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Abstract: In this paper a classical rod that is slender and cylindrical in shape, subjected to free longitudinal 

vibrations, is considered. The rod is assumed to be accreting in length as well as in cross-sectional area. The 

rod’s growth is proportional to time. The vibrating rod is configured such that it is fixed at the left end and free 

at the other end. A boundary-value problem is then derived consistent with the dynamics of the rod as well as 

the boundary conditions as per the configurations of the rod. The change of variables is introduced so that the 

derived partial differential equation could be solved with much ease. This derived equation is further simplified 

by introducing small parameters to effect the slow growth of the rod. The equation is then solved using the 

numerical method, the Galerkin- Kantorovich method. It is shown in the solution of this differential equation 

that there is an increase in the amplitude of vibration at any given mode of vibration. It is further shown that the 

amplitude of vibration decreases as we move from one mode of vibration to the next one. 
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I. INTRODUCTION 
 The study of a longitudinally vibrating rod that is accreting in one or several dimensions is but just one 

example of the many arising from the theory of growing structures. This theory of accreting bodies is a new and 

fast developing branch of analytical mechanics [1]. It is a theory based on partial differential equations which 

have since become the most important tools in the modelling and formulation of the fundamental laws of nature 

and in the mathematical analysis of a variety of problems in applied mathematics and engineering science. 

Shatalov et al in [1] has dealt in great details the behavioural patterns of the longitudinally vibrating rod that is 

increasing in length, while subjected to free vibrations. This work was extended further by Shatalov et al in [2] 

when he worked on the accreting rod subjected to damped and forced longitudinal vibrations. In both these 

works some amazing and interesting results were obtained and discussed. 

 In this paper we consider a classical rod that is accreting in both the length and the cross-sectional area. 

The rod, assumed to be of unit length, is subjected to free longitudinal vibrations. The rod is fixed at the left end 

and free at the other end. The problem arising and the dynamics of this vibrating rod are modelled and described 

by the partial differential equation of the wave form. The derived partial differential equation is solved 

numerically using the Galerkin-Kantorovich method [3]. With this method the governing equation is 

transformed into an infinite system of ordinary differential equations [4]. The system of ordinary differential 

equations is conveniently truncated to a system of five ordinary differential equations. The solutions of these 

equations are plotted and then analysed qualitatively for the behavioural patterns of such a vibrating rod. 

It is shown in these graphical solutions that the amplitudes of vibration increase with time at any mode of 

vibration, thus signalling a resonance phenomenon. It is further shown that there is a marked decrease in 

amplitude of vibration as we move from one mode of vibration to the next. 

 

II. FORMULATION OF THE EQUATION OF THE ACCRETING ROD 

The vibrating rod considered here is assumed to be of unit length, and its physical parameters such as the 

modulus of elasticity E and the mass density, 𝜌, are constant. The equation of the longitudinal vibration 

describing the longitudinal displacement 𝑢 = 𝑢(𝑡, 𝑥) is given: 
𝜕

𝜕𝑡
 𝜌 𝐴 𝑡 

𝜕𝑢

𝜕𝑡
 − 𝐸 𝐴 𝑡 

𝜕2𝑢

𝜕𝑥2 = 0.     (1) 

The radius of the cross-sectional area of the rod is assumed variable, a function of time t. The radial growth 

therefore effects the cross-sectional area growth of the rod with time. The radial growth is defined by 

𝑟 𝑡 = 𝑟0 + 𝜀 𝜂 𝑡
𝛼

2       (2) 

where 𝜀 𝑎𝑛𝑑 𝜂 are small parameters to effect the slow rate of growth of the rod, and 𝛼 is a small parameter 

describing the general case of the radial growth. In this paper we only consider  the case for 𝛼 = 1, for 

convenience. With the cross-sectional area of the rod defined by 

𝐴 = 𝐴 𝑡 = 𝜋 𝑟0 + 𝜀 𝜂  𝑡 
2
     (3) 
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equation (1) can now be written as: 
𝜕2𝑢

𝜕𝑡2 +
𝜀 𝜂  

 𝑟0+𝜀 𝜂   𝑡  𝑡

𝜕𝑢

𝜕𝑡
− 𝑐2 𝜕2𝑢

𝜕𝑥2 = 0    (4) 

where c is the speed of the longitudinal propagation of waves. It is further assumed that the rod accretes in 

length at the same time it grows in cross-sectional area. The growth in length, at any time t, is defined by 

𝑥 = 1 +  𝜀 𝑓 𝑡 .      (5) 

With this growth, the boundary conditions are still defined consistent with the configuration of the rod as 

𝑥 = 0 ∶       𝑢 𝑡, 𝑥 = 0 

𝑥 = 1 +  𝜀 𝑓 𝑡 :        𝑢′ 𝑡, 𝑥 = 0.                     (6) 

Introducing a change of variables such that 

𝑡 = 𝜏  𝑎𝑛𝑑  𝑥 = 𝑦.  1 +  𝜀 𝑓 𝑡      (7) 

the boundary conditions in these new variables are 

𝑦 = 0 ∶                       𝑢  𝜏, 𝑦 = 0 

𝑦 = 1 ∶                         
𝜕𝑢  𝜏,𝑦 

𝜕𝑦
= 0.        (8) 

In these new variables equation (4), using the Mathematica
® 

7.0 software, is transformed into the following 

partial differential equation 

𝜕2𝑢 

𝜕𝜏2
+

2𝑦𝜀2𝑓′(𝜏)

 1 + 𝜀 𝜏 2

𝜕𝑢 

𝜕𝑦
−

𝑦𝜀𝑓 ′′ 𝜏 

 1 + 𝜀 𝜏 

𝜕𝑢 

𝜕𝑦
−

𝑐2

 1 + 𝜀 𝜏 2

𝜕2𝑢 

𝜕𝑦2
+ 

𝜀 𝜂  −
𝑦 𝜀  𝑓 ′ 𝜏 

 1+𝜀 𝜏 

𝜕𝑢 

𝜕𝑦
+

𝜕𝑢 

𝜕𝜏
 

 𝑟0 + 𝜀 𝜂   𝜏   𝜏
−

𝑦 𝜀 𝑓 ′ 𝜏 

 1 + 𝜀 𝜏 

𝜕2𝑢 

𝜕𝜏𝜕𝑦
 

𝑦 𝜀 𝑓′(𝜏) −
𝑦  𝜀 𝑓 ′ 𝜏 

 1+𝜀 𝜏 
𝜕2𝑢 

𝜕𝑦2+
𝜕2𝑢 

𝜕𝜏𝜕𝑦
 

 1+𝜀 𝜏 
= 0.    

(9) 

Having assumed that 𝜀 𝑎𝑛𝑑 𝜂 are small parameters, it is conveniently possible to neglect terms of 𝑂 𝜀2  and/or 

𝑂(𝜀 𝜂) in the numerators of terms in this partial differential equation (9). With a further assumption that the rod 

is growing linearly as 

𝑓 𝜏 = 𝜏,     (10) 

equation (9) can be simplified to the form: 
𝜕2𝑢 

𝜕𝜏2 +
𝜀 𝜂  

 𝑟0+𝜀 𝜂    𝜏   𝜏

𝜕𝑢 

𝜕𝜏
−

2 𝑦 𝜀 

 1+𝜀 𝜏 

𝜕2𝑢 

𝜕𝜏𝜕𝑦
−

𝑐2

 1+𝜀 𝜏 2

𝜕2𝑢 

𝜕𝑦2 = 0.   (11) 

The numerical solution of equation (11) is obtained by using the Galerkin-Kantorovich method [3]. In this 

method a sequence of linearly independent functions of the form 

𝑢  𝑦 = 𝑢 = 𝑠𝑖𝑛  
 2𝑘+1 𝜋

2
𝑦 , 𝑓𝑜𝑟 𝑘 = 0,1,2,3, …    12) 

called the basis function, is chosen such that it satisfies the boundary conditions as in equation (8). The 

following linear combination of functions is then chosen as an approximate solution of the partial differential 

equation in (11): 

𝑢  𝜏, 𝑦 =  𝐶𝑚  𝜏  𝑠𝑖𝑛  
 2𝑚−1 𝜋

2
𝑦 ∞

𝑚=1      (13) 

with the unknown coefficients 𝐶𝑚  𝜏  still to be determined in the process of solving this boundary-value 

problem. In solving this problem, equation (13) is substituted into equation (11), the result of which is 

multiplied by equation (12). The result hereof is then integrated over the interval  0 ≤ 𝑦 ≤ 1 . The following 

system of coupled ordinary differential equations is obtained using Mathematica
® 

7.0 software: 

𝑑2𝐶1

𝑑𝜏2
+ 𝑞1

𝑑𝐶1

𝑑𝜏
+ 𝑞2𝐶1 +

𝜀

60 1 + 𝜀𝜏 
 270

𝑑𝐶2

𝑑𝜏
− 250

𝑑𝐶3

𝑑𝜏
+ 245

𝑑𝐶4

𝑑𝜏
− 243

𝑑𝐶5

𝑑𝜏
 = 0 

𝑑2𝐶2

𝑑𝜏2
+ 𝑞1

𝑑𝐶2

𝑑𝜏
+ 9𝑞2𝐶2 +

𝜀

20 1 + 𝜀𝜏 
 −10

𝑑𝐶1

𝑑𝜏
+ 125

𝑑𝐶3

𝑑𝜏
− 98

𝑑𝐶4

𝑑𝜏
+ 90

𝑑𝐶5

𝑑𝜏
 = 0 

𝑑2𝐶3

𝑑𝜏2
+ 𝑞1

𝑑𝐶3

𝑑𝜏
+ 25𝑞2𝐶3 +

𝜀

84 1 + 𝜀𝜏 
 14

𝑑𝐶1

𝑑𝜏
− 189

𝑑𝐶2

𝑑𝜏
+ 686

𝑑𝐶4

𝑑𝜏
− 486

𝑑𝐶5

𝑑𝜏
 = 0 

𝑑2𝐶4

𝑑𝜏2
+ 𝑞1

𝑑𝐶4

𝑑𝜏
+ 49𝑞2𝐶4 +

𝜀

120 1 + 𝜀𝜏 
 −10

𝑑𝐶1

𝑑𝜏
+ 180

𝑑𝐶2

𝑑𝜏
− 500

𝑑𝐶3

𝑑𝜏
+ 1215

𝑑𝐶5

𝑑𝜏
 = 0 

𝑑2𝐶5

𝑑𝜏2
+ 𝑞1

𝑑𝐶5

𝑑𝜏
+ 81𝑞2𝐶5 +

𝜀

28 1 + 𝜀𝜏 
 14

𝑑𝐶1

𝑑𝜏
− 140

𝑑𝐶2

𝑑𝜏
+ 500

𝑑𝐶3

𝑑𝜏
− 1715

𝑑𝐶4

𝑑𝜏
 = 0 

(14) 

where 

𝑞1 = 𝜀  
−1

 1+𝜀𝜏 
+

𝜂

 𝑟0+𝜀 𝜂   𝜏   𝜏
  𝑎𝑛𝑑 𝑞2 =

𝑐2𝜋2

4 1+𝜀𝜏 2              (15) 
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III. NUMERICAL ANALYSIS 

The system of equations (14) is numerically solved using the Mathematica
® 

7.0 software. The following values 

were assumed for the constants in the derived differential equation: 𝑐 = 1;  𝜀 = 0.05; 𝑟0 = 0.1 𝑎𝑛𝑑 𝜂 = 0.5.The 

solutions to these differential equations are given by the corresponding graphs below: 

 
Fig. 1 Resonance at First Mode 

 

 
Fig. 2 Resonance at Second Mode 

 

 
Fig. 3 Resonance at Third Mode 
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Fig. 4 Resonance at Fourth Mode 

 

 
Fig. 5 Resonance at Fifth Mode 

 

IV. DISCUSSION AND CONCLUSION 
 A longitudinally vibrating rod that is accreting in both the length and the cross-sectional area was 

considered. A partial differential equation modelling the dynamics of such a rod was derived. The differential 

equation was transformed into an infinite system of ordinary differential equations by the use of the Galerkin-

Kantorovich method. This system of equations was conveniently truncated to a system of five equations. The 

solutions to this system of equations was obtained numerically using the Mathematica
® 

7.0 software. 

The solutions exhibited a trend of increasing amplitude of vibration at any given mode of vibration. In this trend 

of exhibition it could also be seen that there is a decrease in the frequency of vibration. This behavioural pattern 

clearly indicating the resonance phenomenon. It could also be noticed from the graphical solutions that this 

pattern is also accompanied by an increase in the wavelength. It is again clearly noticeable that as we move from 

one mode of vibration to the next, there is a marked decrease in the amplitude of vibration. 

It is the intention of the authors of this paper to extend this work into the next project, whereby for the similar 

longitudinally vibrating rod, we will use the Rayleigh-Love model, which is more accurate than the Classical 

model. The authors of this paper also intend investigating (the work that is already in progress) the behavioural 

patterns and dynamics of the similar rod when subjected to damped and forced vibrations, for both the Classical 

model and the Rayleigh-Love model. 
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