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Abstract:  In this paper we attempt to show the limit theorems for fuzzy Markov chains.  Using stationary 

distribution we establish conditions for the existence of a Fuzzy Markov chain. 
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I. INTRODUCTION 
 Markov chains are one of the most important tools to model random phenomena evolving in time. A 

weak point of the most widely used model is that transition probabilities have to be constant and precisely 

known. An attempt to relax this restriction was proposed By Skulj[8] where the assumption of precisely known 

initial and transition probabilities is relaxed so that probability intervals are used instead of precise probabilities.  

Their model is based on the assumption that constant classical probabilities rule the process but only 

approximations are known instead of precise values.  

 The theory of Markov systems provide an effective and powerful tool for describing State of the 

system.  Since numerous applied probability models can be adopted in their framework.  Roughly speaking the 

Markov property requires that knowledge of the current state of the system provides all the information relevant 

to predicting its future.  There have been a few other papers published on fuzzy Markov Chains[2,3,5,6]. 

The organization of the paper is as detailed below Section 2 is devoted to fuzzy functions where Continuous we 

have defined the fuzzy functions.  Section 3 is addressing the notions of limit theorems on Fuzzy Markov 

chains.  In Section 4 we are discussing about stationary distribution of a fuzzy Markov chain.  We establish the 

conditions for the existence of a Markov chain. 

 

II. FUZZY FUNCTIONS 
Set valued functions and their calculus were found useful in of the problem in economics [1] and control theory 

[4].  From a probabilistic point of view random sets have a rather well developed theory [7]. 

M is a set, a fuzzy subset of M is a function u:M[0,1].  The set of all fuzzy subsets of M, F(M) is a completely 

distribution lattice which includes the ordinary subsets of M.  For any fuzzy subset u:M[0,1] denote by 

Lα(u)={mM;u(m)≥α} α[0,1] is the α-level set of u. 

If M is a vector space a fuzzy subset u F(M) is called a fuzzy Convex subset if 

u(λm1+(1-λ)m2)≥ min[u(m1),u(m2)] for every m1, m2M, λ[0,1]. 

If X is a reflexive Banach space, in order to extend the Hausdorff distance we shall consider the subset F0(X) of 

F(X) containing all fuzzy sets u:X[0,1] with properties 

i) u is upper semi continuous. 

ii) u is fuzzy convex. 

iii) Lα(u) is compact for every α≠0. 

If u,v F0(X) define the distance between u and v by 

𝑑 𝑢, 𝑣 = 𝑑𝐻(𝐿𝛼 𝑢 , 𝐿𝛼 𝑣 )𝛼>0
𝑠𝑢𝑝

Where dH denotes the Hausdorff distance. 

Let X be a normed space, and u be an open subset of X.  Let y be a reflexive Banach space.  By a fuzzy function 

we mean a function F:u F0(y) such a function associates to each point xU a fuzzy subset F(x) of y clearly 

such fuzzy functions generalizes set valued function uQ(y). 

 

III. LIMIT THEOREMS 
LEMMA: 3.1 

If the fuzzy states Fs is recurrent and FsFr, then Fr is recurrent and fFsFr=fFrFs=1. 

Proof: 

Assume Fs≠Fr for otherwise there is nothing to prove. 

Since fFsFr>0 there exists no such that 𝑃𝐹𝑠𝐹𝑟
(𝑛0)

 
> 0 and 

 𝑃𝐹𝑠𝐹𝑟
(𝑚 ) = 0 for 0<m<n0.                                  (3.1) 

Since 𝑃𝐹𝑠𝐹𝑟
(𝑛0) > 0 we can find states F1iFi2……Fin0-1 such that  
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𝑃𝐹𝑠𝐹𝑖1 …… .𝑃𝐹𝑠𝐹𝑖 𝑛0−1 > 0 and none of the states 𝐹𝑖1𝐹𝑖2 ……𝐹𝑖𝑛0−1 equal Fs or Fr, for if one of them did equal Fs 

or Fr it would be possible to go from Fs to Fr with positive probability in fewer then n0 steps in contradiction to 

(3.1) 

     Suppose fFrFs <1. Then a Markov chain staring from I has positive probability 1-fFrFs of never hitting Fs and 

that implies it has positive probability𝑃𝐹𝑟𝐹𝑠1
…… .𝑃𝐹𝑟𝑛0−1𝐹𝑟 (1 − 𝑓𝐹𝑟𝐹𝑠 ) of visiting the states 𝐹𝑟1𝐹𝑟2 ……𝐹𝑟𝑛0−1, 

Fr successively in the first n0 steps and never return to Fs after  n0 steps.  But if this happens then the fuzzy 

Markov chain never return to Fs at any time n>1 and that contradict the fact that Fs is recurrent.  So fFrFs=1.  

Since fFrFs=1 there exists n1 such that𝑃𝐹𝑟𝐹𝑠
(𝑛1) > 0. 

Now 

𝑃𝐹𝑟𝐹𝑟
(𝑛1+𝑛+𝑛2) ≥ 𝑃𝐹𝑟𝐹𝑠

(𝑛1)𝑃𝐹𝑠𝐹𝑠
(𝑛)𝑃𝐹𝑠𝐹𝑟

(𝑛0) 

and  

hence 

 𝑃𝐹𝑟𝐹𝑟
(𝑛) ≥

∞

𝑛=1

 𝑃𝐹𝑟𝐹𝑟
(𝑛1+𝑛+𝑛2)

∞

𝑛=1

 

≥ 𝑃𝐹𝑟𝐹𝑠
(𝑛1)𝑃𝐹𝑠𝐹𝑟

(𝑛0)  𝑃𝐹𝑠𝐹𝑠
(𝑛)

∞

𝑛=1

= ∞ 

Hence Fr is recurrent. 

Since Fr is recurrent and FrFs (fFrFs =1) from the first part of the proof it follows that fFsFr=1. 

 

THEOREM: 3.1 

𝑃𝐹𝑟𝐹𝑠
(𝑛) =  𝑓𝐹𝑟𝐹𝑠

(𝑚)𝑃𝐹𝑠𝐹𝑠
(𝑛−𝑚 )

∞

𝑚=1

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 = 1,2,… .𝑛 

Proof: 

𝑃𝐹𝑟𝐹𝑠
(𝑛) =  𝛼(𝑃𝐹𝑟𝐹𝑠

 𝑛 )𝛼
𝛼∈(0,1]

 

=  𝛼(𝑃[𝑋𝑛 = 𝐹𝑠|𝑋0 = 𝐹𝑟])𝛼
𝛼∈(0,1]

 

=  𝛼𝑃[𝑋𝑛 = (𝐹𝑠)𝛼 |𝑋0 = (𝐹𝑟)𝛼 ]

𝛼∈(0,1]

 

=   𝛼𝑃[𝑋𝑛 = (𝐹𝑠)𝛼𝑋𝑚 = (𝐹𝑠)𝛼𝑋𝑚−1 ≠ (𝐹𝑠)𝛼 ……𝑋1 ≠ (𝐹𝑠)𝛼 |𝑋0 = (𝐹𝑟)𝛼 ]

𝛼∈(0,1]

∞

𝑚=1

 

We take 𝑋𝑚 = (𝐹𝑠)𝛼 = 𝐴 

𝑋𝑚 = (𝐹𝑠)𝛼𝑋𝑚−1 ≠ (𝐹𝑠)𝛼 ……𝑋1 ≠ (𝐹𝑠)𝛼 = 𝐵𝑚  𝑎𝑛𝑑 𝑋0 = (𝐹𝑟)𝛼 = 𝑐 

𝑃𝐹𝑟𝐹𝑠
(𝑛) =  𝑃[𝐴𝐵𝑚 |𝑐]

𝑛

𝑚=1

 

Where Bm are disjoint and  𝐵𝑛
𝑚−1 𝑚

⊃ 𝐴 

Hence 

𝑃𝐹𝑟𝐹𝑠
(𝑛) =  

𝑃[𝐴𝐵𝑚 ]𝑃[𝐵𝑚𝑐]

𝑃[𝑐]𝑃[𝐴𝐵𝑚𝑐]

𝑛

𝑚=1

 

=  𝑃[𝐴|𝐵𝑚𝑐]𝑃[𝐵𝑚 |𝑐]

𝑛

𝑚=1

 

=   𝛼𝑃[𝑋𝑛 = (𝐹𝑠)𝛼 |𝑋𝑚 = (𝐹𝑠)𝛼𝑋𝑚−1 ≠ (𝐹𝑠)𝛼 ……𝑋1 ≠ (𝐹𝑠)𝛼 ,𝑋0 = (𝐹𝑟)𝛼 ]

𝛼∈(0,1]

∞

𝑚=1

 

 𝛼𝑃[𝑋𝑛 = (𝐹𝑠)𝛼𝑋𝑚 = (𝐹𝑠)𝛼𝑋𝑚−1 ≠ (𝐹𝑠)𝛼 ……𝑋1 ≠ (𝐹𝑠)𝛼 |𝑋0 = (𝐹𝑟)𝛼 ]

𝛼∈(0,1]

 

=   𝛼𝑃[𝑋𝑛 = (𝐹𝑠)𝛼 |𝑋𝑚 = (𝐹𝑠)𝛼 ]

𝛼∈(0,1]

∞

𝑚=1

𝑓𝐹𝑟𝐹𝑠
(𝑚)
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=   𝛼

𝛼∈(0,1]

𝑃𝐹𝑠𝐹𝑟
(𝑛−𝑚 )

𝑓𝐹𝑟𝐹𝑠

(𝑚 )∞

𝑚=1

 

 =  𝑃𝐹𝑠𝐹𝑟
(𝑛−𝑚)𝑓𝐹𝑟𝐹𝑠

(𝑚)
∞

𝑚=1

 

  

THEOREM: 3.2 (LIMIT THEOREM) 

Let Fs be a fixed state in a fuzzy Markov chain and Fr be an arbitrary state. 

Then as n∞. 

(i)  If Fs is transient then 𝑃𝐹𝑠𝐹𝑟
(𝑛)0 as n∞.  

(ii) If Fs is null recurrent then 𝑃𝐹𝑠𝐹𝑟
(𝑛)0 

(iii) If Fs is positive recurrent and the Markov chain is aperiodic then 𝑃𝐹𝑠𝐹𝑟
(𝑛)

𝑓𝐹𝑠𝐹𝑟
 

μFs

 

Proof: 

By theorem 3.1 

𝑃𝐹𝑟𝐹𝑠
(𝑛) =  𝛼(𝑃𝐹𝑟𝐹𝑠

 𝑛 )𝛼
𝛼∈(0,1]

 

                            =   𝛼

𝛼∈(0,1]

(𝑓𝐹𝑟𝐹𝑠
(𝑚))𝛼(𝑃𝐹𝑠𝐹𝑠

 𝑛−𝑚 )𝛼

𝑛

𝑚=1

 

  

=   𝛼

𝛼∈(0,1]

(𝑓𝐹𝑟𝐹𝑠
(𝑚 ))𝛼(𝑃𝐹𝑠𝐹𝑠

 𝑛−𝑚 )𝛼

𝑛 ′

𝑚=1

+   𝛼

𝛼∈ 0,1 

(𝑓𝐹𝑟𝐹𝑠
 𝑚 )𝛼(𝑃𝐹𝑠𝐹𝑠

 𝑛−𝑚 )𝛼     

𝑛

𝑚=𝑛 ′+1

            (3.2) 

                                                  Where n<n’<n; (n≥1) 

For ∈> 0 take n’ and n so large that 

  𝛼

𝛼∈ 0,1 

(𝑓𝐹𝑟𝐹𝑠
 𝑚 )𝛼  <∈                             (3.3)  

𝑛

𝑚=𝑛 ′+1

 

When Fs is transient or null recurrent take n so large that 

 𝛼

𝛼∈ 0,1 

(𝑃𝐹𝑟𝐹𝑠
 𝑛−𝑚 )𝛼  <∈ 𝑓𝑜𝑟 𝑎𝑙𝑙 0𝑚 < 𝑛′ < 𝑛  

By (3.2) and(3.3) we have 

0  𝛼

𝛼∈ 0,1 

(𝑃𝐹𝑟𝐹𝑠
 𝑛−𝑚 )𝛼 −   𝛼

𝛼∈ 0,1 

(𝑓𝐹𝑟𝐹𝑠
 𝑚 )𝛼(𝑃𝐹𝑠𝐹𝑠

 𝑛−𝑚 )𝛼     

𝑛

𝑚=𝑛 ′+1

 

=   𝛼

𝛼∈ 0,1 

(𝑓𝐹𝑟𝐹𝑠
 𝑚 )𝛼(𝑃𝐹𝑠𝐹𝑠

 𝑛−𝑚 )𝛼     

𝑛

𝑚=𝑛 ′+1

 

               𝛼(𝑓𝐹𝑟𝐹𝑠
 𝑚 )𝛼 <∈     

𝑛

𝑚=𝑛 ′+1

                                 (3.4) 

0 lim
𝑛→∞

 𝛼

𝛼∈ 0,1 

(𝑃𝐹𝑟𝐹𝑠
 𝑛 )𝛼  

  +    𝛼

𝛼∈ 0,1 

(𝑓𝐹𝑟𝐹𝑠
 𝑚 )𝛼     

𝑛

𝑚=𝑛 ′+1

       𝑓𝑟𝑜𝑚      (3.4) 

  +  

= 2 𝑓𝑜𝑟 𝑎𝑙𝑙  > 0 

Therefore  𝛼𝛼∈ 0,1 (𝑃𝐹𝑟𝐹𝑠
 𝑛 )𝛼0 𝑎𝑠 𝑛∞ 

(iii)Give that, the fuzzy state Fs is positive recurrent and the fuzzy Markov chain is aperiodic. 

     Take 𝑛∞ and n’ fixed. 

Then 

0 lim
𝑛→∞

 𝛼

𝛼∈ 0,1 

(𝑃𝐹𝑟𝐹𝑠
 𝑛 )𝛼 − lim

𝑛→∞
  𝛼

𝛼∈(0,1]

(𝑓𝐹𝑟𝐹𝑠
(𝑛))𝛼(𝑃𝐹𝑠𝐹𝑠

 𝑛−𝑚 )𝛼

𝑛 ′

𝑚=1

 

<∈ 𝐵𝑦 (3.4) 
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= lim
𝑛→∞

 𝛼

𝛼∈ 0,1 

(𝑃𝐹𝑟𝐹𝑠
 𝑛 )𝛼 −    𝛼

𝛼∈(0,1]

(𝑓𝐹𝑟𝐹𝑠
(𝑛))𝛼

1

𝜇𝐹𝑠

𝑛 ′

𝑚=1

 

= lim
𝑛→∞

 𝛼

𝛼∈ 0,1 

(𝑃𝐹𝑟𝐹𝑠
 𝑛 )𝛼 −

1

𝜇𝐹𝑠
   𝛼

𝛼∈(0,1]

(𝑓𝐹𝑟𝐹𝑠
(𝑛))𝛼

𝑛 ′

𝑚=1

 

<∈ 

Take 𝑛′∞ 

0 ≤ lim
𝑛→∞

 𝛼

𝛼∈ 0,1 

(𝑃𝐹𝑟𝐹𝑠
 𝑛 )𝛼 −

1

𝜇𝐹𝑠
   𝛼

𝛼∈(0,1]

(𝑓𝐹𝑟𝐹𝑠
 )𝛼

𝑛 ′

𝑚=1

 

  𝛼

𝛼∈ 0,1 

(𝑃𝐹𝑟𝐹𝑠
 𝑛 )𝛼 →

 𝛼𝛼∈(0,1] (𝑓𝐹𝑟𝐹𝑠
 )𝛼

𝜇𝐹𝑠
   

 𝑖𝑒      (𝑃𝐹𝑟𝐹𝑠
 𝑛 

)𝛼 →
(𝑓𝐹𝑟𝐹𝑠

 )𝛼
𝜇𝐹𝑠

   

 

IV. STATIONARY DISTRIBUTION 
DEFINITION: 4.1 

A probability distribution is {VFs} with 𝑉𝐹𝑠 ≥ 0   𝑉𝐹𝑠𝐹𝑠 = 1 is called a stationary distribution for a Markov 

chain with transition matrix PFrFs if 

𝑉𝐹𝑠 =   𝑉𝐹𝑟
𝐹𝑟

𝑃𝐹𝑟𝐹𝑠  

=   𝑉𝐹𝑟
𝐹𝑟

 𝛼

𝛼∈ 0,1 

(𝑃𝐹𝑟𝐹𝑠
 )𝛼  

=     𝑉𝐹𝑘
𝐹𝑘𝐹𝑟

 𝛼

𝛼∈ 0,1 

(𝑃𝐹𝑘𝐹𝑟
 )𝛼(𝑃𝐹𝑟𝐹𝑠

 )𝛼  

=   𝑉𝐹𝑘
𝐹𝑘

  

𝐹𝑟

 𝛼

𝛼∈ 0,1 

(𝑃𝐹𝑘𝐹𝑟
 )𝛼(𝑃𝐹𝑟𝐹𝑠

 )𝛼  

=  𝑉𝐹𝑘
𝐹𝑘

 𝛼

𝛼∈ 0,1 

(𝑃𝐹𝑘𝐹𝑠
 2 )𝛼  

      …………………………. 

= 𝑉𝐹𝑘𝐹𝑘  𝛼𝛼∈ 0,1 (𝑃𝐹𝑘𝐹𝑠
 𝑛 )𝛼  

=  𝑉𝐹𝑘
𝐹𝑘

𝑃𝐹𝑘𝐹𝑠
 𝑛  

Suppose a stationary distribution 

𝜋 =  𝜋1 ,𝜋2 ,……   exists.  Also suppose 

lim
𝑛→∞

 𝛼

𝛼∈ 0,1 

(𝑃𝐹𝑟𝐹𝑠
 𝑛 )𝛼 =𝜋𝐹𝑠 ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝐹𝑟 ≥ 1. 

Then 𝜋 is called the steady state distribution of the Markov chain with Transition matrix (PFrFs). 

 

THEOREM 4.1 

Let a Fuzzy Markov chain is irreducible, aperiodic and positive.  Then  

(i) lim𝑛→∞ 𝑃𝐹𝑟𝐹𝑠
 𝑛 = 𝜋𝐹𝑠  

(ii) 𝜋𝐹𝑠 > 0  𝜋𝐹𝑠𝐹𝑠 = 1 

(iii) 𝜋𝐹𝑠 =  𝜋𝐹𝑘𝑃𝐹𝑘𝐹𝑠𝐹𝑠∈𝑠  

More over (ii) and (iii) determine {𝜋𝐹𝑠  ,𝐹𝑠 ∈ 𝑠} 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑙𝑦. 
Proof: 

(i) The Proof of (i) follows from theorem 2.2 and the lemma. 

(ii) 𝜋𝐹𝑠 =
1

𝜇𝐹𝑠
> 0 

Suppose SM is a subset of the state space S with exactly M states. 

Now, 

 𝑃𝐹𝑟𝐹𝑠
(𝑛)

𝐹𝑠∈𝑆𝑀
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=   𝛼

𝛼∈ 0,1 

(𝑃𝐹𝑟𝐹𝑠
 𝑛 )𝛼

𝐹𝑠∈𝑆𝑀

 

≤   𝛼

𝛼∈ 0,1 

(𝑃𝐹𝑟𝐹𝑠
 𝑛 )𝛼

𝐹𝑠∈𝑆

 

= 1 

Let n∞ then 

 𝜋𝐹𝑠 ≤ 1

𝐹𝑠∈𝑆𝑀

 

Then taking limit M∞ 

 𝜋𝐹𝑠 ≤ 1

𝐹𝑠∈𝑆𝑀

                                                            (4.1) 

Then taking limit 

  𝛼

𝛼∈ 0,1 

(𝑃𝐹𝑟𝐹𝑘
 𝑛 )𝛼

𝐹𝑠∈𝑆𝑀

(𝑃𝐹𝑘𝐹𝑠 )𝛼  

≤   𝛼

𝛼∈ 0,1 

(𝑃𝐹𝑟𝐹𝑘
 𝑛 )𝛼

𝐹𝑠∈𝑆𝑀

𝑃𝐹𝑘𝐹𝑠  

= 𝛼𝛼∈ 0,1 (𝑃𝐹𝑟𝐹𝑠
 𝑛+1 )𝛼  

Let n∞ then 

lim
n∞ 

 𝛼

𝛼∈ 0,1 

(𝑃𝐹𝑟𝐹𝑠
 𝑛+1 )𝛼  

=  𝜋𝐹𝑘  𝛼

𝛼∈ 0,1 𝐹𝑠∈𝑆𝑀

(𝑃𝐹𝑘𝐹𝑠 )𝛼  

≤ 𝜋𝐹𝑠  
Then letting M∞ we get 

 𝜋𝐹𝑘  𝛼

𝛼∈ 0,1 𝐹𝑠∈𝑆𝑀

(𝑃𝐹𝑘𝐹𝑠 )𝛼  

       ≤ 𝜋𝐹𝑠                                                             (4.2) 

 𝜋𝐹𝑠  𝛼

𝛼∈ 0,1 

(𝑃𝐹𝑠𝐹𝑟
 2 )𝛼

𝐹𝑠∈𝑆

 

=  𝜋𝐹𝑠  𝛼(𝑃𝐹𝑠𝐹𝑘
𝛼∈ 0,1 

)𝛼(𝑃𝐹𝑘𝐹𝑟 )𝛼
𝐹𝑠∈𝑆

 

=   𝜋𝐹𝑠𝛼(𝑃𝐹𝑠𝐹𝑘 )𝛼(𝑃𝐹𝑘𝐹𝑟 )𝛼
𝐹𝑠∈𝑆𝛼∈ 0,1 

 

=     𝜋𝐹𝑠𝛼(𝑃𝐹𝑠𝐹𝑘 )𝛼
𝐹𝑠∈𝑆

 (𝑃𝐹𝑘𝐹𝑟 )𝛼
𝐹𝑠∈𝑆𝛼∈ 0,1 

 

≤   𝜋𝑘𝛼(𝑃𝐹𝑘𝐹𝑟 )𝛼
𝐹𝑠∈𝑆𝛼∈ 0,1 

 

=  𝜋𝐹𝑘𝑃𝐹𝑘𝐹𝑟
𝐹𝑠∈𝑆

 

≤ 𝜋𝐹𝑟  

By induction 

 𝜋𝐹𝑠  𝛼

𝛼∈ 0,1 

(𝑃𝐹𝑠𝐹𝑟
 𝑛 )𝛼

𝐹𝑠∈𝑆

≤ 𝜋𝐹𝑟  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 1;𝐹𝑠 ∈ 𝑆 

Now 

𝜋𝐹𝑘 = 𝜋𝐹𝑘   𝑃𝐹𝑘𝐹𝑠
 𝑛 

𝑗 ∈𝑆

  

                                                                  𝑃𝐹𝑘𝐹𝑠
 𝑛 

𝑗 ∈𝑆

= 1  
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 𝜋𝐹𝑘 =    𝛼𝜋𝑘
𝛼∈ 0,1 

(𝑃𝐹𝑘𝐹𝑠
 𝑛 )𝛼

𝐹𝑠∈𝑆𝐹𝑘∈𝑆𝐹𝑘∈𝑆

 

                 =   𝜋𝑘  𝛼

𝛼∈ 0,1 

(𝑃𝐹𝑘𝐹𝑠
 𝑛 )𝛼

𝐹𝑠∈𝑆𝐹𝑘∈𝑆

 

                                                             By Fubinis theorem. 

Suppose 

 𝜋𝐹𝑘
𝐹𝑘∈𝑆

 𝛼

𝛼∈ 0,1 

𝑃𝐹𝑘𝐹𝑠
 𝑛 < 𝜋𝐹𝑠  

Then 

  𝜋𝑘  𝛼

𝛼∈ 0,1 

(𝑃𝐹𝑘𝐹𝑠
 𝑛 )𝛼

𝐹𝑠∈𝑆𝐹𝑘∈𝑆

<  𝜋𝐹𝑠  𝑎𝑛𝑑

𝐹𝑠∈𝑆

 

 𝜋𝐹𝑘
𝐹𝑘∈𝑆

<  𝜋𝐹𝑠
𝐹𝑠∈𝑆

 

                                      Which is a Contradiction. 

Thus 

 𝜋𝐹𝑘
𝐹𝑘∈𝑆

 𝛼

𝛼∈ 0,1 

(𝑃𝐹𝑘𝐹𝑠
 𝑛 )𝛼 =  𝜋𝐹𝑘𝑃𝐹𝑘𝐹𝑠

 𝑛 

𝐹𝑘∈𝑆

 

= 𝜋𝐹𝑠  𝑓𝑜𝑟 𝑛 ≥ 1                                        (4.3) 

In particular for 𝑛 ≥ 1  𝜋𝐹𝑠𝑃𝐹𝑠𝐹𝑟
 

𝐹𝑠∈𝑆 = 𝜋𝐹𝑟  

This Proves (iii). 

Moreover by Lebesgue Dominated convergence theorem and part(i) letting n∞ in (4.3)  

 𝜋𝐹𝑠𝜋𝐹𝑟
 

𝐹𝑠∈𝑆

= 𝜋𝐹𝑟  

Now 𝜋𝐹𝑟 > 0 that gives  

 𝜋𝐹𝑠
𝐹𝑠∈𝑆

= 1 

To show that the solution given by (ii) and (iii) is unique. Suppose that {xFr, FrS} is another such solution 

satisfying xFr>0 

 𝜋𝐹𝑠
𝐹𝑠∈𝑆

= 1 

and 

  𝑥𝐹𝑟 =  𝑥𝐹𝑠𝑃𝐹𝑠𝐹𝑟
 

𝐹𝑠∈𝑆

 

=  𝑥𝐹𝑠  𝛼

𝛼∈ 0,1 

(𝑃𝐹𝑠𝐹𝑟
 )𝛼

𝐹𝑠∈𝑆

 

=     𝛼

𝛼∈ 0,1 

𝑥𝐹𝑘 (𝑃𝐹𝑘𝐹𝑠
 )𝛼

𝐹𝑘∈𝑆

 (𝑃𝐹𝑠𝐹𝑟
 )𝛼

𝐹𝑠∈𝑆

 

=  𝑥𝐹𝑘    𝛼

𝛼∈ 0,1 

(𝑃𝐹𝑘𝐹𝑠
 )𝛼

𝐹𝑘∈𝑆

(𝑃𝐹𝑠𝐹𝑟
 )𝛼 

𝐹𝑠∈𝑆

 

                                                   (By Fubinis theorem) 

=  𝑥𝐹𝑘𝑃𝐹𝑘𝐹𝑟
(2) 

𝐹𝑠∈𝑆

 

=………………. 

=  𝑥𝐹𝑘𝑃𝐹𝑘𝐹𝑟
(𝑛) 

𝐹𝑠∈𝑆

 

By the Lebesgue Dominated Convergence theorem, Letting n∞ 

  𝑥𝐹𝑟 =  𝑥𝐹𝑠
𝐹𝑘∈𝑆

𝜋𝐹𝑟 = 𝜋𝐹𝑟  𝑥𝐹𝑠
𝐹𝑘∈𝑆

= 𝜋𝐹𝑟  𝑓𝑜𝑟 𝑎𝑙𝑙 𝐹𝑟 ∈ 𝑆 

Thus the solution {𝜋𝑖    𝑖 ∈ 𝑆} is unique. 
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THEOREM: 4.2 

A Fuzzy Markov chain remains Markov if time is reversed. 

P(Xn=Frn|Xn+1=Frn+1 …………..Xn+k=Frn+k) 

= P(Xn=Frn|Xn+1=Frn+1) 

Proof: 

𝑃 𝑋𝑛−1 = 𝐹𝑟𝑛−1 𝑋𝑛 = 𝐹𝑟𝑛 ,𝑋𝑛+1 = 𝐹𝑟𝑛+1 …… .     

=  𝛼

𝛼∈ 0,1 

𝑃 𝑋𝑛−1 = (𝐹𝑟𝑛−1)𝛼  𝑋𝑛 = (𝐹𝑟𝑛)𝛼 ,𝑋𝑛+1 = (𝐹𝑟𝑛+1)𝛼 …… .   

=
 𝛼𝑃(𝑋𝑛−1 = 𝐹𝑟𝑛−1,𝑋𝑛 = 𝐹𝑟𝑛 ,𝑋𝑛+1 = 𝐹𝑟𝑛+1 …… . )𝛼∈ 0,1 

 𝛼𝛼∈ 0,1 𝑃(𝑋𝑛 = 𝐹𝑟𝑛 ,𝑋𝑛+1 = 𝐹𝑟𝑛+1 …… . )
 

=

 
𝛼𝑃 𝑋𝑛+1 = (𝐹𝑟𝑛+1)𝛼 ,𝑋𝑛+2 = (𝐹𝑟𝑛+2)𝛼 …  𝑋𝑛 = (𝐹𝑟𝑛)𝛼 ,𝑋𝑛−1 = (𝐹𝑟𝑛−1)𝛼 

. 𝛼𝛼∈ 0,1 𝑃(𝑋𝑛 = (𝐹𝑟𝑛)𝛼 ,𝑋𝑛−1 = (𝐹𝑟𝑛−1)𝛼)𝛼∈ 0,1 

 𝛼𝛼∈ 0,1 𝑃 𝑋𝑛+1 = (𝐹𝑟𝑛+1)𝛼 ,𝑋𝑛+2 = (𝐹𝑟𝑛+2)𝛼 …  𝑋𝑛 = (𝐹𝑟𝑛)𝛼 

. 𝛼𝛼∈ 0,1 𝑃(𝑋𝑛 = (𝐹𝑟𝑛)𝛼)

 

=  𝛼

𝛼∈ 0,1 

𝑃 𝑋𝑛−1 = (𝐹𝑟𝑛−1)𝛼  𝑋𝑛 = (𝐹𝑟𝑛)𝛼  

= 𝑃 𝑋𝑛−1 = (𝐹𝑟𝑛−1) 𝑋𝑛 = (𝐹𝑟𝑛)  
 

THEOREM: 4.3 

In a Fuzzy Markov chain if the present is specified then the past is independent of the future in the following 

sense. 

𝑃 𝑋𝑛 = 𝐹𝑟𝑛  𝑋𝐹𝑘 = 𝐹𝑟𝑘  𝑋𝑚 = 𝐹𝑟𝑚  =  𝑃 𝑋𝑛 = (𝐹𝑟)𝑛  𝑋𝑚 = (𝐹𝑟)𝑚  𝑃 𝑋𝑘 = (𝐹𝑟)𝑘  𝑋𝑚 = (𝐹𝑟)𝑚    
Proof: 

By the Chain rule of conditional probabilities 

𝑃 𝑋𝑛 = 𝐹𝑟𝑛  𝑋𝐹𝑘 = 𝐹𝑟𝑘  𝑋𝑚 = 𝐹𝑟𝑚   

=
 𝛼𝑃(𝑋𝑛 = (𝐹𝑟𝑛)𝛼  𝑋𝑘 = ((𝐹𝑟)𝑘)𝛼𝑋𝑚 = ((𝐹𝑟)𝑚 )𝛼)𝛼∈ 0,1 

 𝛼𝛼∈ 0,1 𝑃(𝑋𝑚 = ((𝐹𝑟)𝑚 )𝛼)
 

=
 𝛼𝑃(𝑋𝑛 = (𝐹𝑟𝑛)𝛼  |𝑋𝑘 = ((𝐹𝑟)𝑘)𝛼𝑋𝑚 = ((𝐹𝑟)𝑚 )𝛼)𝛼∈ 0,1 

 𝛼𝛼∈ 0,1 𝑃(𝑋𝑚 = (𝐹𝑟𝑚 )𝛼)
 

=
 

𝛼𝑃 𝑋𝑛 = (𝐹𝑟𝑛)𝛼  𝑋𝑚 = (𝐹𝑟𝑚 )𝛼 𝑃 𝑋𝑚 = (𝐹𝑟𝑚 )𝛼   𝑋𝑘 = (𝐹𝑟𝑘)𝛼 

                                                                   𝑃( 𝑋𝑘 = (𝐹𝑟𝑘)𝛼)𝛼∈ 0,1 

 𝛼𝛼∈ 0,1 𝑃(𝑋𝑚 = (𝐹𝑟𝑚 )𝛼)
 

                                                                                     By Markov Property 

=

 

 
𝛼𝑃 𝑋𝑛 = (𝐹𝑟𝑛)𝛼  𝑋𝑚 = (𝐹𝑟𝑚 )𝛼 𝑃 𝑋𝑚 = (𝐹𝑟𝑚 )𝛼   𝑋𝑘 = (𝐹𝑟𝑘)𝛼 

                                                                 
𝛼∈ 0,1 

 𝛼𝛼∈ 0,1 𝑃(𝑋𝑚 = (𝐹𝑟𝑚 )𝛼)
 

=  

 
𝛼𝑃 𝑋𝑛 = (𝐹𝑟𝑛)𝛼  𝑋𝑚 = (𝐹𝑟𝑚 )𝛼 𝑃  𝑋𝑘 = (𝐹𝑟𝑘)𝛼  𝑋𝑚 = (𝐹𝑟𝑚 )𝛼 

                                                                 
𝛼∈ 0,1 
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