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Abstract:   This paper studies two stochastic bulk demand (S, s) inventory models A and B both with  k1 phases 

PH demand occurrence and k2 phases PH lead time distributions respectively.  In the models the maximum 

storing capacity of the inventory is S units and the order for filling up the inventory is placed when the inventory 

level falls to s or below. The demands occur when the absorption occurs in the demand arrival PH process. Its 
size is random and is bounded above with distribution function depending on the phase from which the 

absorption occurs. Lead time for an order realization has phase type distribution with the supply size ≥ S and is 

bounded above with bounds depending on the phase from which the absorption occurs in the PH lead time 

distribution. When the inventory has no stock, demands wait for supply forming a queue. Only after clearing the 

waiting demands, the inventory is filled up. When an order is placed only after its realization, the next order can 

be placed. When the inventory is filled up due to an order realization, units received in excess are returned. In 

model A, the maximum of the maximum demand sizes in the  k1 phases is greater than the maximum of 

the k2supply sizes. In model B the maximum of the maximum demand sizes in the  k1phases is less than the 

maximum of the k2supply sizes. Matrix partitioning method is used to study the inventory systems. The 
stationary probabilities of the inventory stock size, the probability of the waiting demand length, its expected 

values, its variances and probabilities of empty levels are derived for the two models using the iterated rate 

matrix. Numerical examples are presented for illustration.  
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I. INTRODUCTION 
In this paper two bulk demand (S, s) inventory systems are studied with phase type (PH) distributions. 

Models with PH distributions are very useful and important since PH distribution includes Exponential, Hyper 

exponential, Erlang and Coxian distributions as special cases and serves as suitable approximations for arbitrary 

general distributions as noted in Salah, Rachid, Abdelhakim and Hamid [1]. Inventory and queue models have 
been analyzed by many researchers. Thangaraj and Ramanarayanan [2] have studied two ordering level and unit 

demand inventory systems using integral equations. Jacob and Ramanarayanan [3] have treated (S, s) inventory 

systems with server vacations.  Bini, Latouche and Meini [4] have studied numerical methods for Markov 

chains. Chakravarthy and Neuts [5] have discussed in depth a multi-server waiting model.  Gaver, Jacobs and 

Latouche [6] have treated birth and death models with random environment. Latouche and Ramaswami [7] have 

studied Matrix Analytic methods in stochastic modeling. For matrix geometric methods and models one may 

refer Neuts [8]. Rama Ganesan, Ramshankar and Ramanarayanan [9] have analyzed M/M/1 bulk arrivals and 

bulk service queues under varying environment. Fatigue failure models using Matrix geometric methods have 

been treated by Sundar Viswanathan [10]. The models considered in this paper are general compared to existing 

inventory models. Here at each demand epoch, random numbers of units are demanded and the maximum 

number of units demanded may be different in different phases. When there is no stock in the inventory, after 

the lead time, realized orders can clear various number of waiting demands. Usually bulk arrival models have 
partitions based on M/G/1 upper-Heisenberg block matrix structure with zeros below the first sub diagonal. The 

decomposition of a Toeplitz sub matrix of the infinitesimal generator is required to find the stationary 

probability vector. Matrix geometric structures have not been noted as mentioned by William J. Stewart [11] 

and even in such models the recurrence relation method to find the stationary probabilities is stopped at certain 

level in most general cases indicating the limitations of such approach. Rama Ganesan and Ramanarayanan [12] 

have presented a special case where a generating function has been noticed in such a situation. But in this paper 

the partitioning of the matrix with blocks of size, which is the maximum of the maximum number of demands in 

all phases and the maximum of the order supply sizes in all phases together with PH phases, exhibits the matrix 

geometric structure for the (S, s) bulk demand inventory system with PH distributions. The (S, s) inventory 
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systems of M/M/1 types with bulk demands, bulk supply and random environment have been treated by Sundar 

Viswanathan, Rama Ganesan, Ramshankar and Ramanarayanan in [13]. In this paper two models (A) and (B) of 

bulk demand (S, s) inventory systems with PH demand, PH lead time and infinite storage spaces for demands 
are studied using the block partitioning method to obtain matrix geometric results. In the models considered 

here, the demand sizes are bounded discrete random variables with distinct distributions corresponding to the 

phase from which the PH arrival process moves to absorption state. The lead time distribution is of PH type and 

the order is realized at the epoch at which the absorbing state is reached.  The size of the supply is finite 

depending on the last phase before the absorption. When the inventory becomes full, units realized in excess are 

returned immediately. Always waiting demands are given priority and to be cleared before providing stocks for 

the inventory. When the waiting queue of demands is longer than the supply size then the entire supply is 

utilized for reducing the queue length. Model (A) presents the case when M, the maximum of all the maximum 

demand sizes is bigger than N, the maximum of order supply sizes. In Model (B), its dual case, N is bigger than 

M, is treated. In general in waiting line models, the state space of the system has the first co-ordinate indicating 

the number of customers in the system but here the demands in the system are grouped and considered as 
members of M sized blocks  of demands (when M >N) or N sized blocks of demands (when N > M) for finding 

the rate matrix. The matrices appearing as the basic system generators in these two models due to block 

partitions are seen as block circulants. The stationary probability of the number of demands waiting for service, 

the expectation, the variance and the probability of various levels of the inventory are derived for these models. 

Numerical cases are presented to illustrate their applications. The paper is organized in the following manner. In 

section II the (S, s) inventory system with bulk demand and  order clearance after the lead time is studied with 

PH distributions in which maximum M is greater than maximum N. Various performance measures are 

obtained.  Section III treats the situation in which the maximum M is less than the maximum N.  In section IV 

numerical cases are treated.   

 

II. MODEL (A) MAXIMUM DEMAND SIZE M > MAXIMUM SUPPLY SIZE N 
 2.1Assumptions                                                                                                                                                                                       

(i) The time between consecutive epochs of bulk arrivals of demands has phase type distribution (𝛼 , T) where T 

is a matrix of order 𝑘1 with absorbing rate 𝑇0 =  −𝑇𝑒 to the absorbing state 𝑘1+1. When the absorption occurs, 

the next bulk demand arrival time starts instantaneously from a starting state as per the starting vector 𝛼  = 

(𝛼1 , 𝛼2 . , …,   𝛼𝑘1
) and  𝛼𝑖

𝑘1
𝑖=1  = 1. Let φ be the invariant probability vector of the generator matrix (𝑇 + 𝑇0𝛼).  

When the absorption occurs in the PH arrival  process due to  transition from a state  i to state 𝑘1 +1,  𝜒𝑖  number 

of demands arrive  with probabilities P (𝜒𝑖= j) = 𝑝𝑗
𝑖  for 1 ≤ j ≤ 𝑀𝑖 and  𝑝𝑗

𝑖𝑀𝑖  

𝑗=1 =1where 𝑀𝑖  for1≤ i ≤ 𝑘1is the 

maximum size.  
(ii)The maximum capacity of the inventory to store units is S. Whenever the inventory level falls to s or below, 

orders are placed for the supply of units for the inventory. Arriving demands are served till the inventory level 

falls to 0 after which the demands form a queue and wait for order realization.                                                                               

(iii)The lead time distribution of an order has phase type distribution (𝛽 , S) where S is a matrix of order 𝑘2  

with absorbing rate 𝑆0 =  −𝑆𝑒 to the absorbing state 𝑘2+1 and the staring vector is 𝛽 = (𝛽1 , 𝛽2 . , …,   𝛽𝑘2
) where                      

 𝛽𝑖
𝑘2
𝑖=1  = 1. Let ϕ be the invariant probability vector of the generator matrix (𝑆 + 𝑆0𝛽).  During the lead time of 

an order, another order cannot be placed. When absorption occurs due to a transition from state i to state 𝑘2+1, 

an order is realized with the supply of constant Ni ≥  S units for 1≤ i ≤ 𝑘2 and the waiting demands are served 

first and the balance if any becomes stock for the inventory. In case the inventory is filled up, the units which 

are in excess, if any are returned immediately. After the realization of an order if the inventory level becomes s 
or below s or the inventory is still empty with or without waiting demands, then the next order is immediately 

placed. When n demands are waiting for 0 ≤ n ≤ Ni-S at the order realization epoch, n waiting demands are 

cleared, the inventory is filled up and units in excess are immediately returned. When the waiting number of 

demands n at the order realization epoch is such that Ni-S < n < Ni all the n demands are cleared and Ni-n units 

become stocks for the inventory if Ni-n ≤ S and if Ni-n > S the inventory is filled up and the units in excess are 

returned. If n ≥ Ni demands are waiting when an order is realized, Ni demands are cleared reducing the waiting 

demand length to n-Ni.   

(iv)The maximum of the maximum demand arrival size M=max1 ≤𝑖 ≤𝑘1
𝑀𝑖 is greater than the maximum of the 

order realization size N=max1 ≤𝑗  ≤𝑘2
𝑁𝑗 .                                                                                                                          

 

2.3Analysis                                                                                                                                                                                 
The state of the system of the continuous time Markov chain X (t) under consideration is presented as follows.                                                                                                                                                                                                  

X(t)={(k, i) : for 0 ≤ k ≤ S-s-1 and 1 ≤ i ≤ 𝑘1)}U{(0, k, i, j) ; for S-s ≤ k ≤ M-1; 1 ≤ i ≤ 𝑘1; 1 ≤ j ≤ 𝑘2} U{(n, k, 

i,j): for 0 ≤ k ≤ M-1; 1 ≤ i ≤ 𝑘1; 1 ≤ j ≤ 𝑘2 and n ≥ 1}.                                                                                     (1) 
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 The chain is in the state (k, i) when the number of stocks in the inventory is S –k for 0 ≤ k ≤ S-s-1 and the 

arrival phase is i for 1 ≤ i ≤ 𝑘1. The chain is in the state (0, k, i, j) when the number of stocks in the inventory is 

S-k for S-s ≤ k ≤ S without any waiting demand, the arrival phase is i for 1 ≤ i ≤ 𝑘1 and the order-supply phase 

is j for 1 ≤ j ≤  𝑘2. The chain is in the state (0, k, i, j) when the number of waiting demands is k-S for S+1 ≤ k ≤ 

M-1, arrival phase is i for 1 ≤ i ≤ 𝑘1 and the order-supply phase is j for 1 ≤ j ≤  𝑘2.The chain is in the state (n, k, 

i, j) when the number of demands in the queue is n M + k- S, for 0 ≤ k ≤ M-1 and 1 ≤ n < ∞, arrival phase is i for 

1 ≤ i ≤ 𝑘1 and the order-supply phase is j for 1 ≤ j ≤ 𝑘2. When the number of demands waiting in the system is r 

≥ 1, then r is identified with the first two co-ordinates (n, k) where n is the quotient and k is the remainder for 

the division of r + S by M; r = M n + k - S for r ≥ 1, 0 ≤ n < ∞ and 0 ≤ k ≤ M-1. Let the survivor probabilities of 

arrivals 𝜒𝑖  be P( 𝜒𝑖  > m ) = 𝑃𝑚
𝑖  = 1 -  𝑝𝑛

𝑖 𝑚
𝑛=1 , for 1 ≤ m ≤ 𝑀𝑖  -1 with 𝑃0

𝑖 = 1, for all i, 1 ≤ i ≤  𝑘1 (2)                                                   

The chain X (t) describing model has the infinitesimal generator 𝑄𝐴 of infinite order which can be presented in 

block partitioned form given below. 

𝑄𝐴=

 
 
 
 
 
 
𝐵1 𝐵0 0 0 . . . ⋯
𝐵2 𝐴1 𝐴0 0 . . . ⋯
0 𝐴2 𝐴1 𝐴0 0 . . ⋯
0 0 𝐴2 𝐴1 𝐴0 0 . ⋯
0 0 0 𝐴2 𝐴1 𝐴0 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ⋱ ⋱ 

 
 
 
 
 

                                                                                                        (3)                                                                                           

In (3) the states of the matrix are listed lexicographically as 0, 1, 2, 3, ….  For the partition purpose the states in 

the first two sets of (1) are combined. The vector 0 is of type 1 x [𝑘1(𝑆 − 𝑠) + 𝑘1𝑘2(M-S+s)] and  𝑛 is of type                              

1 x(𝑘1𝑘2M). They are 0 = ((0,1),(0,2)…(0,𝑘1)…(S-s-1,1)…(S-s-1, 𝑘1),(0,S-s,1,1),(0,S-s,1,2)…(0,S-s, 𝑘1 , 𝑘2)   

…(0,S,1,1)…(0,S, 𝑘1 , 𝑘2),(0,S+1,1,1)…(0,S+1,𝑘1 , 𝑘2)…(0,M-1,1,1)…(0,M-1,𝑘1𝑘2)).  For n > 0 the vector is                                         

𝑛=((n,0,1,1),(n,0,1,2)…(n,0,1,𝑘2),(n,0,2,1),(n,0,2,2)…(n,0,2,𝑘2),(n,0,3,1)…(n,0,𝑘1 , 𝑘2),(n,1,1,1)...(n,1,𝑘1 , 𝑘2),(n

,2,1,1)……(n,2, 𝑘1 , 𝑘2)….(n,M-1,1,1), (n,M-1,1,2) …(n,M-1,1,𝑘2),(n,M-1,2,1)……(n,M-1,𝑘1 , 𝑘2)).       The 

matrices 𝐵1𝑎𝑛𝑑 𝐴1 have negative diagonal elements, they are of orders  𝑘1(𝑆 − 𝑠) + 𝑘1𝑘2(M-S+s) and 𝑘1𝑘2M 

respectively and their off diagonal elements are non- negative. The matrices  𝐴0  𝑎𝑛𝑑𝐴2 have nonnegative 

elements and are of orders  𝑘1𝑘2M. The matrices 𝐵0  𝑎𝑛𝑑 𝐵2   have non-negative elements and are of types 

[ 𝑘1(𝑆 − 𝑠) + 𝑘1𝑘2(M-S+s)] x (𝑘1𝑘2M) and (𝑘1𝑘2M) x [ 𝑘1(𝑆 − 𝑠) + 𝑘1𝑘2(M-S+s)] respectively and they are 

all given below. Let ⊕ 𝑎𝑛𝑑⨂ denote the Kronecker sum and Kronecker products respectively.                                       

Let 𝒬1
′ =T⊕S = (T⨂𝐼𝑘2

) + ( 𝐼𝑘1
⨂𝑆)                                                   (4)                                                                                                        

where I indicates the identity matrices of orders given in the suffixes and  𝒬1
′  is of order 𝑘1𝑘2 . Let 𝑇0  = 

(𝑡0
1 , 𝑡0

2 , …𝑡0
𝑘1 )′ be the column vector of absorption rates in PH arrival process. Let 𝑆0 = (𝑠0

1 , 𝑠0
2 , …𝑠0

𝑘2 )′ be the 

column vector of absorption rates concerning the PH lead time distribution. Let                                                                                                      

𝑇0𝑗 = (𝑡0
1𝑝𝑗

1 , 𝑡0
2𝑝𝑗

2 , … . , 𝑡0
𝑘1𝑝𝑗

𝑘1 )′ for1 ≤ j ≤ M                                                                                                    (5)                                                                                                                                         

where 𝑡0
𝑖 𝑝𝑗

𝑖  is the rate of absorption from state i to state 𝑘1+1 when j demands occur for 1≤ i ≤ 𝑘1 and for 1 ≤ j ≤ 

M. Let the matrix 𝛬𝑗 =   [𝑇0𝑗 𝛼 ] ⨂𝐼𝑘2
  𝑓𝑜𝑟 1 ≤ 𝑗  ≤ 𝑀,           (6)                                                                                                                                                                                                 

 𝑆0𝑗 =  𝑠0
1𝛿𝑗 ,𝑁1

, 𝑠0 
2 𝛿𝑗 ,𝑁2

, … . , 𝑠0
𝑘2𝛿𝑗 ,𝑁𝑘2

 
′

for1 ≤ j ≤ N ;  S ≤  Ni ≤ N and 1 ≤ i ≤ k2                                      (7)                              

where δi,j = 1 if i = j and δi,j = 0 if i ≠ j, 1 ≤ i, j ≤ N.  𝑆0𝑗  is a 0 column vector for j ≠ 𝑁𝑖 for 1 ≤ i ≤ 𝑘2.  𝑆0𝑁𝑖
 is 

a column vector with only one non-zero element (𝑆0𝑁𝑖
)𝑖=𝑠0 

𝑖 for 1 ≤ i ≤ 𝑘2  and  (𝑆0𝑁𝑖
)𝑗 =0 if i ≠ j for 1 ≤ i, j ≤ 𝑘2. 

Let 𝑈𝑗 = 𝐼𝑘1
 ⨂ 𝑆0𝑗 𝛽 𝑓𝑜𝑟 1 ≤ 𝑗 ≤ 𝑁 𝑤𝑖𝑡ℎ  𝑜𝑟𝑑𝑒𝑟   𝑘1𝑘2;   

𝑈′𝑗 = 𝐼𝑘1
 ⨂ 𝑆0𝑗  𝑓𝑜𝑟 1 ≤ 𝑗 ≤ 𝑁 𝑤𝑖𝑡ℎ  𝑡𝑦𝑝𝑒   𝑘1𝑘2𝑥 𝑘1;                                                        

 𝛬′𝑗  = 𝑇0𝑗  𝛼 ⨂𝛽   𝑓𝑜𝑟 1 ≤ 𝑗 ≤ 𝑀 with type 𝑘1x (𝑘1𝑘2) ; 𝛬′′𝑗  = 𝑇0𝑗  𝛼   𝑓𝑜𝑟1 ≤ 𝑗 ≤ 𝑆 − 𝑠 − 1 with order 𝑘1;                                                                                         

 𝑉𝑗 =   𝑈′𝑗
𝑁
𝑖=𝑗 +1 ,   for 1 ≤ j ≤ N-1.                                                                                                                       (8)   

                                                          

𝐴0 =

 
 
 
 
 
 
 
 

𝛬𝑀 0 ⋯ 0 0 0
𝛬𝑀−1 𝛬𝑀 ⋯ 0 0 0
𝛬𝑀−2 𝛬𝑀−1 ⋯ 0 0 0
𝛬𝑀−3 𝛬𝑀−2 ⋱ 0 0 0

⋮ ⋮ ⋱ ⋱ ⋮ ⋮
𝛬3 𝛬4 ⋯ 𝛬𝑀 0 0
𝛬2 𝛬3 ⋯ 𝛬𝑀−1 𝛬𝑀 0
𝛬1 𝛬2 ⋯ 𝛬𝑀−2 𝛬𝑀−1 𝛬𝑀 

 
 
 
 
 
 
 

 (9)       

𝐴2

=

 
 
 
 
 
 
 
 
0 ⋯ 0 𝑈𝑁 𝑈𝑁−1 ⋯ 𝑈2 𝑈1

0 ⋯ 0 0 𝑈𝑁 ⋯ 𝑈3 𝑈2

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 ⋯ 0 0 0 ⋯ 𝑈𝑁 𝑈𝑁−1

0 ⋯ 0 0 0 ⋯ 0 𝑈𝑁

0 ⋯ 0 0 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 0 0 0 ⋯ 0 0  

 
 
 
 
 
 
 

 (10)
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𝐴1 =

 
 
 
 
 
 
 
 
 
 
 
𝒬1

′ 𝛬1 𝛬2 ⋯ 𝛬𝑀−𝑁−2 𝛬𝑀−𝑁−1 𝛬𝑀−𝑁 ⋯ 𝛬𝑀−2 𝛬𝑀−1

𝑈1 𝒬1
′ 𝛬1 ⋯ 𝛬𝑀−𝑁−3 𝛬𝑀−𝑁−2 𝛬𝑀−𝑁−1 ⋯ 𝛬𝑀−3 𝛬𝑀−2

𝑈2 𝑈1 𝒬1
′ ⋯ 𝛬𝑀−𝑁−4 𝛬𝑀−𝑁−3 𝛬𝑀−𝑁−2 ⋯ 𝛬𝑀−4 𝛬𝑀−3

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝑈𝑁 𝑈𝑁−1 𝑈𝑁−2 ⋯ 𝒬1

′ 𝛬1 𝛬2 ⋯ 𝛬𝑀−𝑁−2 𝛬𝑀−𝑁−1

0 𝑈𝑁 𝑈𝑁−1 ⋯ 𝑈1 𝒬1
′ 𝛬1 ⋯ 𝛬𝑀−𝑁−3 𝛬𝑀−𝑁−2

0 0 𝑈𝑁 ⋯ 𝑈2 𝑈1 𝒬1
′ ⋯ 𝛬𝑀−𝑁−4 𝛬𝑀−𝑁−3

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 𝑈𝑁 𝑈𝑁−1 𝑈𝑁−2 ⋯ 𝒬1

′ 𝛬1

0 0 0 ⋯ 0 𝑈𝑁 𝑈𝑁−1 ⋯ 𝑈1 𝒬1
′  
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                                                                                                                                                                            (12) 

𝐵0 =

 
 
 
 
 
 
 

𝛬′𝑀 0 ⋯ 0 0 ⋯ 0
𝛬′𝑀−1 𝛬′𝑀 ⋯ 0 0 ⋯ 0

⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋮
𝛬′𝑀− 𝑆−𝑠 +1 𝛬′𝑀− 𝑆−𝑠 +2 ⋯ 𝛬′𝑀 0 ⋯ 0

𝛬𝑀−(𝑆−𝑠) 𝛬𝑀− 𝑆−𝑠 +1 ⋱ 𝛬𝑀−1 𝛬𝑀 ⋯ 0

⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋮
𝛬1 𝛬2 ⋯ 𝛬𝑆−𝑠 𝛬𝑆−𝑠+1 ⋯ 𝛬𝑀 

 
 
 
 
 
 

 (13)       

  

𝐵2 =

 
 
 
 
 
 
 
 
0 ⋯ 0 𝑈𝑁 𝑈𝑁−1 ⋯ 𝑈2 𝑈1

0 ⋯ 0 0 𝑈𝑁 ⋯ 𝑈3 𝑈2

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 ⋯ 0 0 0 ⋯ 𝑈𝑁 𝑈𝑁−1

0 ⋯ 0 0 0 ⋯ 0 𝑈𝑁

0 ⋯ 0 0 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 0 0 0 ⋯ 0 0  

 
 
 
 
 
 
 

 (14)

 

In   𝐵2 , the first   𝑘1(𝑆 − 𝑠) + 𝑘1𝑘2(M-S+s-N) are 0 columns. In (14) the structure presents the case when M-N-

S+s ≥ 0. When M-N < S-s, then in the column blocks from M-N to S-s 𝑎𝑙𝑙 𝑈𝑗  𝑚𝑎𝑦 𝑏𝑒 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑑 𝑏𝑦 𝑈′𝑗 . 

Similarly in the matrix 𝐵1 the column blocks from 2 to S-s 𝑎𝑙𝑙 𝑈𝑗  𝑚𝑎𝑦 𝑏𝑒 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑑 𝑏𝑦 𝑈′𝑗 . The basic generator 

of the bulk queue which is concerned with only the demand and supply is a matrix of order 𝑘1𝑘2M given below 

in (17) where                      𝒬𝐴
′′ =𝐴0 +  𝐴1 + 𝐴

Its probability vector  w gives,  𝑤𝒬𝐴
′′  =0 and w. e = 1                      (16)                                                                                             

It is well known that a square matrix in which each row (after the first) has the elements of the previous row 

shifted cyclically one place right, is called a circulant matrix. It is very interesting to note that the matrix 𝒬𝐴
′′   = 

𝐴0 +  𝐴1 + 𝐴2 is a block circulant matrix where each block matrix is rotated one block to the right relative to the 

preceding.  
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In (17), the first block-row of type 𝑘1𝑘2x M𝑘1𝑘2 is, 𝑊 = (𝒬1
′ + 𝛬𝑀 , 𝛬1, 𝛬2 , …, 𝛬𝑀−𝑁−2 ,  𝛬𝑀−𝑁−1,  𝛬𝑀−𝑁 + 𝑈𝑁 , 

…, 𝛬𝑀−2 + 𝑈2 ,  𝛬𝑀−1 + 𝑈1) which gives as the sum of the blocks  𝒬1
′ + 𝛬𝑀 +  𝛬1+ 𝛬2 +…+𝛬𝑀−𝑁−2 +

 𝛬𝑀−𝑁−1 + 𝛬𝑀−𝑁 + 𝑈𝑁+…+𝛬𝑀−2 + 𝑈2 +  𝛬𝑀−1 + 𝑈1= (T+𝑇0𝛼) ⊕(S+𝑆0𝛽) = (T+𝑇0𝛼)⨂𝐼𝑘2
+ 𝐼𝑘1

⨂(𝑆 +

𝑆0𝛽) whose stationary vector is  𝜑⨂𝜙. This gives 𝜑⨂𝜙 𝒬1
′ + 𝛬𝑀 + 𝜑⨂𝜙 𝛬𝑖

𝑀−𝑁−1
𝑖=1 + 𝜑⨂𝜙  (𝛬𝑀−𝑖 +𝑁

𝑖=1

𝑈𝑖) = 0. So    (𝜑⨂𝜙, 𝜑⨂𝜙 …, 𝜑⨂𝜙 ). W = 0 = (𝜑⨂𝜙, 𝜑⨂𝜙 …,𝜑⨂𝜙) W’. Since all blocks, in any block-row 

are seen somewhere in each and every column block structure (the matrix is block circulant), the above equation 

shows the left eigen vector of the matrix    𝒬𝐴
′′  is (𝜑⨂𝜙,𝜑⨂𝜙,……, 𝜑⨂𝜙). Using (16), this gives probability 

vector w= 
𝜑⨂𝜙

𝑀
,
𝜑⨂𝜙

𝑀
,
𝜑⨂𝜙

𝑀
, … . . ,

𝜑⨂𝜙

𝑀
    (18)                                                                                                                                

Neuts [8], gives the stability condition as, w 𝐴0  𝑒 < 𝑤 𝐴2  𝑒 where w is given by (18). Taking the sum cross 

diagonally in the 𝐴0  𝑎𝑛𝑑 𝐴2 matrices, it can be seen that the stability condition can be simplified as follows.  

w 𝐴0  𝑒=
1

𝑀
 𝜑⨂𝜙  𝑛𝛬𝑛

𝑀
𝑛=1  𝑒=

1

𝑀
   𝑛( 𝜑⨂𝜙𝛬𝑛

𝑀
𝑛=1  𝑒  =

1

𝑀
   𝑛( 𝜑⨂𝜙𝑀

𝑛=1  (𝑇0𝑛𝛼  ⨂𝐼𝑘2
)𝑒   

=
1

𝑀
  𝑛 𝜑𝑀

𝑛=1  𝑇0𝑛𝛼   𝑒 ⨂ 𝜙𝑒  =
1

𝑀
  𝑛  𝜑𝑗

𝑘1
𝑗=1

𝑀
𝑛=1 𝑡0

𝑗
𝑝𝑛

𝑖 = 
1

𝑀
 𝜑𝑗

𝑘1
𝑗 =1 𝑡0

𝑗
𝐸(𝜒𝑗 ) < 𝑤 𝐴2  𝑒 = 

1

𝑀
 𝜑⨂𝜙( 𝑛𝑈𝑛 )𝑒𝑁

𝑛=1   = 
1

𝑀
   𝑛( 𝜑⨂𝜙𝑈𝑛

𝑁
𝑛=1  𝑒  = 

1

𝑀
   𝑛( 𝜑⨂𝜙𝑁

𝑛=1  (𝐼𝑘1
 ⨂𝑆0𝑛𝛽)𝑒  = 

1

𝑀
  𝑛 𝜑𝑁

𝑛=1 𝑒 ⨂ 𝜙𝑆0𝑛𝛽𝑒 = 
1

𝑀
  𝑛  𝜙𝑗

𝑘2
𝑗=1

𝑁
𝑛=1 𝑠0

𝑗
𝛿𝑛 ,𝑁𝑗

 = 
1

𝑀
 𝜙𝑗

𝑘2
𝑗=1 𝑠0

𝑗
𝑁𝑗  where 𝜑𝑖and 𝜙𝑗  are components of φ and ϕ respectively for 1 ≤ i ≤ 

𝑘1 and 1 ≤ j ≤ 𝑘2. So the inequality for the steady state reduces to     𝜑𝑖  
𝑘1
𝑖=1 𝑡0

𝑖 𝐸(𝜒𝑖) <  𝜙𝑖  𝑠0
𝑖 𝑁𝑖

𝑘2
𝑖=1    (19)                                                                                                                                                                                                                                                                                                                                                                                                                                    

This is the stability condition for the bulk demand (S,s) inventory system with  PH distributions  when the 
maximum demand size in all arrival phases is greater than the maximum supply size in all supply phases. When 

(19) is satisfied, the stationary distribution of the queue length of waiting demands for units exists Neuts[8]                                                                                                                                                                                                                                                                

Let π (k, i) for 0 ≤ k ≤ S-s-1 and 1 ≤ i ≤ 𝑘1;  π (0, k, i, j) for S- s ≤ k ≤ M-1, 1 ≤ i ≤ 𝑘1and 1≤ j ≤ 𝑘2;   π (n, k, i, j), 

for 0 ≤ k ≤ M-1, 1 ≤ i ≤ 𝑘1, 1 ≤ j ≤ 𝑘2 and n ≥ 1 be the stationary probability of the states in (1). Let  𝜋0 = (π(0, 

1)…π(0, 𝑘1)…π(S-s-1, 1)…π(S-s-1, 𝑘1) π(0, S-s, 1, 1), π(0, S-s, 1, 2)…π(0, M-1, 𝑘1 , 𝑘2)) be of type                               

1 x [𝑘1(𝑆 − 𝑠) + 𝑘1𝑘2(M-S+s)]. Let 𝜋𝑛=  (π(n, 0, 1,1), π(n, 0,1, 2) …   π(n, 0, 1,𝑘1), π(n, 0, 2, 1), π(n,0, 2, 

2),…π(n,0,𝑘1 , 𝑘2 ), π(n,1,1,1),…….π(n, M-1, 1,1), π(n, M-1,1,2)…π(n, M-1,𝑘1𝑘2)) be of type 1 x 𝑘1𝑘2M for n ≥ 

1. The stationary probability vector 𝜋 = (𝜋0 , 𝜋1 , 𝜋3 , … ) satisfies the equations 𝜋𝑄𝐴=0 and πe=1. (20)                                                                                                                                                                                                                                                                                                                            

From (20), it can be seen that 𝜋0𝐵1 + 𝜋1𝐵2=0.                        (21)                                                                       

𝜋0𝐵0+𝜋1𝐴1+𝜋2𝐴2 = 0                                                       (22)                                                                                                                                                                                                                                                                                                                         

𝜋𝑛−1𝐴0+𝜋𝑛𝐴1+𝜋𝑛+1𝐴2 = 0, for n ≥ 2.                              (23)                                                                                                                                                                                                                                                                                                

Introducing the rate matrix R as the minimal non-negative solution of the non-linear matrix equation                                              

𝐴0+R𝐴1+𝑅2𝐴2=0,                                                              (24)                                                                                                                                                                                                                                                                                                                                                           

it can be proved (Neuts [8]) that 𝜋𝑛   satisfies the following. 𝜋𝑛  = 𝜋1 𝑅
𝑛−1 for n ≥ 2.   (25)                                                                                                                                                                                                                                                               

Using (21),  𝜋0 satisfies  𝜋0   = 𝜋1𝐵2 (−𝐵1)−1                   (26)                                                                                                                                                                                                                                                                                                                                                 

So using (22) , (26) and (25) the vector  𝜋1 can be calculated up to multiplicative constant since 𝜋1 satisfies the 

equation   𝜋1  [𝐵2 −𝐵1 
−1𝐵0 + 𝐴1 + 𝑅𝐴2] =0.                (27)                                                                                                                                                                                                                                                                                                                                                                                                         

Using (20), (25) and (26) it can be seen that  𝜋1[𝐵2 (−𝐵1)−1e+(I-R)−1𝑒]  = 1.                                       (28)                    

Replacing the first column of the matrix multiplier of   𝜋1 in equation (27), by the column vector multiplier of 

𝜋1 in (28), a matrix which is invertible may be obtained. The first row of the inverse of that same matrix is 𝜋1 
and this gives along with (26) and (25) all the stationary probabilities of the system.   The matrix R is iterated 

starting with𝑅 0 = 0; and by finding  𝑅(𝑛 + 1)=−𝐴0𝐴1
−1–𝑅2(𝑛)𝐴2𝐴1

−1, n ≥ 0.                    (29)                                                                                                                                                                                                                                                                                                                                                                                                                                 

The iteration may be terminated to get a solution of R at a norm level where   𝑅 𝑛 + 1 − 𝑅(𝑛 )   < ε.                                                                                       

2.3. Performance Measures  
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(1) The probability of the demand length L = r > 0, P (L = r), can be seen as follows. Let n ≥ 0 and k for                          

0 ≤ k ≤ M-1 be non-negative integers such that r = n M + k - S. Then using (21) (22) and (23) it is noted that                                                                

P (L=r) =   𝜋  𝑛, 𝑘, 𝑖, 𝑗  
𝑘2
𝑗=1

𝑘1
𝑖=1 , where r = n M + k –S > 0. 

(2) P (waiting demand length L = 0) = P (L = 0) =    π (k, i)
𝑘1
𝑖=1

𝑆−𝑠−1
𝑘=0  +   𝜋  0, 𝑘, 𝑖, 𝑗  𝑆

𝑘=𝑆−𝑠
𝑘2
𝑗 =1

𝑘1
𝑖=1   and                               

for r > 0,  P (Inventory level is r) = P (INV= r) = 
 𝜋  𝑆 − 𝑟, 𝑖 

𝑘1
𝑖=1  for s + 1 ≤  r ≤ S.

  𝜋  0, 𝑆 − 𝑟, 𝑖, 𝑗  
𝑘2
𝑗=1

𝑘1
𝑖=1 , for 1 ≤  r ≤  s

    

P (Inventory level=0, demand length L =0) =   𝜋  0, 𝑆, 𝑖, 𝑗  
𝑘2
𝑗=1

𝑘1
𝑖=1  

(3) The expected demand length E (L) can be calculated as follows. Demand length L = 0 when there is stock in 

the inventory or when the inventory becomes empty without a waiting demand. So for E(L) it can be seen that                           

E(L)=   𝜋
𝑘2
𝑗=1

𝑘1
𝑖=1

𝑀−1
𝑘=𝑆+1 (0,k,j,i)(k-S)+     𝜋

𝑘2
𝑗=1

 𝑛, 𝑘, 𝑖, 𝑗 
𝑘1
𝑖=1  𝑀−1 

𝑘=0
∞
𝑛=1 (nM+k-S).                                                 

Let 𝛿1= (0,0,…0,1,1,…1,2,2,…2,…,M-1-S,M-1-S,…,M-1-S)’be a column of type [(S-s) 𝑘1+(M-S+s) 𝑘1𝑘2] x 1 

and   in the vector, the number 0 appears [(S-s) 𝑘1+(s+1) 𝑘1𝑘2] times, and the numbers 1,2,3,.., (M-1-S) appear 

𝑘1𝑘2 times one by one in  order. The vector 𝛿2= (0,0,…0,1,1,…1,2,2,…2,…,M-1, M-1, …, M-1)’ where the all 

numbers  0 to M-1 appear 𝑘1𝑘2 times. On simplification using equations (25)-(28)                                                                                         

E (L) =  𝜋0𝛿1 +M 𝜋1(I-R)−2e + 𝜋1(I-R)−1𝛿2- S𝜋1(I-R)−1e

(4) Variance of the demand length  can be seen using VAR (L) = E (𝐿2) – E(L)2 . Let 𝛿3 be column vector                    

𝛿3 = [0, . .0, 12 , … 12  22 , . . 22 , …   𝑀 − 1−𝑆)2 , …  (𝑀 − 1 − 𝑆)2 ′ of type [(S-s) 𝑘1+(M-S+s) 𝑘1𝑘2] x 1 where the 

number 0 appears [(S-s) 𝑘1+(s+1) 𝑘1𝑘2 ]times, and the square of numbers 1,2,3,.., (M-1-S) appear 𝑘1𝑘2 times 

one by one in order and let  𝛿4 = [0, . .0, 12 , … 12  22 , . . 22 , …   𝑀 − 1)2 , …  (𝑀 − 1)2 ′ of type M𝑘1𝑘2x1 where 

the number 0 appears 𝑘1𝑘2 times, and the square of the numbers 1,2,3,.., (M-1) appear 𝑘1𝑘2  times one by one                                   

in order. It can be seen that the second moment, E(𝐿2)=   𝜋
𝑘2
𝑗 =1

𝑘1
𝑖=1

𝑀−1
𝑘=𝑆+1 (0,k,i,j)(k-S)2 + 

     𝜋
𝑘2
𝑗=1

 𝑛, 𝑘, 𝑖, 𝑗 
𝑘1
𝑖=1 [𝑀𝑀−1

𝑘=0 𝑛 + 𝑘∞
𝑛=1 −𝑆]2. Using Binomial expansion in the second series it may be 

noted       E(𝐿2)=𝜋0𝛿3 + 𝑀2  𝑛 𝑛 − 1 𝜋𝑛
∞
𝑛=1 𝑒 +  𝑛 𝜋𝑛

∞
𝑛=1 𝑒 +  𝜋𝑛

∞
𝑛=1 𝛿4  + 2M  𝑛 𝜋𝑛𝛿2

∞
𝑛=1                                              

-2S      𝜋
𝑘2
𝑗=1

 𝑛, 𝑘, 𝑖, 𝑗 
𝑘1
𝑖=1   𝑀𝑛 + 𝑘 𝑀−1 

𝑘=0
∞
𝑛=1   +𝑆2      𝜋

𝑘2
𝑗=1

 𝑛, 𝑘, 𝑖, 𝑗 
𝑘1
𝑖=1  𝑀−1 

𝑘=0
∞
𝑛=1 . After simplification,                                                                                                                                                                     

E(𝐿2)= 𝜋0𝛿3+𝑀2[𝜋1(𝐼 − 𝑅)−32𝑅 𝑒 + 𝜋1(𝐼 − 𝑅)−2𝑒]+𝜋1(𝐼 − 𝑅)−1𝛿4 + 2M 𝜋1(𝐼 − 𝑅)−2𝛿2                                                    

-2S [M 𝜋1(I-R)−2e + 𝜋1(I-R)−1𝛿2] +𝑆2𝜋1(𝐼 − 𝑅)−1𝑒                                                                                       (31)      
Using (30) and (31) variance of L can be written. 

 (5) The above partition method may also be used to study the case of (S,s) inventory system in which the 

supply for an order is a finite valued discrete random variable by suitably redefining the matrices 𝑈𝑗 for 1 ≤ j ≤ N 

as presented in Rama Ganesan, Ramshankar and Ramanarayanan for M/M/1 bulk queues [9] and for PH/PH/1 

bulk queues [14].      



III. MODEL (B) MAXIMUM DEMAND SIZE M < MAXIMUM SUPPLY SIZE N 
The dual case of Model (A), namely the case, M < N is treated here. (When M =N both models are applicable 

and one can use any one of them.) The assumption (iv) of Model (A) is changed and all its other assumptions 

are retained.   

 

3.1.Assumption                                                                                                                                                                       

(iv). The maximum demand size M=max1 ≤𝑖 ≤𝑘1
𝑀𝑖  is less than the maximum supply size N=max1 ≤𝑗  ≤𝑘2

𝑁𝑗 .                                                                                                                       

3.2.Analysis                                                                                                                                                                                   
Since this model is dual, the analysis is similar to that of Model (A). The differences are noted below. The state 

space of the chain is as follows presented in a similar way. The state of the system of the Markov chain X(t) is                                                                                                                                                                                                 

X(t) = {(k, i) : for 0 ≤ k ≤ S-s-1 and 1 ≤ i ≤ 𝑘1)} U {(0, k, i, j) ; for S-s ≤ k ≤ N-1; 1 ≤ i ≤ 𝑘1; 1 ≤ j ≤ 𝑘2} U{(n, k, 

i, j): for 0 ≤ k ≤ N-1; 1 ≤ i ≤ 𝑘1; 1 ≤ j ≤ 𝑘2 and n ≥ 1}.                                                         (32)                                                                                                                                                                                                                                                                                   

The chain is in the state (k, i) when the number of stocks in the inventory is S –k for 0 ≤ k ≤ S-s-1 and the arrival 

phase is i for 1 ≤ i ≤ 𝑘1. The chain is in the state (0, k, i, j) when the number of stocks in the inventory is S-k for                         

S-s ≤ k ≤ S without any waiting demand, the arrival phase is i for 1 ≤ i ≤ 𝑘1 and the order-supply phase is j for                       

1 ≤ j ≤  𝑘2. The chain is in the state (0, k, i, j) when the number of waiting demands is k-S for S+1 ≤ k ≤ N-1, 

arrival phase is i for 1 ≤ i ≤ 𝑘1 and the order-supply phase is j for 1 ≤ j ≤  𝑘2.The chain is in the state (n, k, i, j) 

when the number of demands in the queue is n N + k- S, for 0 ≤ k ≤ N-1 and 1 ≤ n < ∞, arrival phase is i for 1 ≤ 

i ≤ 𝑘1 and the order-supply phase is j for 1 ≤ j ≤ 𝑘2. When the number of demands waiting in the system is r ≥ 1, 

then r is identified with the first two co-ordinates (n, k) where n is the quotient and k is the remainder for the 

division of r + S by N; r = N n + k - S for r ≥ 1, 0 ≤ n < ∞ and 0 ≤ k ≤ N-1.The infinitesimal generator 𝑄𝐵 of the 

model has the same block partitioned structure given for Model(A) but the inner matrices are of different types 

and orders with distinct inner settings.                                                                                                                             
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   𝑄𝐵=

 
 
 
 
 
 
 
𝐵′

1 𝐵′
0 0 0 . . . ⋯

𝐵′
2 𝐴′

1 𝐴′
0 0 . . . ⋯

0 𝐴′
2 𝐴′

1 𝐴′
0 0 . . ⋯

0 0 𝐴′
2 𝐴′

1 𝐴′
0 0 . ⋯

0 0 0 𝐴′
2 𝐴′

1 𝐴′
0 0 ⋯

⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ⋱ ⋱ 
 
 
 
 
 
 

                                                                                            (33)            

                                                                                                                                                                                                                                                         

In (33) the states of the matrices are listed lexicographically as 0, 1, 2, 3, ….  For the partition purpose the states 

in the first two sets of (1) are combined. The vector 0 is of type 1 x [𝑘1(𝑆 − 𝑠) + 𝑘1𝑘2(N-S+s)] and  𝑛 is of type                          

1 x(𝑘1𝑘2N).   

0=((0,1),(0,2)…(0,𝑘1)…(S-s-1,1)…(S-s-1, 𝑘1),(0,S-s,1,1),(0,S-s,1,2)…(0,S-s, 𝑘1 , 𝑘2)…(0,S,1,1)…(0,S, 𝑘1 , 𝑘2),                 

(0, S+1,1,1)   … (0,S+1,𝑘1 , 𝑘2)…(0,N-1,1,1)…(0,N-1,𝑘1𝑘2) )  and for n ≥ 1,  𝑛 =  ((n,0,1,1), (n,0,1, 2) … (n, 

0,1,𝑘2),(n,0,2,1),(n,0,2,2)…(n,0,2,𝑘2),(n,0,3,1)…(n,0,𝑘1 , 𝑘2),(n,1,1,1)...(n,1,𝑘1 , 𝑘2),(n,2,1,1)…(n,2, 𝑘1 , 𝑘2)….                 

(n,N-1,1,1),(n,N-1,1,2) …(n,N-1,1,𝑘2),(n,N-1,2,1)…(n,N-1,𝑘1 , 𝑘2)). The matrices 𝐵′1𝑎𝑛𝑑 𝐴′1 have negative 

diagonal elements. They are of orders  𝑘1(𝑆 − 𝑠) + 𝑘1𝑘2(N-S+s) and 𝑘1𝑘2N respectively and their off diagonal 

elements are non- negative. The matrices  𝐴′0  𝑎𝑛𝑑𝐴′2 have nonnegative elements and are of order 𝑘1𝑘2N. The 

matrices 𝐵′0  𝑎𝑛𝑑 𝐵′2   have non-negative elements and are of types [ 𝑘1(𝑆 − 𝑠) + 𝑘1𝑘2(N-S+s)] x (𝑘1𝑘2N) and 

(𝑘1𝑘2N) x [ 𝑘1(𝑆 − 𝑠) + 𝑘1𝑘2(N-S+s)] respectively and they are given below. Using Model (A) for definitions 

of 𝛬𝑗   𝛬′𝑗  𝑎𝑛𝑑𝛬′′𝑗 , 𝑓𝑜𝑟 1 ≤ 𝑗 ≤ 𝑀 , 𝑎𝑛𝑑 𝑈𝑗 , 𝑈′
𝑗
, 𝑉𝑗   𝑓𝑜𝑟 1 ≤ 𝑗 ≤ 𝑁 and letting 𝒬1

′ =T⊕S, the partitioning 

matrices are defined as follows. 

𝐴′0 =

 
 
 
 
 
 
 
 

0 0 ⋯ 0 0 0 ⋯ 0
⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 ⋯ 0 0 0 ⋯ 0
𝛬𝑀 0 ⋯ 0 0 0 ⋯ 0

𝛬𝑀−1 𝛬𝑀 ⋯ 0 0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮
𝛬2 𝛬3 ⋯ 𝛬𝑀 0 0 ⋯ 0

𝛬1 𝛬2 ⋯ 𝛬𝑀−1 𝛬𝑀 0 ⋯ 0 
 
 
 
 
 
 
 

                                                                                          (34) 

 

   𝐴′2 =

 
 
 
 
 
 
 
 
𝑈𝑁 𝑈𝑁−1 𝑈𝑁−2 ⋯ 𝑈3 𝑈2 𝑈1

0 𝑈𝑁 𝑈𝑁−1 ⋯ 𝑈4 𝑈3 𝑈2

0 0 𝑈𝑁 ⋯ 𝑈5 𝑈4 𝑈3

0 0 0 ⋱ 𝑈6 𝑈5 𝑈4

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 ⋯ 𝑈𝑁 𝑈𝑁−1 𝑈𝑁−1

0 0 0 ⋯ 0 𝑈𝑁 𝑈𝑁−1

0 0 0 ⋯ 0 0 𝑈𝑁  
 
 
 
 
 
 
 

    (35)

𝐴′1 =

 
 
 
 
 
 
 
 
 
 
 

𝚀′1 𝛬1 𝛬2 ⋯ 𝛬𝑀 0 0 ⋯ 0 0

𝑈1 𝚀′1 𝛬1 ⋯ 𝛬𝑀−1 𝛬𝑀 0 ⋯ 0 0

𝑈2 𝑈1 𝚀′1 ⋯ 𝛬𝑀−2 𝛬𝑀−1 𝛬𝑀 ⋯ 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝑈𝑁−𝑀−1 𝑈𝑁−𝑀−2 𝑈𝑁−𝑀−3 ⋯ 𝚀′1 𝛬1 𝛬2 ⋯ 𝛬𝑀−1 𝛬𝑀

𝑈𝑁−𝑀 𝑈𝑁−𝑀−1 𝑈𝑁−𝑀−2 ⋯ 𝑈1 𝚀′1 𝛬1 ⋯ 𝛬𝑀−2 𝛬𝑀−1

𝑈𝑁−𝑀+1 𝑈𝑁−𝑀 𝑈𝑁−𝑀−1 ⋯ 𝑈2 𝑈1 𝚀′1 ⋯ 𝛬𝑀−3 𝛬𝑀−2

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝑈𝑁−2 𝑈𝑁−3 𝑈𝑁−4 ⋯ 𝑈𝑁−𝑀−2 𝑈𝑁−𝑀−3 𝑈𝑁−𝑀−2 ⋯ 𝚀′1 𝛬1

𝑈𝑁−1 𝑈𝑁−2 𝑈𝑁−3 ⋯ 𝑈𝑁−𝑀−1 𝑈𝑁−𝑀−2 𝑈𝑁−𝑀−1 ⋯ 𝑈1 𝚀′1  
 
 
 
 
 
 
 
 
 
 

                 (36)
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The matrices 𝐵′0and 𝐵′2are similar to 𝐴′0 and 𝐴′2. The zero matrices appearing in the first S-s row blocks of  

𝐵′0 are of type 𝑘1 x ( 𝑘1𝑘2) and after the S-s th row block the matrices blocks are of order 𝑘1𝑘2. The model 

presented in (37) and (38) considers the case when M < N-S+s and the blocks 𝛬′1 falls inside 𝐵′1.When M ≥ N-

S+s, then from the row block i+1,  𝛬′𝑗 falls outside 𝐵′1 and 𝛬′𝑗   is to be placed in 𝐵′0up to the row block S-s in 

place of 𝛬𝑗  where i=S-s-N+M , without changing  other terms in (34) .The matrix  𝐵′2 is similar to 𝐴′2.In the 

first S-s column blocks 𝑈′𝑗  appears instead of 𝑈𝑗 . 
 

 
The basic generator which is concerned with only the demand and supply is 𝒬𝐵

′′ =  𝐴′0 +  𝐴′1 + 𝐴′2 and is 

presented in (40). This is also block circulant. Using similar arguments given for Model (A) it can be seen that 

its probability vector is  
𝜑⨂𝜙

𝑁
,
𝜑⨂𝜙

𝑁
,
𝜑⨂𝜙

𝑁
, … . . ,

𝜑⨂𝜙

𝑁
  and the stability condition remains the same. Following the 

arguments given for Model (A), one can find the stationary probability vector for Model (B) also in matrix 

geometric form. All performance measures including expectation of demands waiting for supply and its variance 

for Model (B) have the form as in Model (A) except M is replaced by N  

  

IV. NUMERICAL CASES 
 For numerical illustration it is considered that the demand arrival time PH distribution has representation  

T=  
−3 1 1

1 −4 1

2 1 −5

  with 𝛼 = (.3, .3, .4) and the service time PH distribution has representation S=  
−2 1

1 −3
   

with 𝛽 = (.4, .6).  

Six examples are studied. The maximum demand size and maximum supply size are fixed as M=8 and N=8 in 

examples 1 and 2.  Examples 3 and 4 treat the cases M=8, N=7 and examples 5 and 6 treat the cases M=5, N=8.  
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The order of the rate matrix R is 48 since it is the product 𝑘1𝑘2𝑀 and 𝑘1𝑘2𝑁 depending on M >N or N > M. The 

probabilities of bulk demand sizes and bulk supply sizes are presented as follows in the examples.  

In the examples 1 and 3 the bulk demand probabilities of sizes 1, 5 and 8 are (𝑝1,1=.5, 𝑝1,5=.3, 𝑝1,8=.2),                           

(𝑝2,1=.4, 𝑝2,5 =.4, 𝑝2,8=.2), (𝑝3,1=.6, 𝑝3,5=.3, 𝑝3,8 =.1) in demand phases1, 2 and 3 respectively.  

In the examples, 2 and 4 the bulk demand probabilities of sizes 1, 5 and 8 are (𝑝1,1=.5, 𝑝1,5=.4, 𝑝1,8=.1),                       

(𝑝2,1=.4, 𝑝2,5 =.5, 𝑝2,8=.1), (𝑝3,1=.6, 𝑝3,5=.4, 𝑝3,8 =0) in demand phases1, 2 and 3 respectively.  

In example 5, the bulk demand probabilities of sizes 1 and 5 are (𝑝1,1=.5, 𝑝1,5=.5, 𝑝1,8 = 0), (𝑝2,1=.4, 𝑝2,5=.6, 

𝑝2,8 = 0), (𝑝3,1=.6,  𝑝3,5 =4, 𝑝2,8 = 0) in demand phases1, 2 and 3 respectively.   

In the example 6, the bulk demand probabilities of sizes 1, 5 and 8 are (𝑝1,1=.6, 𝑝1,5=.4, 𝑝1,8=0), (𝑝2,1=.5,  

𝑝2,5=.5, 𝑝2,8=0), (𝑝3,1=.7,  𝑝3,5=.3, 𝑝3,8= 0) in demand phases1, 2 and 3 respectively. In all the examples, 𝑝1,𝑗 = 

𝑝2,𝑗 = 𝑝3,𝑗 =0 for j = 2, 3, 4, 6 and 7.  

The bulk supply sizes in examples 1, 2, 5 and 6 are 𝑁𝑖 = 8, for PH phases i=1and 2 respectively. The bulk 

supply sizes in examples 3 and 4 are 𝑁𝑖 = 7, for PH phases i=1and 2 respectively.  

The iteration for the rate matrix R is performed for the same 15 number of times in all the six examples and the 

performance measures are written using the matrix iterated R(15) matrix of order 48.   The difference norms of 

convergence are presented in table 1 along with expected demand lengths and the variances obtained for the 

examples. The inventory stock level probabilities, probability of both stock level and demand queue length are 0 

and various block level probabilities are presented for the examples 1 to 6 in the table 1. 

The performance measures obtained show significant variations depending on M, N and 𝑝𝑖 ,𝑗 . The two levels 

namely the inventory levels and block demand queue levels are both important in the inventory models. Their 

probability values are presented in figures 1 and 2. 

 

 

Table1.Results obtained for six examples 

 
            Figure 1 Probability of Inventory Levels                          Figure2 Probability of Block Levels 

 

V. CONCLUSION 
Two (S, s) inventory systems with bulk demand and bulk supply after the lead time have been treated. 

Identifying the maximum of the demand size and supply size for forming the demand blocks of such maximum 

sizes along with PH phases, the stationary probability vectors are presented when the inter arrival times bulk 

demands and lead time distributions for supply have PH distributions. Matrix geometric solutions have been 

0
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obtained by partitioning the infinitesimal generator by grouping of demands and PH phases together. The basic 

system generators of the bulk systems are block circulant matrices which are explicitly presenting the stability 

condition in standard forms. Numerical results for (S,s) inventory systems by varying bulk sizes are presented 
and discussed. Effects of variation of rates on expected queue length and on probabilities of queue lengths are 

exhibited. The PH distribution includes Exponential, Erlang, Hyper Exponential, and Coxian distributions as 

special cases and the PH distribution is also a best bet and approximation for a general distribution. Further the 

inventory systems with PH distributions are most general in forms and almost equivalent to inventory systems 

with general distributions. The bulk demand models because they have non-zero elements or blocks above the 

super diagonals in infinitesimal generators, they require for studies the decomposition methods with which 

queue length probabilities of the system are written in a recursive manner. Their applications are much limited 

compared to matrix geometric results. From the results obtained here, provided the maximum demand and 

supply sizes are not infinity, it is established that the most general model of the PH inventory system with bulk 

demand and bulk supply admits matrix geometric solution.   Further studies with block circulant basic generator 

system may produce interesting and useful results in inventory theory and finite storage models like dam theory. 
It is also noticed here that once the maximum demand or supply size increases, the order of the rate matrix 

increases proportionally. However the matrix geometric structure is retained and rates of convergence is not 

much affected. Randomly varying environments causing changes in the sizes of the PH phases may produce 

further results if studied with suitable partition techniques. 
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