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1. INTRODUCTION
Let M be an n —dimensional differentiable manifold equipped with a linear connection V. The torsion tensor T
of V is given by
T(X,Y) = VyY —VyX — [X,Y]

RX,V)Z = WWyZ — VyVxZ — Vix v 2.

The connection V is symmetric if its torsion tensor T vanishes, otherwise it is non-symmetric. If there is
a Riemannian metric g in M such that g = 0, the connection V is a metric connection, otherwise it is non-
metric. It is well known that a linear connection is symmetric and metric if and only if it is the Levi-Civita
connection.

Hayden [24] introduced a metric connection V with non-zero torsion on a Riemannian manifold. Such a
connection is called a Hayden connection. On the other hand, in a Riemannian manifold given a 1 —form w, the
Weyl connection V constructed with @ and its associated vector B (Folland 1970, [1]) is a symmetric non-metric
connection. In fact, the Riemannian metric of the manifold is recurrent with respect to the Weyl connection with
the recurrence 1 —form e, that is,Vg = o®g. Another symmetric non-metric connection is projectively related
to the Levi-Civita connection (cf. Yano [19], Smaranda [25]). Friedmann and Schouten ([2], [20]) introduced
the idea of a semi-symmetric linear connection in a differentiable manifold. A linear connection is said to be a
semi-symmetric connection if its torsion tensor T is of the form

TX,Y)=u)X —uX)Y (1.1
where u is a 1 —form. A Hayden connection with the torsion tensor of the form (1.1) is a semi-symmetric
metric connection. In 1970, Yano [3] considered a semi-symmetric metric connection and studied some of its
properties. Some different kinds of semi-symmetric connections are studied in [4], [5], [6] and [7].In 1975, S.
Golab [8] defined and studied quarter-symmetric linear connections in differentiable manifolds. A linear
connection is said to be a quarter-symmetric connection if its torsion tensor T is of the form

TX,Y) =u)eX —u(X)pY XY eTM (1.2)

where u is a 1 —form and ¢ is a tensor of type (1,1). Note that a quarter-symmetric metric connection
is a Hayden connection with the torsion tensor of the form (1.2). Studies of various types of quarter-symmetric
metric connections and their properties include [9], [10], [11] and [12] among others.

On the other hand, there is well known class of almost contact metric manifolds introduced by K. Kenmotsu,
which is now known as Kenmotsu manifolds [10]. An almost contact metric structure on a manifold M is called
a trans-Sasakian structure if the product manifold M x R belongs to the class W4. The class C; @ Cs ([13], [26])
coincides with the class of the trans-Sasakian structures of type (¢, £). In fact, in [13], local nature of the two
subclasses, namely, Cs and Cg structures of trans-Sasakian structures are characterized completely.

We note that trans-Sasakian structures of type (0, 0), (0, 8) and («, 0) are cosymplectic [21], S —Kenmotsu [14]
and « —Sasakian [14] respectively. The paper is organized as follows:

Section 2, deals with some preliminary results about quarter-symmetric non-metric connection. In this
section the curvature tensor of the Riemannian manifold with respect to the defined quarter-symmetric non-
metric connection is also found. In the last of this section first Bianchi identity for the curvature tensor of the
Riemannian manifold with respect to the given quarter-symmetric non-metric connection is found. In section 3,
we study this quarter-symmetric non-metric connection in Lorentzian f —Kenmotsu manifold. We have given
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the covariant derivative of a 1 —form and the torsion tensor. We also get the curvature tensor of the Lorentzian
S —Kenmotsu manifold with respect to the defined quarter-symmetric non-metric connection and find first
Bianchi identity. Finally we have calculated Ricci tensor, scalar curvature and torsion tensor of the Lorentzian
S — Kenmotsu manifold with respect to the defined quarter-symmetric non-metric connection.

2. A Quarter-Symmetric Connection
In this section existence of quarter-symmetric non-metric connection has been discussed.

Theorem-1 Let M be an n-dimensional Riemannian manifold equipped with the Levi-Civita connection V of its
Riemannian metric g. Let 7 be a 1-form and ¢, a (1,1) tensor field in M such that

nX) = g(&X), (2.1)
9(pX,Y) = —g(X,9Y) (2.2)
for all X,Y €T M. Then there exists a unique quarter- symmetric non-metric connection V in M given by
VyY = Vx¥ — n(X)eY — g(X,Y)¢, (2.3)
That satisfies ~
TX,Y) = n(V)pX — n(X)eY, (24)
and
Vg (Y, 2) = n(")g(X,2) + n(Z)g(X,Y) (2.5)

where T is the torsion tensor of V.

Proof: The equation (2.4) of [15] is
kY = VY +u)o X —uX)e,Y —g(@:X,Y)U
—filuy (XY +u (V)X — g(X,Y)U;} — f29(X,Y)U,

P =0, =pu=u=nf(=0f=1LU0,= (2.6)
in above equation, we get (2.3). The equations (2.5) and (2.6) of [15] are
3 TX,Y) = u(V)pX —u(X)ey,
Vyg(Y,Z) = 2fius(X)g (¥, Z) + fo{lu, (N g(X, Z2) + u,(Z) g (X, Y)}
Using (2.6) in above equations, we get respectively (2.4) and (2.5).
Conversely, a connection defined by (2.3) satisfies the condition (2.4) and (2.5).
Proposition 1. Let M be an n-dimensional Riemannian manifold. For the quarter-symmetric connection defined
by (2.3), the covariant derivatives of the torsion tensor T and any 1-form r are given respectively by

Taking

VxD¥,2) = (T ymZeY — (7 xmY)pZ
1@ (Vxp)Y —nM)(Vx0)Z, (2.7)
and

(7 xm)Y = (V)Y + n(X)m(eY) + g(X, V)m(d (2.8)

forall X,Y,Z T M.
Using (2.8) & (2.3) in
(VxT)(Y,2) =V 4T, 2) =T(VyY,2) = T(Y,V 42)
We obtain (2.7). Similarly, using (2.3) with
(VXT[)Y =V ynY —n(V 4Y)

(2.8) can be obtained.
In an n-dimensional Riemannian manifold M, for the quarter-symmetric connection defined by (2.3), let us
write

T(x,v,2)=g(T(X,Y),Z), X,Y,ZeTM. (2.9)
Proposition 2. Let M be an n-dimensional Riemannian manifold. Then

TX,Y,2)+T,Z,X)+T(Z,X,Y)

=2nX)g(Y,9Z) +2n(Y)g(Z, 9X) + 2n(Z)g(X,Y)  (2.10)
Proof: In view of (2.7) and (2.9) we have the proposition.
Theorem 2. Let M be an n-dimensional Riemannian manifold equipped with the Levi-Civita connection V of its
Riemannian metric g. Then the curvature tensor R of the quarter-symmetric connection defined by (2.3) is given
by

R(X,Y,Z)=R(X,Y,Z) —T(X,Y,2)¢—2dn(X,Y)pZ
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+n(X)(Vy@)Z — n(Y)(Vxp)Z
+9 (¥, 2){n(X)E - Vy $+ n(X) s}
—9XD{n()E-Vy &+ n(V)eé (2.11)

for all X,Y,Z eTM, where R is the curvature of Levi-Civita connection.
Proof: In view of (2.3), (2.2), (2.4) and (2.9) we get (2.11).
Theorem 3. In an n-dimensional Riemannian manifold the first Bianchi identity for the curvature tensor of the
Riemannian manifold with respect to the quarter-symmetric connection defined by (2.3) is
RX,Y,Z)+R(Y,Z,X)+R(Z X,Y)
={TX,Y,2)E+TW, Z,X)E+T(Z,X,V)E
+n(X)B(Y,Z) + n(Y)B(Z,X) + n(Z)B(X,Y)
—2dn(X,Y)oZ — 2dn(Y,Z)pX — 2dn(Z, X)pY (2.12)
forall X,Y,Z €TM, where
B(X,Y) = (Vyp)Y — (Vy@)X. (2.13)
Proof: From (2.11), we get
RX,Y,2)+R(Y,Z,X)+R(Z X,Y)
=2n(X)g(pY,2)¢+ 2n(YV)g(@Z, X)E+ 2n(Z) g (9X, Y)E
+n1X)(Vyp)Z — n(X) (V@)Y + n(Y)(Vz0)X
1N WVx@)Z + n(Z)(Vy )Y — n(Z)(Vyp)X
~((w )9z + (7 X)oZ — ((7y mZ)pX
(@Y )oX = (@, mX)eY + ((Vx DZ) @Y.
Using (2.13) and (2.10) in the previous equation we get (2.12).
Let us write the curvature tensor T as a (0,4) tensor by
RX,Y,Z,W)=g(RX,Y)Z,W), X,Y,Z,WEeTM. (2.14)
Then we have the following:
Theorem 4.Let M be a Riemannian manifold. Then
R(X,Y,ZW)+R(Y,X,ZW) =0, (2.15)
forall X,Y,Z,WeTM.
Proof: Using (3.25) in (2.14), we get
RX,Y,Z,W)=R(X,Y,Z,W) — n(Z)g(T(X,Y),W)
+g9(Y,2)gX, W) —gX,Z)g(Y,W). (2.16)

Interchanging X and Y in the previous equation and adding the resultant equation in (3.28) and using (2.4) we
get (2.15).

3. QUARTER-SYMMETRIC NON-METRIC CONNECTION IN A LORENTZIAN
S —KENMOTSU MANIFOLD

A differentiable manifold M of dimension n is called Lorentzian Kenmotsu manifold if it admits a (1,1) —tensor
@, a contravariant vector field & a covariant vector field 7 and Lorentzian metric g which satisfy

P*X=X+nX)& Q) =-1, =0, 7nleXx)=0 (3.1)

9(@X,9Y) = gX,Y) + n(X)n(Y) (3.2)
g(@X,Y) = gX,0Y), gX, & = n(X) (33)
for all X, YeTM.
Also if Lorentzian Kenmotsu manifold M satisfies
(Vx)(Y) = plg(eX,Y)E— n(Y)pX], X,YeTM 3.4

Where V' denotes the operator of covariant differentiation with respect to the Lorentzian metric g, then M is
called Lorentzian p-Kenmotsu manifold. From the above equation it follows that

V&= BlX = n(X){] (3.5)

(Vxm)(¥) = Blg(X,Y) — n(X)n(¥)] (3.6)
and consequently

dn=0 3.7

Where
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1

dn(X,¥) = (7)) — By @), X,YeTM (3.8)
Furthur, on a Lorentzian f-Kenmotsu manifold M, the following relations hold ([3], [16])

n(R(X,V)Z) = Blg(X, 2n(¥) — g(¥, Zn(X)] (3:9)

R(X, V)&= B n(X)Y — n(¥)X] (3.10)

S, 9 =—(n—1DF nX) (3.11)

Q¢ =-(n—-1FE (3.12)

S(EH=m-DF (3.13)
The equation (3.9) is equivalent to

R(E XY = Fln(NX - g(X, V)& (3.14)
which implies that

R(EX)E= FIX — n(0)4 (3.15)
From (3.9) and (3.14), we have

nRX,Y)H =0 (3.16)

n(R(EX)Y) = F[n(V)n(X) — g(X,V)]. (3.17)

Theorem 5. Let M be a Lorentzian g —Kenmotsu manifold. Then for the quarter-symmetric connection defined
by (2.3), we have

(Fem)Y = (V)Y + nX)m(pY) + g(X, V)m(). (3.18)

In particular,
; (ZymY = (B—DgX,Y) — AX)n(Y) (3.19)

an

dn=0 (3.20)
where

- 1., .

dnx,Y) = [(Gem)) = ()X, X, yeTM 321)

Proof: From equation (2.3), we get (3.18). Now replacing « by 7 in (3.18) and using (3.1) and (3.6) we get
(3.19). Equation (3.20) follows immediately from (3.19).
Theorem 6. Let M be a Lorentzian f-Kenmotsu manifold. Then

(Fyp)Y = (B+ Dg (X, V)E— Bn(V)pX (3.22)
which implies
_ 1 _ _
TX,Y) = ’B[—(quo)}’ + (VY<P)X]
1
Y . ) lg(0X,)é— 9oV, 00d (3.23)

and

Vy$=pX —(B+DnX)¢ (3.24)
Forall X,Ye TM.
Proof: From Equations (2.3) and (3.1), we get

(Tx@)Y = (Vy@)Y + g (X, 9Y)¢
Which in view of (3.4) gives (3.22). From (3.22) and (2.4), we get (3.23). Now in view of equations (2.3), (3.5),
(3.1) and (3.3), we get (3.24).
Theorem 7. Let M be a Lorentzian §-Kenmotsu manifold. Then
T(Y,2) = (B +DgX,2)eY — gX,V)oZ + n(Z)g(eX,Y)E— n(¥)g(eX, Z){]

—Bn(X)T(Y,Z) (3.25)
Consequently,

VT, Z)+V,T(Z,X)+V,T(X,Y) =0 (3.26)
forall X,Y,Z,W € TM.
Proof: Using equations (3.19), (3.22) and (2.4) in (2.7) we obtain (3.25). Equation (3.26) follows from (3.25)
and (2.4).

Theorem 8. The curvature tensor R of the quarter-symmetric connection in a Lorentzian 5-kenmotsu manifold
is as follows

R(X,Y)Z =R(X,V)Z + (B + D[nX)g(eY,2)&
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—n(Ng(eX,2)é+ gV, 2)n(X) & — g(X, Z)n(Y){E]
+B[n2)TX,Y) — g(¥,2)X + g(X,2)Y] (3.27)
Proof: Using (3.1), (3.3), (2.9) and (2.4) in (2.11), we get
RX,Y)Z = RX,Y)Z —n(V)(Vxp)Z + n(X)(Vyp)Z
(W)X ez — ((Vxn)Y)eZ
+9(Y, 2)(=Vx S+ n(X)J)
—9X, 2)(=Vy &+ n(¥)J)
-n(Vg(eX,Z)5+ —n(X)g(eY,Z)<.
Now using (3.4), (3.7), (3.5) and (3.1) in the above equation we obtain (3.27).
Now for the curvature tensor R of the quarter-symmetric non-metric connection of the Lorentzian S-Kenmotsu
manifold we have following theorems.
Theorem 9. Let M be a Lorentzian S-Kenmotsu manifold. Then
RX,Y,ZW)+R(X,Y,W,2)
=Bn@g(T&X V), W) +nW)g(TX, 1), 2)]
+(B + DX g(eY,2) —n(¥)g(eX,Z)
+9(, Z)nX) — gX, Z)n(¥)In(W)
+{nX)g(eY, W) —n(¥)g(pX, W)
+g(¥, WinX) —gX, W)in(¥)n(Z)] (3.28)

and
RX,Y,Z,W)—-R(Z,W,X,Y)
= Bn@Dg(TX, ), W) = n(X)g(TZ W),Y)]
+(B + DX {g(eY,2) + g(¥,2)}
—n(VIN@2){g (W, X) + gW, X)}] (3.29)
forall X,Y,Z,W € TM.

Proof: From (3.27) equation (2.14) reduces to
RX,Y,Z,W)=R(X,Y,ZW) + B[n(Z)g(T(X,Y),W)

-9, 2)gX, W)+ g(X,Z)g(Y,W)]

+(B + DW){nX)g(eY,Z2) —n(Y)g(eX,Z)

+9(Y,Z2)n(X) — g(X,Z)n(Y)}] (3.30)
Interchanging X and Y in the above equation and adding the resultant equation in it and then using (2.4) we get
(2.15). Now interchanging Z and W in (3.30) and adding the resultant equation to (3.30) we obtain (3.28). In the
last the equation (3.29) can be obtained by interchanging X and Z & Y and W in (3.30) and substracting the
resultant equation from (3.30) and using (2.4).
Theorem 10: The first Bianchi identity for the curvature tensor of the Lorentzian f —Kenmotsu manifold with
respect to the connection defined in the equation (2.3) is as given below

RX,Y)Z+R(Y,2)X+R(Z,X)Y =0 (3.31)

forall X,Y,Z € TM.
Proof: In view of equations (3.27) and (2.4), we get (3.31).

Theorem 11. In an n-dimensional Lorentzian S-Kenmotsu manifold M, the Ricci tensor and the scalar
curvature with respect to the connection defined by the equation (2.3) are given by
S, 2)=51,2) - p(n — Dg(¥,2)
+(B+1) [g(qu. z2)-n(V)g(9Z,$)

—n(Y)n(Z)

where X,Y € TM and

F=r—fnn—-1)—-(B+1) (3.33)

respectively. Where S is the Ricci tensor and r is the scalar curvature of M.
Proof: Let {ey, e,....... , en} be a basis of M, then
S(Y,2) =%g(R(e,Y)Z, )
Now using (3.27) and trace(¢) = 0 in the above equation, we obtain (3.32) and (3.32) gives (3.33).
Theorem 12. The torsion tensor T satisfies the following condition
T(TXNZ)+T(T,2)Xx) +T(T(Z,X)Y) =0 (3.34)

(3.32)

forall X,Y,Z € TM
Proof: Using (2.4) and (3.1) we get (3.34).
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