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Abstract: In this paper we attempt to show the limit theorems for fuzzy Markov chains. Using stationary
distribution we establish conditions for the existence of a Fuzzy Markov chain.
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l. INTRODUCTION

Markov chains are one of the most important tools to model random phenomena evolving in time. A
weak point of the most widely used model is that transition probabilities have to be constant and precisely
known. An attempt to relax this restriction was proposed By Skulj[8] where the assumption of precisely known
initial and transition probabilities is relaxed so that probability intervals are used instead of precise probabilities.
Their model is based on the assumption that constant classical probabilities rule the process but only
approximations are known instead of precise values.

The theory of Markov systems provide an effective and powerful tool for describing State of the

system. Since numerous applied probability models can be adopted in their framework. Roughly speaking the
Markov property requires that knowledge of the current state of the system provides all the information relevant
to predicting its future. There have been a few other papers published on fuzzy Markov Chains[2,3,5,6].
The organization of the paper is as detailed below Section 2 is devoted to fuzzy functions where Continuous we
have defined the fuzzy functions. Section 3 is addressing the notions of limit theorems on Fuzzy Markov
chains. In Section 4 we are discussing about stationary distribution of a fuzzy Markov chain. We establish the
conditions for the existence of a Markov chain.

1. FUZZY FUNCTIONS
Set valued functions and their calculus were found useful in of the problem in economics [1] and control theory
[4]. From a probabilistic point of view random sets have a rather well developed theory [7].
M is a set, a fuzzy subset of M is a function u:M—[0,1]. The set of all fuzzy subsets of M, F(M) is a completely
distribution lattice which includes the ordinary subsets of M. For any fuzzy subset u:M—[0,1] denote by
L (u)={meM;u(m)>a} ae[0,1] is the a-level set of u.
If M is a vector space a fuzzy subset ue F(M) is called a fuzzy Convex subset if
u(Am;+(1-A)my)> min[u(m,),u(m,)] for every m; myeM, Ae[0,1].
If X is a reflexive Banach space, in order to extend the Hausdorff distance we shall consider the subset Fy(X) of
F(X) containing all fuzzy sets u:X—[0,1] with properties
i) U isupper semi continuous.
i) uis fuzzy convex.
iii) L,(u) is compact for every a0.
If u,ve Fo(X) define the distance between u and v by
d(u,v) = ;9dy(Le (W), L, (v))Where dy denotes the Hausdorff distance.
Let X be a normed space, and u be an open subset of X. Lety be a reflexive Banach space. By a fuzzy function
we mean a function F:u— Fy(y) such a function associates to each point xeU a fuzzy subset F(x) of y clearly
such fuzzy functions generalizes set valued function u—Q(y).

1. LIMIT THEOREMS
LEMMA: 3.1
If the fuzzy states Fs is recurrent and Fs—Fr, then Fr is recurrent and frgr,=frrs=1.
Proof:
Assume Fs#Fr for otherwise there is nothing to prove.

Since fr>0 there exists no such that Py, ™ > 0 and
Prgry ™ = 0 for 0<m<n,. (3.)
Since Prgp, ™ > 0 we can find states FyiFp......Fin. Such that
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Prgpi1 o o+ Prsping—1 > 0 and none of the states Fj; Fis ... ... Fin,—1 €qual Fs or Fr, for if one of them did equal Fs
or Fr it would be possible to go from Fs to Fr with positive probability in fewer then ng steps in contradiction to
(3.1)

Suppose frrs <1. Then a Markov chain staring from | has positive probability 1-frr of never hitting Fs and
that implies it has positive probabilityPg g, - ... Prrng—17 (1 — frrrs) OF Visiting the states F.i Fy; ... ... Frng—1
Fr successively in the first ny steps and never return to Fs after n, steps. But if this happens then the fuzzy
Markov chain never return to Fs at any time n>1 and that contradict the fact that Fs is recurrent. So frr=1.
Since frr=1 there exists n, such thatPy,z; ™ > 0.

Now
PFrFr (n1#n+n2) = PFrFs (nl)PFst (n)PFsFr (m0)

0 0
n nitn+n
ZPFHW()ZZPFrFr(1 2)
n=1 n=1
o0

P PFTFS (nl)PFsFr (r0) Z PFSFS ™ = 0

n=1

and
hence

Hence Fr is recurrent.
Since Fr is recurrent and Fr—Fs (frrs =1) from the first part of the proof it follows that frge=1.

THEOREM: 3.1

Pryps ™ = Z firrs ™ Prgps @™ for allm = 1,2, ...n

m=1
Proof:
PFTFS ™) = U a(PFrFs (n))a
a€(0,1]

= a(P[Xn = FS|X0 = Fr])a

a€(0,1]
= aP[Xn = (Fs)alxo = (Fr)a]

a€(0,1]
= @Pl = B = (BdeXos # (B oo Xo % (B)alXg = (B)]

m=1a€(0,1]

We take X,, = (F,), = A
Xm = (Fs)aXm—l * (Fs)a ------ Xl :f (Fs)a = Bm and XO = (Fr)a =c

Pevgs ™ = ) PLAB, |c]
m=1

Where By, are disjointand Uy, _; B, > A
Hence
n
Py ) = P[AB,]P[Bnc]
. P[cIP[AB,,c]
m=

= > PIAIBcIP[B, ]
m=1

= Pl = E)elX = B)Xor # (B o Xs # (B Xy = (B)]
m=1a€(0,1]
U aP[Xn = (Fs)aXm = (Fs)aXm—l * (Fs)a ------ Xl * (Fs)a|X0 = (E”)a]
a€(0,1]

0

- Z U aP[Xy = (F)alXm = (Fal frres ™

m=1a€(0,1]
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I
NgE

(n—-m) (m)
U a PFsFr fFTFS
€(0,1]

_ (m)
Z PFsFr & m)fF‘rFs

m=1

3
[
kA
5

THEOREM: 3.2 (LIMIT THEOREM)
Let Fs be a fixed state in a fuzzy Markov chain and Fr be an arbitrary state.
Then as n—co.

(i) If Fs is transient then Pgz, ™ —0 as n—w.
(ii) If Fs is null recurrent then Prgp, ™ —0
(iii) If Fs is positive recurrent and the Markov chain is aperiodic then Prgp, (”)a”flﬂ
Fs
Proof:
By theorem 3.1
PFTFS ™) = U a(PFrFs (n))a
a€(0,1]
n
= z U a (fFrFs (m))a(PFst (n—m))a
m=1a€(0,1]
n’ n
= U o (fFrFs (m))a(PFst (n—m))a + z U a (fFrFs (m))a(PFst (n—m))a (32)
m=1a€e(0,1] m=n'+1a€(0,1]

Where n<n’<n; (n>1)
For €> 0 take n’ and n so large that
n

U G0 <e (33)
m=n"+1 a€(0,1]
When Fs is transient or null recurrent take n so large that

a (Prrps ™™™), <€ forall0sm <n' <n

a€e(0,1]
By (3.2) and(3.3) we have

n

0< U 4 (PFrFs (n—m))a - z U a (fFrFs (m))a(PFst (n—m))a

ae(0,1] m=n'+1 a€(0,1]
n

= Z U a(fFrFs(m))a(PFst(n_m))a

m=n'+1 a€(0,1]
n

< alfirn ™), <6 &2

m=n'+1

0<lim U a(PFrFs(n))a

n—-oo

a€(0,1]
n

seve Y | eGan™  from G
m=n'+1 a€(0,1]
e+ e
=2eforall e>0
Therefore Ugeo,1) @ (Prrrs )y, 0 as n—wo
(iif)Give that, the fuzzy state Fs is positive recurrent and the fuzzy Markov chain is aperiodic.
Take n—o and n’ fixed.

Then
n
0<lim a (Prrps ™), — lim & Forps ™) 0 (Props ™)
T now FrFs @ e FrFs a\FFsFs a
a€(0,1] m=1a€(0,1]
<€ By (3.4)
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n'

) 1
= lim U o (PFrFs (n))a - Z U a (fFrFs (n))a —

" e m=1ae0,1] Hrs
n'
. 1
= rlll_rllc o (PFrFs (n))a - ‘u_ Z U a (fFrFs (n))a
«e(0,] Fs =1 ae(01]
<e
Take n'—w
n'

0 < lim a (P (n)) - i a (frrrs )

= FrFs a FrFs Ja

n-o UFs

ae(0,1] m=1a€e(0,1]

Uae(O,l] a (fFrFs )a
UFs

a (PFrFs (n))a -

a€(0,1]

(ie) (PFrFs (n))a - (fFTFS )Ol

HUFs

V. STATIONARY DISTRIBUTION
DEFINITION: 4.1
A probability distribution is {Veg} with Vg = 0 X Vs = 1 is called a stationary distribution for a Markov
chain with transition matrix Pgg if

VFS = Z VFr PFrFs
Fr

= ZVFr U a (Pprrs a

= Z Z Vek U & (Prpr )a (Prrrs )a

Fr Fk ae(0,1]

=) | @ rir e rrri e

Fk Fr a€(0,1]

= Z Vi U & (Pers @) e

=Xk Ve Ugeco.1) @ (Prkrs ™y,

= Z Vi Prirs ™
X

Suppose a stationary distribution

T = (T4, Ty, e one ) exists. Also suppose

lim U & (Povps ™)y =15y = 0 for all Fr > 1.

" a€(0,1]

Then m is called the steady state distribution of the Markov chain with Transition matrix (Pggs).

THEOREM 4.1
Let a Fuzzy Markov chain is irreducible, aperiodic and positive. Then
(I) limn—mc PFrFs ) = TlFg
(”) Tps > 0 ZFs Tps = 1
(iii) Tps = Xrses ek Prirs
More over (ii) and (iii) determine {ms , F's € s} Completely.
Proof:
(1 The Proof of (i) follows from theorem 2.2 and the lemma.
(i)  mp = #L >0
Fs

Suppose Sy is a subset of the state space S with exactly M states.
Now,

Z PFTFS )
FseSy
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= Z U a(PFrFs(n))a

FseSy a€(0,1]

= Z U & (Peris ™)e

FseS a€(0,1]
=1
Let n—oo then

Z T[FSSl

FseSy

Then taking limit M—o0

Z T[FSSl

FseSy

Then taking limit

(4.1)

a (PFrFk (n))a (PFsz)zx

FseSy a€(0,1]

< Z U & Perrre ™) Prirs

FseSy a€(0,1]

=Uae(o,1] @ (Prrrs
Let n—oo then
lim a (PFrFs

n—w
a€(0,1]

= )

FseSy a€(0,1]
< (5N
Then letting M—o0

(n+1))
a

(n+1))
a
a (PFsz )a

we get

Trk U & (Prirs )a

FseSy a€e(0,1]
< Mg

(4.2)

Z Tps U a (PFsFr (2))11

Fs€S a€(0,1]

= Z Tps U a(Prsei)a (Prrer )a

Fs€S a€(0,1]

a€(0,1] FseS

a€(0,1] FseS <FSES

IA

a€(0,1] FseS

Z ek Prirr

FseS
< g,
By induction

Trs U & (Prgpy ™)y < py foralln>1;Fs €S

FseS a€(0,1]
Now

T[Fsa(PFst )a (PFkFr )a

Z T[Fsa(PFst )a) (PFkFr )a

T[ka(PFkFr )a

Tp = Tpk Z Prers ™

=

Z PFsz )

jes

International organization of Scientific Research

29|Page



Limit Theorems On Fuzzy Markov Chains

ary (PFsz (n))a

Tp =
FkeS FkeS FseS a€(0,1]
= z T U a (PFsz (n))zx
FkeS FseS a€(0,1]
By Fubinis theorem.
Suppose

TCry U a Prips ™ < gy

FkeS a€(0,1]
Then

Z Z Ty U a(PFsz(n))a < Z Tlps and

FkeS FseS ae(0,1] FseS

S < S

FkeS FseS o o
Which is a Contradiction.

Thus

Z TCry U @ (Prips ™) = Z i Pryers ™
Fk€ES a€e(0,1] FkeES

=np forn=>1 (4.3)

In particular forn = 1 Y pses ps Prgpr = Mgy
This Proves (iii).

Moreover by Lebesgue Dominated convergence theorem and part(i) letting n—oo in (4.3)

Z MpsTpr = Tpy

X FseS
Now 1. > 0 that gives

s =1

FseS

To show that the solution given by (ii) and (iii) is unique. Suppose that {xg,, FreS} is another such solution

satisfying xg>0

mps =1

FseS
and

Xpr = Z Xps Prspr

FseS
U a (PFsFr )a

FseS ae(0,1]

= XFs

= Z Z U & Xy, (PFsz )a (PFSFT )a
FseS \FkeS ae(0,1]

= Z P U a (Prirs o (Prser )a

FseS FkeS a€(0,1]

2
Z xpx Prirr

= Z gy Prypr

Fse€S

(By Fubinis theorem)

By the Lebesgue Dominated Convergence theorem, Letting n—oo

Xpp = Z Xps Mgy = gy Z Xps = Ty for all Fr € S

FkeS FkeS

Thus the solution {m; i € S} is unique.
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THEOREM: 4.2

A Fuzzy Markov chain remains Markov if time is reversed.
P(Xn:Frn|Xn+1:Fm+1 .............. Xn+k:Frn+k)

= P(Xn=Fn|Xn+1=Fr+1)

Proof:

P(Xy_1 =Fry_1|X, = Fry, X1 = Frygq e onl)

= U aPXp1 = (Fry_1)olXn = Fr)a Xnt1 = (Frug1)g e vee)
a€e(0,1]
_ Uae(O,l] aP(Xn—l =Fry_1, Xy = Fry, Xny1 = Fryyq e )

Ugeo1 @ P(Xy = F1y, Xnp1 = Frpgq oen )
Uae(o 1 aP(Xn+1 = (Frn+1)avXn+2 = (F;rn+2)a |Xn Z_(Frn)oan—l = (Frn—l)a)
’ 'UaE(O,l]aP(Xn - (Frn)a'Xn—l - (Frn—l)a)
UaE(O,I]aP(Xn+1 = (Frn+1)a:Xn+2 = (Frn+2)a |Xn = (Frn)a)
'UaE(O,l] aP(Xn = (Frn)a)

= U aP(X,—1 = (Fry_1)o| Xy, = (F1)g)

a€e(0,1]
= P(Xn—l = (Frn—l)lxn = (Frn))
THEOREM: 4.3

In a Fuzzy Markov chain if the present is specified then the past is independent of the future in the following
sense.
P(Xn = Frn XFk = Frklxm = Frm) = P(Xn = (Fr)anm = (Fr)m)P(Xk = (Fr)klxm = (Fr)m)
Proof:
By the Chain rule of conditional probabilities
P(Xn = FrnXFk =Frk|Xm = Frm)
_ UaE(O,l] aP (X, = (Fry)e Xk = (FP)i)aXm = (F)m)a)
UaE(O,l] aP(Xm = ((Fr)m)a)
— UaE(O,l] aP(Xn = (Frn)a |Xk = ((Fr)k)axm = ((Fr)m)a)
Uae(O,l]aP(Xm = (Frn)q)
U aP(Xn = (Frn)alxm = (Frm)a)P(Xm = (Frm)al Xk = (Frk)a)
@e] P(Xy = (Fri)a)
UaE(O,l]aP(Xm = (Frm)a)
By Markov Property
aP(Xn = (Frn)ale = (Frm)a)P(Xm = (Frm)al Xy = (Frk)a)

Uee,1]

UaE(O,l]aP(Xm = (Frm)a)
= U aP(Xn = (Frn)alxm = (Frm)a)P(Xk = (Frk)alxm = (Frm)a)

a€(0,1]
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