) and (2.6) of  [15] are 

𝑇  𝑋, 𝑌 =  𝑢 𝑌 𝜑𝑋 − 𝑢 𝑋 𝜑𝑌,      
𝛻 𝑋𝑔 𝑌, 𝑍 = 2𝑓1𝑢1 𝑋 𝑔 𝑌, 𝑍 + 𝑓2 𝑢2 𝑌 𝑔 𝑋, 𝑍 + 𝑢2 𝑍 𝑔 𝑋, 𝑌   

Using (2.6) in above equations, we get respectively (2.4) and (2.5). 

Conversely, a connection defined by (2.3) satisfies the condition (2.4) and (2.5). 

Proposition 1.  Let 𝑀 be an 𝑛-dimensional Riemannian manifold. For the quarter-symmetric connection defined 

by (2.3), the covariant derivatives of the torsion tensor 𝑇  and any 1-form 𝜋 are given respectively by 

 
(𝛻  

𝑋𝑇 )(𝑌, 𝑍)   =  ((𝛻  
𝑋𝜂)𝑍)𝜑𝑌 − (𝛻  

𝑋𝜂)𝑌)𝜑𝑍 

                                             +𝜂 𝑍  𝛻  𝑋𝜑 𝑌 − 𝜂 𝑌  𝛻  
𝑋𝜑 𝑍,      (2.7) 

and 

 𝛻  
𝑋𝜋 𝑌 =  ∇𝑋𝜋 𝑌 +  𝑋 𝜋 𝜑𝑌 + 𝑔 𝑋, 𝑌 𝜋                       (2.8) 

 

for all 𝑋, 𝑌, 𝑍 𝑇 𝑀. 
Using (2.8) & (2.3) in 

 𝛻  𝑋𝑇   𝑌, 𝑍 = 𝛻  
𝑋𝑇  𝑌, 𝑍 − 𝑇  𝛻  

𝑋𝑌, 𝑍 − 𝑇 (𝑌, 𝛻  
𝑋𝑍) 

We obtain (2.7). Similarly, using (2.3) with  

 𝛻  𝑋𝜋 𝑌 = 𝛻  
𝑋𝜋𝑌 − 𝜋(𝛻  

𝑋𝑌) 

 (2.8) can be obtained. 

In an 𝑛-dimensional Riemannian manifold 𝑀, for the quarter-symmetric connection defined by (2.3), let us 

write 

 𝑇  𝑋, 𝑌, 𝑍 = 𝑔 𝑇  𝑋, 𝑌 , 𝑍 ,          𝑋, 𝑌, 𝑍𝜖𝑇𝑀.                             (2.9) 

Proposition 2. Let 𝑀 be an 𝑛-dimensional Riemannian manifold. Then 

𝑇  𝑋, 𝑌, 𝑍 + 𝑇  𝑌, 𝑍, 𝑋 + 𝑇  𝑍, 𝑋, 𝑌  

= 2 𝑋 𝑔 𝑌, 𝜑𝑍 + 2 𝑌 𝑔 𝑍, 𝜑𝑋 + 2 𝑍 𝑔 𝑋, 𝜑𝑌        (2.10) 

Proof: In view of (2.7) and (2.9) we have the proposition.  

Theorem 2. Let 𝑀 be an 𝑛-dimensional Riemannian manifold equipped with the Levi-Civita connection ∇  of its 

Riemannian metric 𝑔. Then the curvature tensor 𝑅  of the quarter-symmetric connection defined by (2.3) is given 

by 

 

𝑅  𝑋, 𝑌, 𝑍 = 𝑅 𝑋, 𝑌, 𝑍 − 𝑇  𝑋, 𝑌, 𝑍 − 2𝑑 𝑋, 𝑌 𝜑𝑍 
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+ 𝑋  ∇𝑌𝜑 𝑍 −  𝑌  𝛻𝑋𝜑 𝑍 

+𝑔 𝑌, 𝑍   𝑋 − ∇𝑋 +  𝑋 𝜑  
                       − 𝑔 𝑋, 𝑍   𝑌 − ∇𝑌 +  𝑌 𝜑                       (2.11)  

 

for all 𝑋, 𝑌, 𝑍𝑇𝑀, where 𝑅 is the curvature of Levi-Civita connection. 

Proof: In view of (2.3), (2.2), (2.4) and (2.9) we get (2.11). 

Theorem  3. In an 𝑛-dimensional Riemannian manifold the first Bianchi identity for the curvature tensor of the 

Riemannian manifold with respect to the quarter-symmetric connection defined by (2.3) is 

𝑅  𝑋, 𝑌, 𝑍 + 𝑅  𝑌, 𝑍, 𝑋 + 𝑅  𝑍, 𝑋, 𝑌  

= − 𝑇  𝑋, 𝑌, 𝑍  + 𝑇  𝑌, 𝑍, 𝑋 + 𝑇  𝑍, 𝑋, 𝑌   

+ 𝑋 𝐵 𝑌, 𝑍 +  𝑌 𝐵 𝑍, 𝑋 +  𝑍 𝐵 𝑋, 𝑌  
                   −2𝑑 𝑋, 𝑌 𝜑𝑍 − 2𝑑 𝑌, 𝑍 𝜑𝑋 − 2𝑑 𝑍, 𝑋 𝜑𝑌   (2.12) 

for all 𝑋, 𝑌, 𝑍 𝑇𝑀, where 

 𝐵 𝑋, 𝑌 =  ∇𝑋𝜑 𝑌 −  ∇𝑌𝜑 𝑋.                                                     (2.13) 

Proof: From (2.11), we get 

𝑅  𝑋, 𝑌, 𝑍 + 𝑅  𝑌, 𝑍, 𝑋 + 𝑅  𝑍, 𝑋, 𝑌  

= 2 𝑋 𝑔 𝜑𝑌, 𝑍  + 2 𝑌 𝑔 𝜑𝑍, 𝑋  + 2 𝑍 𝑔 𝜑𝑋, 𝑌  

   + 𝑋  ∇𝑌𝜑 𝑍 −  𝑋  𝛻𝑍𝜑 𝑌 +  𝑌  𝛻𝑍𝜑 𝑋 

− 𝑌  𝛻𝑋𝜑 𝑍 +  𝑍  𝛻𝑋𝜑 𝑌 −  𝑍  𝛻𝑌𝜑 𝑋 

−  𝛻𝑋 𝑌 𝜑𝑍 +   𝛻𝑌 𝑋 𝜑𝑍 −   𝛻𝑌 𝑍 𝜑𝑋 

 +  𝛻𝑍 𝑌 𝜑𝑋 −   𝛻𝑍 𝑋 𝜑𝑌 +   𝛻𝑋 𝑍 𝜑𝑌. 
Using (2.13) and (2.10) in the previous equation we get (2.12). 

Let us write the curvature tensor 𝑇  as a (0,4) tensor by 

 𝑅  𝑋, 𝑌, 𝑍, 𝑊 = 𝑔 𝑅  𝑋, 𝑌 𝑍, 𝑊 ,     𝑋, 𝑌, 𝑍, 𝑊𝑇𝑀.               (2.14) 

Then we have the following: 

Theorem 4.Let 𝑀 be a Riemannian manifold. Then 

𝑅  𝑋, 𝑌, 𝑍, 𝑊 + 𝑅  𝑌, 𝑋, 𝑍, 𝑊 = 0,                                               (2.15) 

for all  𝑋, 𝑌, 𝑍, 𝑊𝑇𝑀. 

Proof: Using (3.25) in (2.14), we get 

𝑅  𝑋, 𝑌, 𝑍, 𝑊 = 𝑅 𝑋, 𝑌, 𝑍, 𝑊 −  𝑍 𝑔 𝑇  𝑋, 𝑌 , 𝑊  

                                     +𝑔 𝑌, 𝑍 𝑔 𝑋, 𝑊 − 𝑔 𝑋, 𝑍 𝑔 𝑌, 𝑊 .      (2.16) 

 
                                   

Interchanging 𝑋 and 𝑌 in the previous equation and adding the resultant equation in (3.28) and using (2.4) we 

get (2.15). 

 

3. QUARTER-SYMMETRIC NON-METRIC CONNECTION IN A LORENTZIAN 

                                                             −KENMOTSU MANIFOLD 
 

A differentiable manifold 𝑀 of dimension 𝑛 is called Lorentzian Kenmotsu manifold if it admits a (1,1) −tensor 

𝜑, a contravariant vector field , a covariant vector field  and Lorentzian metric 𝑔 which satisfy 

 𝜑2𝑋 = 𝑋 +  𝑋 ,      = −1,   𝜑 = 0,  𝜑𝑋 = 0      (3.1) 

 𝑔 𝜑𝑋, 𝜑𝑌 = 𝑔 𝑋, 𝑌 +  𝑋  𝑌                                                   (3.2) 

𝑔 𝜑𝑋, 𝑌 = 𝑔 𝑋, 𝜑𝑌 ,        𝑔 𝑋,  = (𝑋)                                     (3.3) 

for all X, YTM. 
Also if Lorentzian Kenmotsu manifold 𝑀 satisfies 

  ∇𝑋𝜑  𝑌 =  𝑔 𝜑𝑋, 𝑌 −  𝑌 𝜑𝑋 ,    𝑋, 𝑌𝑇𝑀                     (3.4) 

 

Where   denotes the operator of covariant differentiation with respect to the Lorentzian metric 𝑔, then 𝑀 is 

called Lorentzian  -Kenmotsu manifold. From the above equation it follows that 

 

∇𝑋 =  𝑋 −  𝑋                                                                             (3.5) 

 

 (∇𝑋) 𝑌 =  𝑔 𝑋, 𝑌 −  𝑋  𝑌                                               (3.6) 

and consequently 

𝑑 = 0                                                                                                    (3.7) 

Where 
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 𝑑 𝑋, 𝑌 =
1

2
 (𝛻𝑋  𝑌 − (𝛻𝑌) 𝑋 ,     𝑋, 𝑌𝑇𝑀                     (3.8) 

Furthur, on a Lorentzian -Kenmotsu manifold 𝑀, the following relations hold ([3], [16]) 

 

 𝑅 𝑋, 𝑌 𝑍 = 
2 𝑔 𝑋, 𝑍  𝑌 − 𝑔 𝑌, 𝑍  𝑋                           (3.9) 

 𝑅 𝑋, 𝑌  = 2  𝑋 𝑌 −  𝑌 𝑋                                                    (3.10) 
 

 𝑆 𝑋,  = − 𝑛 − 1 2 𝑋                                                               (3.11)  
 

𝑄 = − 𝑛 − 1 2                                                                              3.12  
 

 𝑆 ,  =  𝑛 − 1 2                                                                            (3.13) 

The equation (3.9) is equivalent  to 

𝑅 , 𝑋 𝑌 = 2  𝑌 𝑋 − 𝑔 𝑋, 𝑌                                                   (3.14) 
which implies that 

𝑅 , 𝑋  = 2 𝑋 −  𝑋                                                                 (3.15) 
From (3.9) and (3.14), we have 

 𝑅 𝑋, 𝑌  = 0                                                                                 (3.16) 

 𝑅 , 𝑋 𝑌 = 2  𝑌  𝑋 − 𝑔 𝑋, 𝑌  .                                    (3.17) 

Theorem  5. Let 𝑀 be a Lorentzian −Kenmotsu manifold. Then for the quarter-symmetric connection defined 
by (2.3), we have 

 𝛻 𝑋𝜋 𝑌 =  ∇𝑋𝜋 𝑌 +  𝑋 𝜋 𝜑𝑌 + 𝑔 𝑋, 𝑌 𝜋  .                     (3.18) 

In particular, 

 (𝛻 𝑋𝜂)𝑌 =  − 1 𝑔 𝑋, 𝑌 − 𝜂 𝑋 𝜂 𝑌                                      (3.19) 
and 

𝑑  = 0                                                                                                   (3.20) 
where 

𝑑  𝑋, 𝑌 =
1

2
  𝛻 𝑋  𝑌 −  𝛻 𝑌  𝑋  ,        𝑋, 𝑌𝑇𝑀                (3.21) 

Proof: From equation (2.3), we get (3.18). Now replacing 𝜋 by  in (3.18) and using (3.1) and (3.6) we get 

(3.19). Equation (3.20) follows immediately from (3.19). 

Theorem  6. Let 𝑀 be a Lorentzian -Kenmotsu manifold. Then 

  𝛻 𝑋𝜑 𝑌 =   + 1 𝑔 𝜑𝑋, 𝑌 −  𝑌 𝜑𝑋                                  (3.22) 

which  implies 

𝑇  𝑋, 𝑌 =
1


 − 𝛻 𝑋𝜑 𝑌 +  𝛻 𝑌𝜑 𝑋  

                                           +
( + 1)


 𝑔 𝜑𝑋, 𝑌 − 𝑔 𝜑𝑌, 𝑋      (3.23) 

and 

𝛻 𝑋 = 𝑋 −   + 1  𝑋                                                                (3.24) 

For all  X, Y TM. 

 Proof: From Equations (2.3) and (3.1), we get 

 𝛻 𝑋𝜑 𝑌 =  ∇𝑋𝜑 𝑌 + 𝑔 𝑋, 𝜑𝑌 , 
Which  in view of (3.4) gives (3.22). From (3.22) and (2.4), we get (3.23). Now in view of equations (2.3), (3.5), 

(3.1) and (3.3), we get (3.24). 

Theorem  7. Let 𝑀 be a Lorentzian 𝛽-Kenmotsu manifold. Then 

𝛻 𝑋𝑇  𝑌, 𝑍 =  𝛽 + 1 [𝑔 𝑋, 𝑍 𝜑𝑌 − 𝑔 𝑋, 𝑌 𝜑𝑍 +  𝑍 𝑔 𝜑𝑋, 𝑌 −  𝑌 𝑔 𝜑𝑋, 𝑍 ] 
 −𝛽 𝑋 𝑇  𝑌, 𝑍                                                                                   (3.25) 

Consequently, 

 𝛻 𝑋𝑇  𝑌, 𝑍 + 𝛻 𝑌𝑇  𝑍, 𝑋 + 𝛻 𝑍𝑇  𝑋, 𝑌 = 0                                     (3.26) 

for all  X, Y, Z, W ∈ TM. 
Proof: Using equations (3.19), (3.22) and (2.4) in (2.7) we obtain (3.25). Equation (3.26) follows from (3.25) 

and (2.4). 

 

Theorem 8. The curvature tensor 𝑅  of the quarter-symmetric connection in a Lorentzian 𝛽-kenmotsu manifold 

is as follows 

  𝑅  𝑋, 𝑌 𝑍 = 𝑅 𝑋, 𝑌 𝑍 +  𝛽 + 1 [ 𝑋 𝑔 𝜑𝑌, 𝑍  
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− 𝑌 𝑔 𝜑𝑋, 𝑍 + 𝑔 𝑌, 𝑍  𝑋 − 𝑔 𝑋, 𝑍  𝑌 ] 
               +𝛽  𝑍 𝑇  𝑋, 𝑌 − 𝑔 𝑌, 𝑍 𝑋 + 𝑔 𝑋, 𝑍 𝑌                     (3.27) 

Proof: Using (3.1), (3.3), (2.9) and (2.4) in (2.11), we get 

      𝑅  𝑋, 𝑌 𝑍 = 𝑅 𝑋, 𝑌 𝑍 − 𝜂 𝑌  ∇𝑋𝜑 𝑍 + 𝜂 𝑋  ∇𝑌𝜑 𝑍 
       + (𝛻𝑌 𝑋)𝜑𝑍 − ((𝛻𝑋)𝑌)𝜑𝑍 

+𝑔 𝑌, 𝑍  −∇𝑋+  𝜂 𝑋   

 −𝑔 𝑋, 𝑍  −∇𝑌+  𝜂 𝑌   

                     −𝜂 𝑌 𝑔 𝜑𝑋, 𝑍  + −𝜂 𝑋 𝑔 𝜑𝑌, 𝑍 . 
Now using (3.4), (3.7), (3.5) and (3.1) in the above equation we obtain (3.27). 

Now for the curvature tensor 𝑅  of the quarter-symmetric non-metric connection of the Lorentzian 𝛽-Kenmotsu 

manifold we have following theorems. 

Theorem 9. Let 𝑀 be a Lorentzian 𝛽-Kenmotsu manifold. Then 

                                      𝑅  𝑋, 𝑌, 𝑍, 𝑊 + 𝑅  𝑋, 𝑌, 𝑊, 𝑍  

                      = 𝛽 𝜂 𝑍 𝑔 𝑇  𝑋, 𝑌 , 𝑊 + 𝜂 𝑊 𝑔 𝑇  𝑋, 𝑌 , 𝑍   

              +(𝛽 + 1)[{𝜂 𝑋 𝑔 𝜑𝑌, 𝑍 − 𝜂 𝑌 𝑔 𝜑𝑋, 𝑍  

    +𝑔(𝑌, 𝑍)𝜂(𝑋) − 𝑔(𝑋, 𝑍)𝜂(𝑌)}𝜂(𝑊) 

   +{𝜂 𝑋 𝑔 𝜑𝑌, 𝑊 − 𝜂 𝑌 𝑔 𝜑𝑋, 𝑊  
                               +𝑔(𝑌, 𝑊)𝜂(𝑋) − 𝑔(𝑋, 𝑊)𝜂(𝑌)}𝜂(𝑍)]           (3.28) 

 

 

and 

𝑅  𝑋, 𝑌, 𝑍, 𝑊 − 𝑅  𝑍, 𝑊, 𝑋, 𝑌  

 = 𝛽 𝜂 𝑍 𝑔 𝑇  𝑋, 𝑌 , 𝑊 − 𝜂 𝑋 𝑔 𝑇  𝑍, 𝑊 , 𝑌   

+(𝛽 + 1)[𝜂 𝑋 𝜂 𝑊  𝑔 𝜑𝑌, 𝑍 + 𝑔 𝑌, 𝑍   
                    −𝜂(𝑌)𝜂(𝑍){𝑔(𝜑𝑊, 𝑋) + 𝑔(𝑊, 𝑋)}]                           (3.29)  

for all 𝑋, 𝑌, 𝑍, 𝑊 ∈ 𝑇𝑀. 

Proof: From (3.27) equation (2.14) reduces to 

𝑅  𝑋, 𝑌, 𝑍, 𝑊 = 𝑅(𝑋, 𝑌, 𝑍, 𝑊) + 𝛽[𝜂 𝑍 𝑔 𝑇  𝑋, 𝑌 , 𝑊  

                   −𝑔(𝑌, 𝑍)𝑔(𝑋, 𝑊) + 𝑔(𝑋, 𝑍)𝑔(𝑌, 𝑊)] 
                                       +(𝛽 + 1)[𝜂(𝑊){𝜂 𝑋 𝑔 𝜑𝑌, 𝑍 − 𝜂 𝑌 𝑔 𝜑𝑋, 𝑍  

                                     +𝑔(𝑌, 𝑍)𝜂(𝑋) − 𝑔(𝑋, 𝑍)𝜂(𝑌)}]                  (3.30) 

Interchanging 𝑋 and 𝑌 in the above equation and adding the resultant equation in it and then using (2.4) we get 

(2.15). Now interchanging 𝑍 and 𝑊 in (3.30) and adding the resultant equation to (3.30) we obtain (3.28). In the 

last the equation (3.29) can be obtained by interchanging 𝑋 and 𝑍 & 𝑌 and 𝑊 in (3.30) and substracting the 

resultant equation from (3.30) and using (2.4). 

Theorem 10: The first Bianchi identity for the curvature tensor of the Lorentzian 𝛽 −Kenmotsu manifold with 

respect to the connection defined in the equation (2.3) is as given below 

𝑅  𝑋, 𝑌 𝑍 + 𝑅  𝑌, 𝑍 𝑋 + 𝑅  𝑍, 𝑋 𝑌 = 0                                          (3.31) 

for all 𝑋, 𝑌, 𝑍 ∈ 𝑇𝑀. 
Proof: In view of equations (3.27) and (2.4), we get (3.31). 

 

Theorem 11. In an 𝑛-dimensional Lorentzian 𝛽-Kenmotsu manifold 𝑀, the Ricci tensor and the scalar 

curvature with respect to the connection defined by the equation (2.3) are given by 

 𝑆  𝑌, 𝑍 = 𝑆 𝑌, 𝑍 − 𝛽 𝑛 − 1 𝑔 𝑌, 𝑍  

                                        + 𝛽 + 1  
𝑔 𝜑𝑌, 𝑍  – 𝜂 𝑌 𝑔 𝜑𝑍, 𝜉 

−𝜂 𝑌 𝜂 𝑍 
     (3.32) 

where 𝑋, 𝑌 ∈ 𝑇𝑀 and 

�̃�  = 𝑟 − 𝛽𝑛 𝑛 − 1 −  𝛽 + 1                                                          (3.33) 

  respectively. Where 𝑆 is the Ricci tensor and 𝑟 is the scalar curvature of 𝑀. 

Proof: Let {e₁, e₂,……., en} be a basis of  𝑀, then 

𝑆(𝑌, 𝑍) = ∑𝑔(𝑅 (𝑒𝑖 , 𝑌)𝑍, 𝑒𝑖) 

Now using (3.27) and trace(φ) = 0 in the above equation, we obtain (3.32) and (3.32) gives (3.33). 

Theorem 12. The torsion tensor 𝑇  satisfies the following condition 

 𝑇  𝑇  𝑋, 𝑌 𝑍 + 𝑇  𝑇  𝑌, 𝑍 𝑋 + 𝑇  𝑇  𝑍, 𝑋 𝑌 = 0                    (3.34) 

for all X, Y, Z ∈ TM 

Proof: Using (2.4) and (3.1) we get (3.34). 
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