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Abstract:  -  This paper studies two stochastic bulk arrival and bulk service C server queues (A) and (B) with k 

varying environments. The arrival and service times are exponential random variables and their parameters 

change when the environment changes. The system has infinite storing capacity and the arrival and service sizes 

are finite valued random variables. Matrix partitioning method is used to study the models. In Model (A) the 

maximum of the arrival sizes M in all the environments is greater than the maximum of the service sizes N in all 

the environments, (M > N), and the infinitesimal generator is partitioned as blocks of k times the maximum of 

the arrival sizes for analysis. In Model (B) the maximum of the arrival sizes M in all the environments is less 

than the maximum of the service sizes N in all the  environments, (M < N), where the generator is partitioned 

using blocks of k times the maximum of the service sizes. Five different cases associated with C, M and N due 

to partitions are treated. They are namely, (A1) M >N ≥ C, (A2) M >C >N (A3) C >M >N, which come up in 

Model (A); (B1) N ≥ C and (B2) C >N, which come up in Model (B) respectively. For the cases when C ≤ M or 

N Matrix Geometric results are obtained and for the cases when C > both M and N Modified Matrix Geometric 

results are presented. The basic system generator is seen as a block circulant matrix in all the cases. The 

stationary queue length probabilities, its expected values, its variances and probabilities of empty queue levels 

are derived for the models using Matrix Methods. Numerical examples are presented for illustration. 
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I. INTRODUCTION 

In this paper two bulk arrival and bulk service multi server queues have been studied with random 

environment using matrix partitioning methods. Rama Ganesan, Ramshankar and Ramanarayanan in [1] and [2] 

have treated M/M/1 bulk queue with random environment and PH/PH/1 bulk queue using Matrix Geometric 

Methods. Bini, Latouche and Meini [3] have studied numerical methods for Markov chains. Chakravarthy and 

Neuts [4] have discussed in depth a multi-server queue model.  Gaver, Jacobs and Latouche [5] have treated 

birth and death models with random environment. Latouche and Ramaswami [6] have studied Analytic 

methods. For matrix geometric methods and models one may refer Neuts [7].  The models considered in this 

paper are general compared to existing queue models since a multi server bulk arrival and bulk service queue 

with random environment has not been studied at any depth so far. Here random number of arrivals and random 

number of services are considered at a time whereas a fixed number of customers arrive or are served at any 

arrival or service epochs in many existing queue models in literature. Bulk service queue model, with service for 

fixed b customers when more than b customers are waiting, has been studied by Neuts and Nadarajan [8] for 

single server system. In the models considered here, depending on the environment the service and arrival sizes 

are random with distinct discrete distributions and the parameters of exponential distributions of arrival and 

service times vary. The number of servers increases with number of customers till it becomes C. The model with 

random arrival is similar to production systems. When a machine manufactures a fixed number of products in 

every production schedule, the defective items are always rejected in all productions; making any production lot 

is only of random size and not a fixed one always. Bulk service situations are seen often in software based 

industries where finished software projects waiting for marketing are sold in bulk sizes when there is economic 

boom and the business may be very dull when there is economic recession. In industrial productions, bulk types 
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are very common. Manufactured products arrive in bulk sizes and several bulk sizes of products are sold in 

markets. Recently M/M/1 queue system with disaster has been studied by Noam Paz and Uri Yechali [9] but 

random arrival size or random service size with varying environments is not studied. Usually the partitions of 

the bulk arrival models have M/G/1 upper-Heisenberg block matrix structure with zeros below the first sub 

diagonal. The decomposition of a Toeplitz sub matrix of the infinitesimal generator is required to find the 

stationary probability vector. Matrix geometric structures have not been noted so far as mentioned by William J. 

Stewart [10]. But in this paper the partitioning of the matrix is carried out in a way that the stationary probability 

vectors have a Matrix Geometric solution or a Modified Matrix Geometric solution for infinite capacity C server 

bulk arrival and bulk service queues with randomly varying environments.   

Two models (A) and (B) on M/M/C bulk queue systems under k varying environments with infinite 

storage space for customers are studied here using the block partitioning method. In the models considered here, 

the maximum arrival sizes and the maximum service sizes may be different for different environments. Model 

(A) presents the case when M, the maximum of all the maximum arrival sizes in all the environments is bigger 

than N, the maximum of all the maximum sale sizes in all the environments. In Model (B), its dual, N is bigger 

than M, is treated. In general in Queue models, the state space of the system has the first co-ordinate indicating 

the number of customers in the system but here the customers in the system are grouped and considered as 

members of M sized blocks  of customers (when M >N) or N sized blocks of customers (when N > M) for 

finding the rate matrix. Using the maximum of the bulk arrival size or maximum of the bulk service size and 

grouping the customers as members of the blocks for the partitioning the matrix of the infinitesimal generator 

along with the environment state is a new approach in this area. In [1], Rama Ganesan, Ramshankar and 

Ramanarayanan for single server M/M/1 bulk queue, have noticed two cases namely M >N and N >M but in this 

paper because a multi server system is of interest five cases are noticed. Model (A) gives three cases namely 

(A1) M > N ≥ C, (A2) M > C > N and (A3) C > M > N and Model (B) gives two cases namely (B1) N ≥ C, and 

(B2) C > N. The case M=N with various C values can be treated using Model (A) or Model (B). For the cases 

when C ≤ M or N, Matrix Geometric results are obtained and for the cases when C > both M and N, Modified 

Matrix Geometric results are presented. The matrices appearing as the basic system generators in these models 

due to block partitions are seen as block circulant matrices. The stationary probability of the number of 

customers waiting for service, the expected queue length, the variance and the probability of empty queue are 

derived for these models. Numerical cases are presented to illustrate their applications. The paper is organized in 

the following manner. In section II and section III the M/M/C bulk arrival and bulk service queues with 

randomly varying environment in which maximum arrival size M is greater than maximum service size N and 

the maximum arrival size is M less than the maximum service size N are studied respectively with their sub 

cases. In section IV numerical cases are presented.                                                                                                                                                                                                                           

 

II. MODEL (A). MAXIMUM ARRIVAL SIZE M IS GREATER THAN MAXIMUM 

SERVICE SIZE N 

2.1Assumptions for M > N.                                                                                                                                 

 i)  There are k environments. The environment changes as per changes in a continuous time Markov chain with 

infinitesimal generator 𝒬1  of order k with stationary probability vector ϕ.                                                                      

ii) Customers arrive in different bulk sizes for service. The time between consecutive bulk arrivals of customers 

has exponential distribution with parameter𝜆𝑖 , in the environment i for 1 ≤ i ≤ k. At each bulk arrival in the 

environment i, 𝜒𝑖  customers arrive with probability P (𝜒𝑖= j) = 𝑝𝑗
𝑖  for 1 ≤ j ≤ 𝑀𝑖 and  𝑝𝑗

𝑖𝑀𝑖  

𝑗=1 =1 for 1 ≤ i ≤ k.                                                                                                                                                

iii)  Customers are served in batches of different bulk sizes. There are s servers to serve when s customers are 

present in the system for 1≤ s ≤ C. When C or more than C customers are present in the system the number of 

servers to serve customers is C. In the environment i for1 ≤ i ≤ k, the time between consecutive bulk services 

has exponential distribution with parameter s𝜇𝑖  when s customers are in the system for 1≤ s ≤ C and with 

parameter C𝜇𝑖  when C or more than C customers are present where 𝜇𝑖  is the parameter of single server 

exponential service time distribution. At each service epoch in the environment i, 𝜓𝑖 customers are served with 

probability given by P (𝜓𝑖 = j) = 𝑞𝑗
𝑖  for 1≤ j ≤ 𝑁𝑖 when more than 𝑁𝑖 customers are waiting for service 

where  𝑞𝑗
𝑖𝑁𝑖

𝑗=1   =1. When n customers n < 𝑁𝑖 are in the system, then j customers are served with probability, 𝑞𝑗
𝑖  
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for 1≤ j ≤ n-1 and n customers are served with probability  𝑞𝑗
𝑖𝑁𝑖

𝑗=𝑛   for 1 ≤ i ≤ k.                                                              

iv) When the environment changes from i to j, the parameter of time between consecutive bulk arrivals and the 

service parameter change from (𝜆𝑖 , 𝜇𝑖) 𝑡𝑜 (𝜆𝑗 , 𝜇𝑗  ), the bulk arrival size 𝜒𝑖  changes to 𝜒𝑗 , the bulk service size 

𝜓𝑖  changes to 𝜓𝑗  and the maximum arrival size 𝑀𝑖 and the maximum service size 𝑁𝑖 change to 𝑀𝑗  𝑎𝑛𝑑 𝑁𝑗  for 

1≤i,j≤k.                                                                                                                                                                                 

v) The maximum of the maximum of arrival sizes M = max1 ≤𝑖 ≤𝑘 𝑀𝑖  is greater than the maximum of the 

maximum of service sizes N =max1 ≤𝑖 ≤𝑘 𝑁𝑖.                                                                                                                     

 

2.2 Analysis    

There are three sub cases for this model namely (A1) M > N ≥ C, (A2) M > C >N and (A3) C > M >N.  Sub 

Cases (A1) and (A2) admit Matrix Geometric solutions and they are treated in sub section (2.2.1). Modified 

Matrix Geometric solution is presented for Sub Case (A3) which is studied in sub section (2.2.2). The state of 

the system of the continuous time Markov chain X (t) under consideration is presented as follows.                                                                                                                                                                                                  

X (t) = {(n, j, i): for 0 ≤ j ≤ M-1; 1 ≤ i ≤ k and n ≥ 0}                                                                                   

(1) The chain is in the state (n, j, i) when the number of customers in the system is n M + j, for 0 ≤ j ≤ M-1 and       

0 ≤ n < ∞ and the environment is i for 1 ≤ i ≤ k. When the number of customers in the system is r, then r is 

identified with (n, j) where r on division by M gives n as the quotient and j as the remainder. Let the survivor 

probability of the number of arrivals at an arrival epoch and the number of services at a service epoch                                                                                                                     

in the environment i for 1 ≤ i ≤ k be P (𝜒𝑖  > j) = 𝑃𝑗
𝑖  =1- 𝑝𝑛

𝑖 𝑗
𝑛=1 , and 𝑃0

𝑖 = 1  for 1 ≤ j ≤ 𝑀𝑖  -1                           (2) 

and P (𝜓𝑖 > j) = 𝑄𝑗
𝑖  =1- 𝑞𝑛

𝑖 𝑗
𝑛=1 , and 𝑄0

𝑖 = 1  for 1 ≤ j ≤ 𝑁𝑖  -1                                                                              (3) 

2.2.1 Sub Cases: (A1) M > N ≥ C and (A2) M > C > N   

When M > N ≥ C or M > C > N, the M/M/C bulk queue admits matrix geometric solution as follows. The chain 

X (t) describing them, has the infinitesimal generator 𝑄𝐴,2.1 of infinite order which can be presented in block 

partitioned form given below. 

𝑄𝐴,2.1 = 

 
 
 
 
 
 
𝐵1 𝐴0 0 0 . . . ⋯
𝐴2 𝐴1 𝐴0 0 . . . ⋯
0 𝐴2 𝐴1 𝐴0 0 . . ⋯
0 0 𝐴2 𝐴1 𝐴0 0 . ⋯
0 0 0 𝐴2 𝐴1 𝐴0 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ⋱ ⋱ 

 
 
 
 
 

                                                                                                 (4)                                                            

In (4) the states of the matrices are listed lexicographically as  0, 1, 2, 3, … . 𝑛, …. Here  the vector 𝑛 is of type 1 x 

k M and  𝑛 = ((n, 0, 1),(n, 0, 2)…(n, 0, k),(n, 1, 1),(n, 1, 2)…(n, 1, k)…(n, M-1, 1),(n, M-1, 2)…                      

(n, M-1, k)) for n ≥ 0.  The matrices 𝐵1𝑎𝑛𝑑 𝐴1 have negative diagonal elements, they are of order Mk and their 

off diagonal elements are non- negative. The matrices 𝐴0 , 𝑎𝑛𝑑𝐴2 have nonnegative elements and are of order 

Mk and they are given below. Let the following be diagonal matrices of order k   

𝛬𝑗 =diag (𝜆1𝑝𝑗
1 , 𝜆2𝑝𝑗

2 ,… . , 𝜆𝑘𝑝𝑗
𝑘 ) 𝑓𝑜𝑟 1 ≤ 𝑗 ≤ 𝑀;   𝑈𝑗 = diag  𝜇1𝑞𝑗

1 , 𝜇2𝑞𝑗
2 ,… . , 𝜇𝑘𝑞𝑗

𝑘 𝑓𝑜𝑟 1 ≤ 𝑗 ≤ 𝑁 (5)                            

 𝑉𝑗 = diag  𝜇1𝑄𝑗
1 , 𝜇2𝑄𝑗

2 ,… . , 𝜇𝑘𝑄𝑗
𝑘 𝑓𝑜𝑟 1 ≤ 𝑗 ≤ 𝑁;  𝛬 =diag (𝜆1 , 𝜆2 ,… . , 𝜆𝑘 );  𝑈 = diag (𝜇1 ,𝜇2 , … . , 𝜇𝑘 )  (6)                                                                                                                     

 𝐿𝑒𝑡 𝒬1
′ = 𝒬1 − 𝛬 − 𝐶𝑈.                                                                                                                                (7)                                                                                                   

Here 𝒬1 is the infinitesimal generator of the Markov chain of the environment defined earlier

                                                                   

          

𝐴0 =

 
 
 
 
 
 
 
 

𝛬𝑀 0 ⋯ 0 0 0
𝛬𝑀−1 𝛬𝑀 ⋯ 0 0 0
𝛬𝑀−2 𝛬𝑀−1 ⋯ 0 0 0
𝛬𝑀−3 𝛬𝑀−2 ⋱ 0 0 0

⋮ ⋮ ⋱ ⋱ ⋮ ⋮
𝛬3 𝛬4 ⋯ 𝛬𝑀 0 0
𝛬2 𝛬3 ⋯ 𝛬𝑀−1 𝛬𝑀 0
𝛬1 𝛬2 ⋯ 𝛬𝑀−2 𝛬𝑀−1 𝛬𝑀 

 
 
 
 
 
 
 

 (8)  

 

 𝐴2

=

 
 
 
 
 
 
 
 
0 ⋯ 0 𝐶𝑈𝑁 𝐶𝑈𝑁−1 ⋯ 𝐶𝑈2 𝐶𝑈1

0 ⋯ 0 0 𝐶𝑈𝑁 ⋯ 𝐶𝑈3 𝐶𝑈2

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 ⋯ 0 0 0 ⋯ 𝐶𝑈𝑁 𝐶𝑈𝑁−1

0 ⋯ 0 0 0 ⋯ 0 𝐶𝑈𝑁

0 ⋯ 0 0 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 0 0 0 ⋯ 0 0  

 
 
 
 
 
 
 

 (9)
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𝐴1 =

 
 
 
 
 
 
 
 
 
 
 

𝒬1
′ 𝛬1 𝛬2 ⋯ 𝛬𝑀−𝑁−2 𝛬𝑀−𝑁−1 𝛬𝑀−𝑁 ⋯ 𝛬𝑀−2 𝛬𝑀−1

𝐶𝑈1 𝒬1
′ 𝛬1 ⋯ 𝛬𝑀−𝑁−3 𝛬𝑀−𝑁−2 𝛬𝑀−𝑁−1 ⋯ 𝛬𝑀−3 𝛬𝑀−2

𝐶𝑈2 𝐶𝑈1 𝒬1
′ ⋯ 𝛬𝑀−𝑁−4 𝛬𝑀−𝑁−3 𝛬𝑀−𝑁−2 ⋯ 𝛬𝑀−4 𝛬𝑀−3

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝐶𝑈𝑁 𝐶𝑈𝑁−1 𝐶𝑈𝑁−2 ⋯ 𝒬1

′ 𝛬1 𝛬2 ⋯ 𝛬𝑀−𝑁−2 𝛬𝑀−𝑁−1

0 𝐶𝑈𝑁 𝐶𝑈𝑁−1 ⋯ 𝐶𝑈1 𝒬1
′ 𝛬1 ⋯ 𝛬𝑀−𝑁−3 𝛬𝑀−𝑁−2

0 0 𝐶𝑈𝑁 ⋯ 𝐶𝑈2 𝐶𝑈1 𝒬1
′ ⋯ 𝛬𝑀−𝑁−4 𝛬𝑀−𝑁−3

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 𝐶𝑈𝑁 𝐶𝑈𝑁−1 𝐶𝑈𝑁−2 ⋯ 𝒬1

′ 𝛬1

0 0 0 ⋯ 0 𝐶𝑈𝑁 𝐶𝑈𝑁−1 ⋯ 𝐶𝑈1 𝒬1
′  

 
 
 
 
 
 
 
 
 
 

 (10) 

The matrix  𝐵1  for Sub Case (A1) where N > C and Sub Case (A2) where C > N are given below in (11) and 

(12) respectively. For the case when C=N, the matrix𝐵1may be written by placing C in place of N in the N-th 

block row in (12) and there after the multiplier of 𝑈𝑗  is C. Let 𝒬1,𝑗
′ =  𝒬1 − 𝛬 − 𝑗𝑈 for 0 ≤ j ≤ C and  𝒬1,𝐶

′  = 𝒬1
′  

 

The basic generator 𝒬𝐴
′′  of the bulk queue, which is concerned with only the arrival and the service, is a matrix 

of order Mk given above in (13) where 𝒬𝐴
′′ =𝐴0 + 𝐴1 + 𝐴2. It is well known that a square matrix in which each 

row (after the first) has the elements of the previous row shifted cyclically one place right, is called a circulant 

matrix. It is very interesting to note that the matrix    𝒬𝐴
′′    is a block circulant matrix where each block matrix is 

rotated one block to the right relative to the preceding block partition.   
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The probability vector w of (13) gives,  𝑤𝒬𝐴
′′  =0 and w.e = 1.         (14)                                                                                                             

Since the probability vector of the environment generator 𝒬1 is ϕ, the following are seen   ϕ𝒬1 = 0 and ϕ e =1. It 

can be seen in (13) that the first block-row of type k x Mk is 𝑊 = (𝒬1
′ + 𝛬𝑀 , 𝛬1, 𝛬2 , 

…𝛬𝑀−𝑁−2 ,  𝛬𝑀−𝑁−1,  𝛬𝑀−𝑁 + 𝐶𝑈𝑁 , … 𝛬𝑀−2 + 𝐶𝑈2,  𝛬𝑀−1 + 𝐶𝑈1) This gives as the sum of the blocks 𝒬1
′ +

𝛬𝑀+  𝛬1+ 𝛬2  +…..+𝛬𝑀−𝑁−2+ 𝛬𝑀−𝑁−1  +𝛬𝑀−𝑁+𝐶𝑈𝑁+… …+𝛬𝑀−2+𝐶𝑈2+ 𝛬𝑀−1+𝐶𝑈1 =𝒬1. Since   

ϕ𝒬1=0, this gives ϕ 𝒬1
′ + 𝛬𝑀 + ϕ  𝛬𝑖

𝑀−𝑁−1
𝑖=1 + ϕ  (𝛬𝑀−𝑖 + 𝐶𝑈𝑖)

𝑁
𝑖=1  = 0 which implies (ϕ, ϕ … ϕ, ϕ). W = 0 = 

(ϕ, ϕ … ϕ, ϕ ) W’ where W’ is the transpose column vector of W.  Since all blocks, in any block-row are seen 

somewhere in each and every column block due to block circulant structure,  the above equation shows the left 

eigen vector of the matrix  𝒬𝐴
′′  is (ϕ, ϕ … ϕ). Using (14)                       𝑤 =  

ϕ

𝑀
,

ϕ

𝑀
,

ϕ

𝑀
, … ,

ϕ

𝑀
                   (15)                                                                                                                                                                                                                                                                                         

Neuts [7], gives the stability condition as, w 𝐴0  𝑒 < 𝑤 𝐴2  𝑒 where w is given by (15). Taking the sum of the 

same cross diagonally using the structure in (8) and (9) for the 𝐴0  𝑎𝑛𝑑 𝐴2 matrices, it can be seen that                                           

w 𝐴0  𝑒 =
1

𝑀
ϕ   𝑛𝛬𝑛

𝑀
𝑛=1  𝑒 = 

1

𝑀
  ϕ. (𝜆1𝐸(𝜒1), 𝜆2𝐸(𝜒2) , … . , 𝜆𝑘𝐸 𝜒𝑘  ) < 𝑤 𝐴2  𝑒 = 

1

𝑀
𝐶 ϕ( 𝑛𝑈𝑛 )𝑒𝑁

𝑛=1   

=
1

𝑀
𝐶 ϕ . (𝜇1𝐸(𝜓1 ), 𝜇2𝐸(𝜓2) , … . , 𝜇𝑘𝐸 𝜓𝑘  ) .                                                                                                                       

Taking the probability vector of the environment generator 𝒬1 as ϕ = (ϕ
1

, ϕ
2

, … , ϕ
𝑘−1

, ϕ
𝑘

) , the inequality 

reduces to  ϕ
𝑖
 𝑘

𝑖=1 𝜆𝑖𝐸(𝜒𝑖) < 𝐶  ϕ
𝑖
 𝜇𝑖𝐸(𝜓𝑖

𝑘
𝑖=1  ).                     (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

This is the stability condition for the M/M/C bulk arrival, bulk service queue with random environment for                    

Sub Case (A1) M > N ≥ C and Sub Case (A2) M > C > N. When (16) is satisfied, the stationary distribution 

exists as proved in Neuts [7].  Let π (n, j, i), for 0 ≤ j ≤ M-1,  1 ≤ i ≤ k and 0 ≤ n < ∞ be the stationary probability 

of the states in (1) and  𝜋𝑛be the vector of type 1xMk  with, 𝜋𝑛=  (π(n, 0, 1), π(n, 0, 2) … π(n, 0, k), π(n, 1, 1), 

π(n, 1, 2),…         π(n, 1, k)…π(n, M-1, 1), π(n, M-1, 2)…π(n, M-1, k) )for n ≥ 0. The stationary probability 

vector 𝜋 = (𝜋0 , 𝜋1 , 𝜋3 , …… ) satisfies 𝜋𝑄𝐴,2.1=0 and 𝜋e=1.                                   (17)                                                                                                                                              

From (17), it can be seen 𝜋0𝐵1 + 𝜋1𝐴2=0.                             (18)                                                                                                                       

𝜋𝑛−1𝐴0+𝜋𝑛𝐴1+𝜋𝑛+1𝐴2 = 0, for n ≥ 1.                                    (19)                                                                                                                           

Introducing the rate matrix R as the minimal non-negative solution of the non-linear matrix equation                                              

𝐴0+R𝐴1+𝑅2𝐴2=0, (20)                                                                                                                                                                                                                                                                                                                                                           

it can be proved (Neuts [7]) that 𝜋𝑛   satisfies  𝜋𝑛  = 𝜋0 𝑅
𝑛     for n ≥ 1.                            (21)                                                                                                                                                  

Using (18) and (21), 𝜋0 satisfies  𝜋0  [𝐵1 + 𝑅𝐴2] = 0                (22)                                                                                                                                                                                                     

Now 𝜋0 can be calculated up to multiplicative constant by (22). From (17) and (21) 𝜋0   𝐼 − 𝑅 −1𝑒 =1. (23)                                                                                                                                                                                                                                                                                                                                                                                                          

Replacing the first column of the matrix multiplier of   𝜋0 in equation (22) by the column vector multiplier of 𝜋0 

in (23), a matrix which is invertible may be obtained. The first row of the inverse of that same matrix is 𝜋0 and 

this gives along with (21) all the stationary probabilities. The matrix R given in (20) is computed using 

recurrence relation    𝑅 0 = 0;  𝑅(𝑛 + 1) = −𝐴0𝐴1
−1 –𝑅2(𝑛)𝐴2𝐴1

−1 , n ≥ 0.                                           (24)                                                                                                               

The iteration may be terminated to get a solution of R at an approximate level where   𝑅 𝑛 + 1 − 𝑅(𝑛 )   < ε    

Note:                                                                                                                                                                                                

The partition of the infinitesimal generator for the case M = C is similar and in that case C does not appear as a 

multiplier for the 𝑈𝑗  matrices in the matrix 𝐵1 (11) and (12) in the 0  block of (4) and C appears as a multiplier 

for all 𝑈𝑗  matrices in the matrices of 𝐴1 and 𝐴2 from row block 1   on wards. From the arguments presented 

earlier it can be seen that the system admits Matrix Geometric solution for C = M also.  

2.2.2 Sub Case: (A3) C > M > N  

  When C > M > N, the M/M/C bulk queue admits a modified matrix geometric solution as follows. The chain   

X (t) describing this Sub Case (A3), can be defined as in (1) presented for Sub Cases (A1) and (A2). It has the 

infinitesimal generator 𝑄𝐴,2.2 of infinite order which can be presented in block partitioned form given below.                                  

When C > M, let C = m* M + n* where m* is positive integer and n* is nonnegative integer with 0 ≤ n* ≤ M-1. 
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𝑄𝐴,2.2=

 
 
 
 
 
 
 
 
 
𝐵′1 𝐴0 0 0 0 ⋯ 0 0 0 0 ⋯
𝐴2,1 𝐴1,1 𝐴0 0 0 ⋯ 0 0 0 0 ⋯

0 𝐴2,2 𝐴1,2 𝐴0 0 ⋯ 0 0 0 0 ⋯

0 0 𝐴2,3 𝐴1,3 𝐴0 ⋯ 0 0 0 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0 ⋯ 𝐴2,𝑚∗ 𝐴1,𝑚∗ 𝐴0 0 ⋯

0 0 0 0 0 ⋯ 0 𝐴2 𝐴1 𝐴0 ⋯
0 0 0 0 0 ⋯ 0 0 𝐴2 𝐴1 ⋯
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋱ ⋱ ⋮ ⋱  

 
 
 
 
 
 
 
 

                                                       (25)                        

 

In (25) the states of the matrices are listed lexicographically as  0, 1, 2, 3, … . 𝑛, …. Here  the vector 𝑛 is of type                        

1 x k M and  𝑛 = ((n, 0, 1),(n, 0, 2)…(n, 0, k),(n, 1, 1),(n, 1, 2)…(n, 1, k)…(n, M-1, 1),(n, M-1, 2)…(n, M-1, k))                              

for n ≥ 0.The matrices 𝐵′1𝑎𝑛𝑑 𝐴1 have negative diagonal elements, they are of order Mk and their off diagonal 

elements are non- negative. The matrices 𝐴0  𝑎𝑛𝑑𝐴2 have nonnegative elements and are of order Mk and the 

matrices 𝐴0 ,𝐴1𝑎𝑛𝑑 𝐴2 are same as defined earlier for Sub Cases (A1) and (A2) in equations (8), (9) and (10). 

Since C > M the number of servers in the system s equals the number of customers in the system L up to 

customer length C. When the number of customers L becomes more than C, (L ≥ C), the number of servers in 

the system becomes constant C. When the number of customers L becomes less than C (L<C), the number of 

servers reduces and equals the number of customers. The matrix   𝐴2,𝑗  for 1 ≤ j < m*-1 is given below 

 𝐴2,𝑗 =

 
 
 
 
 
 
 
 
0 ⋯ 0 𝑗𝑀𝑈𝑁 𝑗𝑀𝑈𝑁−1 ⋯ 𝑗𝑀𝑈2 𝑗𝑀𝑈1

0 ⋯ 0 0 (𝑗𝑀 + 1)𝑈𝑁 ⋯ (𝑗𝑀 + 1)𝑈3 (𝑗𝑀 + 1)𝑈2

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 ⋯ 0 0 0 ⋯ (𝑗𝑀 + 𝑁 − 2)𝑈𝑁 (𝑗𝑀 + 𝑁 − 2)𝑈𝑁−1

0 ⋯ 0 0 0 ⋯ 0 (𝑗𝑀 + 𝑁 − 1)𝑈𝑁

0 ⋯ 0 0 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 0 0 0 ⋯ 0 0  

 
 
 
 
 
 
 

                        (26)

 

The matrix 𝐴2,𝑚∗ is as follows given in (27) when C = m*M + n* and n* is such that 0 ≤ n* ≤ N-1. Here the 

multiplier of 𝑈𝑗  in the row block increases by one till the multiplier becomes C = m*M + n* and there after the 

multiplier is C for 𝑈𝑗 for all blocks.    

When N ≤   n* ≤ M-1,  𝐴2,𝑚∗ is same as in (26) for j = m*. 

 

𝐴2,𝑚∗ =

 
 
 
 
 
 
 
 
 
 
0 ⋯ 0 (𝑀𝑚 ∗)𝑈𝑁 (𝑀𝑚 ∗)𝑈𝑁−1 ⋯ . ⋯ (𝑀𝑚 ∗)𝑈2 (𝑀𝑚 ∗)𝑈1

0 ⋯ 0 0 (𝑀𝑚 ∗ +1)𝑈𝑁 ⋯ . ⋯ (𝑀𝑚 ∗ +1)𝑈3 (𝑀𝑚 ∗ +1)𝑈2

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
0 ⋯ 0 0 0 ⋯ 𝐶𝑈𝑁 ⋯ 𝐶𝑈𝑛∗+2 𝐶𝑈𝑛∗+1

⋮ ⋮ ⋮ ⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋮
0 ⋯ 0 0 0 ⋯ 0 ⋯ 𝐶𝑈𝑁 𝐶𝑈𝑁−1

0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 𝐶𝑈𝑁

0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0  

 
 
 
 
 
 
 
 
 

   (27)                                                      
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The matrix 𝐴1,𝑚∗ is as follows when C = m*M + n* and n* is such that 0 ≤ n* ≤ N-1. The multiplier of 𝑈𝑗  

increases by one till it becomes C = m*M + n* and thereafter in all the blocks the multiplier of 𝑈𝑗  is C.  

 
 

When n* = N or n* > N then, in the matrix  𝐴1,𝑚∗ , there is slight change in the elements. When n* = N, in the 

N+1 block row and thereafter C appears as multiplier of 𝑈𝑗 , and when n* > N with n* = N + r for 1 ≤ r ≤ M-N-1,  

in the n*+1 block row 𝑈𝑁   appears in the r + 1 column block. C appears as multiplier for it and as the multiplier 

of 𝑈𝑗  thereafter in all row blocks respectively. The basic system generator for this Sub Case is same as (13) with 

probability vector as given in (15). The stability condition is as presented in (16). Once the stability condition is 

satisfied the stationary probability vector exists by Neuts [7]. As in the previous Sub Cases,                         

𝜋𝑄𝐴,2.2=0 and   𝜋e=1.                                          (31)                                                                                                                                                                                                                                                                                                          

The following may be noted. 𝜋𝑛𝐴0+𝜋𝑛+1𝐴1+𝜋𝑛+2𝐴2 = 0, for n ≥ m*, the rate matrix R is same as in previous 

Sub Cases with same iterative method for solving the same and  𝜋𝑛   satisfies 𝜋𝑛  = 𝜋𝑚∗ 𝑅
𝑛−𝑚∗ for n ≥ m*.   (32)                                        

The set of equations available from (31) are   𝜋0𝐵′1+𝜋1𝐴2,1= 0,     (33)                                                                                           

𝜋𝑖𝐴0+𝜋𝑖+1𝐴1,𝑖+1+𝜋𝑖+2𝐴2,𝑖+2 = 0, for 0 ≤ i ≤ m*-2                           (34)                                                                                                                                           

and  𝜋𝑚∗−1𝐴0+𝜋𝑚∗𝐴1,𝑚∗+𝜋𝑚∗+1𝐴2 = 0.                              (35)                                                                                                                                                                                        

The equation 𝜋e=1 in (31) gives  𝜋𝑖𝑒
𝑚∗−1
𝑖=0  + 𝜋𝑚∗(I-R)−1e = 1                  (36)                                                                                                                          

Using 𝜋𝑚∗+1 = 𝜋𝑚∗𝑅  and equations (33), (34), (35) and (36) the following matrix equations can be seen.                                                                                                                                     

(𝜋0 , 𝜋1 , 𝜋3 ,……𝜋𝑚∗) 𝑄′𝐴 ,2.2= 0                                            (37)                                                                                                                                                 

(𝜋0 , 𝜋1 , 𝜋3 ,……𝜋𝑚∗)  
𝑒

(𝐼 − 𝑅)−1𝑒  =1                                                                                                                (38)   

The matrix  𝑄′𝐴 ,2.2 is given by (39).                                                                                                                     
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 𝑄′𝐴,2.2=

 
 
 
 
 
 
𝐵′1 𝐴0 0 0 0 ⋯ 0 0
𝐴2,1 𝐴1,1 𝐴0 0 0 ⋯ 0 0

0 𝐴2,2 𝐴1,2 𝐴0 0 ⋯ 0 0

0 0 𝐴2,3 𝐴1,3 𝐴0 ⋯ 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 0 ⋯ 𝐴2,𝑚∗ 𝑅𝐴2 + 𝐴1,𝑚∗ 

 
 
 
 
 

                                              (39)                                                                                               

Equations (37) and (38) may be used for finding (𝜋0 ,𝜋1 , 𝜋3 , ……𝜋𝑚∗). Replacing the first column of the first 

column- block in the matrix given by (39) by the column vector multiplier in (38) a matrix which is invertible 

can be obtained. The first row of the inverse matrix gives (𝜋0 , 𝜋1 , 𝜋3 , ……𝜋𝑚∗).                                               

This together with equation (32) gives all the probability vectors for this Sub Case.                                                                                                                                                    

2.3. Performance Measures  

(1) The probability P(S = r), of the queue length S = r, can be seen as follows. Let m ≥ 0 and n for 0 ≤ n ≤ M-1 

be non-negative integers such that r = mM+n. Then it is noted that                                                                                                            

P (S=r) = 𝜋𝑘
𝑖=1  

 𝑚, 𝑛, 𝑖  , where r = m M + n. 

(2) P (Queue length is 0) = P (S=0) =  𝜋𝑘
𝑖=1 (0, 0, i).  

(3) The expected queue level E(S), can be calculated as follows.                                                                                         

For Sub Cases (A1) and (A2) it may be seen as follows. Since π (n, j, i) = P [S = M n + j, and environment state 

= i], for n≥0, and 0 ≤ j ≤ M-1 and 1 ≤ i ≤ k, E(S) =    𝜋 𝑛, 𝑗, 𝑖 𝑘
𝑖=1   𝑀𝑛 + 𝑗 𝑀−1 

𝑗 =0
∞
𝑛=0                                                               

= 𝜋𝑛
∞
𝑛=0 . (Mn… Mn, Mn+1… Mn+1, Mn+2…Mn+2… Mn+M-1… Mn+M-1) where in the multiplier vector                          

Mn appears k times, Mn+1 appears k times and so on and finally Mn+M-1appears k times.                                                                                                               

So E(S) =M 𝑛𝜋𝑛
∞
𝑛=0 𝑒 +𝜋0( 𝐼 − 𝑅)−1𝜉 . Here Mk x1 column vector ξ= 0, … 0,1, … ,1,2, … ,2, … , 𝑀 −

1,…,𝑀−1′ where the numbers 0, 1, 2, 3,… and M-1 appear k times in order. This gives                                                                                                                                                               

E (S) =    𝜋0( 𝐼 − 𝑅)−1𝜉 + 𝑀𝜋0(𝐼 − 𝑅 )−2𝑅𝑒                                      (40)                                                                                           

For Sub Case (A3), E(S) =    𝜋 𝑛, 𝑗, 𝑖 𝑘
𝑖=1   𝑀𝑛 + 𝑗 𝑀−1 

𝑗=0
∞
𝑛=0   =   M 𝑛𝜋𝑛

∞
𝑛=0 𝑒 +  𝜋𝑛

∞
𝑛=0 𝜉 =  

M 𝑛𝜋𝑛
∞
𝑛=0 𝑒+ 𝜋𝑖

𝑚∗−1
𝑖=0 ξ + 𝜋𝑚∗(I-R)−1ξ. Letting the generating function of probability vector Φ(s) =  𝜋𝑖𝑠

𝑖∞
𝑖=0 , 

it can be seen, Φ(s) =  𝜋𝑖𝑠
𝑖𝑚∗−1

𝑖=0  +𝜋𝑚∗ 𝑠
𝑚∗(I-Rs)−1  and  𝑛𝜋𝑛

∞
𝑛=0 𝑒 = Φ’(1)e =  𝑖𝜋𝑖

𝑚∗−1
𝑖=0 𝑒+𝜋𝑚∗m*(I-R)−1e  

+     𝜋𝑚∗(I-R)−2 Re. This gives 

E(S) = M [ 𝑖𝜋𝑖
𝑚∗−1
𝑖=0 𝑒 + 𝜋𝑚∗m*(I-R)−1e  + 𝜋𝑚∗(I-R)−2 Re] + 𝜋𝑖

𝑚∗−1
𝑖=0 ξ + 𝜋𝑚∗(I-R)−1ξ            (41)                                                                                                                                                                                                                                                                                                                                                                                                                                                 

(4) Variance of queue level can be seen using Var (S) = E (𝑆2) – E(S)2 . Let η be column vector η = 

[0, . .0, 12 , … 12  22 , . . 22 , …   𝑀 − 1)2 , … (𝑀 − 1)2 ′ of type Mkx1where the squares of the numbers 0,1,2…(M-

1) appear k times each in order.  Then it can be seen that the second moment, for Sub Cases (A1) and (A2)                                                                                                     

E (𝑆2) =     𝜋 𝑛, 𝑗, 𝑖 𝑘
𝑖=1 [𝑀𝑀−1

𝐽=0 𝑛 + 𝑗∞
𝑛=0 ]2   =𝑀2  𝑛 𝑛 − 1 𝜋𝑛

∞
𝑛=1 𝑒 +  𝑛𝜋𝑛

∞
𝑛=0 𝑒 +  𝜋𝑛𝜂∞

𝑛=0  +

2M  𝑛 𝜋𝑛
∞
𝑛=0 𝜉.                                                                                                                                                                         

So, E(𝑆2)=𝑀2[𝜋0(𝐼 − 𝑅)−32𝑅2  𝑒 + 𝜋0(𝐼 − 𝑅)−2𝑅𝑒]+𝜋0(𝐼 − 𝑅)−1𝜂 + 2M 𝜋0(𝐼 − 𝑅)−2𝑅𝜉  (42)                                    

Using (40) and (42) the variance can be written for Sub Cases (A1) and (A2).                                                                                

For the Sub Case (A3) the second moment can be seen as follows.  E (𝑆2) =     𝜋 𝑛, 𝑗, 𝑖 𝑘
𝑖=1 [𝑀𝑀−1

𝐽=0 𝑛 +∞
𝑛=0

𝑗]2= 𝑀2𝑛=1∞𝑛𝑛−1𝜋𝑛𝑒+𝑛=0∞𝑛𝜋𝑛𝑒+𝑛=0∞𝜋𝑛𝜂 +2M𝑛=0∞𝑛 𝜋𝑛𝜉                                  

=𝑀2[Φ’’(1)e + 𝑖𝜋𝑖
𝑚∗−1
𝑖=0 𝑒+𝜋𝑚∗m*(I-R)−1e  + 𝜋𝑚∗(I-R)−2 Re] +  𝜋𝑖

𝑚∗−1
𝑖=0 η + 𝜋𝑚∗(I-R)−1η                                   

+2M[ 𝑖𝜋𝑖
𝑚∗−1
𝑖=0 𝜉+𝜋𝑚∗m*(I-R)−1ξ+𝜋𝑚∗(I-R)−2Rξ]. This gives E (𝑆2) =  𝑀2[  𝑖 𝑖 − 1 𝜋𝑖

𝑚∗−1
𝑖=1 𝑒  + m*(m*-

1)𝜋𝑚∗ (𝐼 − 𝑅)−1𝑒  +2m*𝜋𝑚∗ (I-R)−2Re +2𝜋𝑚∗(I-R)−3 𝑅2 e + 𝑖𝜋𝑖
𝑚∗−1
𝑖=0 𝑒+𝜋𝑚∗m*(I-R)−1e  +  𝜋𝑚∗(I-R)−2 Re] 

+  𝜋𝑖
𝑚∗−1
𝑖=0 η + 𝜋𝑚∗(I-R)−1η +2M [  𝑖𝜋𝑖

𝑚∗−1
𝑖=0 𝜉+𝜋𝑚∗m*(I-R)−1ξ +   𝜋𝑚∗(I-R)−2 R ξ].                           (43)                                                                                                                                                              

Using (41) and (43) the variance can be written for Sub Case

 

III. MODEL (B). MAXIMUM ARRIVAL SIZE M IS LESS 

THAN MAXIMUM SERVICE SIZE N 

 In this Model (B) the dual case of Model (A), namely the case, M < N is treated. Here the partitioning matrices 

are of order Nk and the customers are considered as members of N blocks, M plays no role in the partition 

where as it played the major role in Model (A).  Two Sub Cases namely (B1) N ≥ C and (B2) C > N come up in 

the Model (B). (When M =N and for various values of C greater than them, or less than them or equal to them, 

both models are applicable and one can use any one of them.) The assumption (v) of Model (A) alone is 
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modified without changing other assumptions stated earlier for the same.                                                                                                                                                                                               

3.1Assumption.                                                                                                                                                                 

v) The maximum of the maximums of arrival sizes in all the environments M = max1 ≤𝑖 ≤𝑘 𝑀𝑖 is less than the 

maximum of the maximums of service sizes in all the environments N =max1 ≤𝑖 ≤𝑘 𝑁𝑖    where the maximum 

arrival and service sizes are 𝑀𝑖 and  𝑁𝑖 in the environment i for 1 ≤ i ≤ k.                                                                    

3.2Analysis                                                                                                                                                                              

Since this model is dual, the analysis is similar to that of Model (A). The differences are noted below. The state 

space of the chain is as follows defined in a similar way presented for Model (A).                                                                                                                                                  

X (t) = {(n, j, i): for 0 ≤ j ≤ N-1 for 1 ≤ i ≤ k and 0 ≤ n < ∞} (44)                                                                                                                                                                           

The chain is in the state (n, j, i) when the number of customers in the queue is, n N + j, and the environment 

state is i for 0 ≤ j ≤ N-1, for 1 ≤ i ≤ k and 0 ≤ n < ∞. When the customers in the system is r then r is identified 

with (n, j) where r on division by N gives n as the quotient and j as the remainder.                                                                                              

3.2.1 Sub Case: (B1) N ≥ C  

The infinitesimal generator 𝑄𝐵,3.1 of the Sub Case (B1) of Model (B) has the same block partitioned structure 

given in (4) for the Sub Cases (A1) and (A2) of Model (A) but the inner matrices are of different orders and 

elements. 

𝑄𝐵,3.1=

 
 
 
 
 
 
𝐵"1 𝐴"0 0 0 . . . ⋯
𝐴"2 𝐴"1 𝐴"0 0 . . . ⋯

0 𝐴"2 𝐴"1 𝐴"0 0 . . ⋯
0 0 𝐴"2 𝐴"1 𝐴"0 0 . ⋯
0 0 0 𝐴"2 𝐴"1 𝐴"0 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ⋱ ⋱ 

 
 
 
 
 

                                                                                         (45)                                                           

In (45) the states of the matrices are listed lexicographically as  0, 1, 2, 3, … . 𝑛, ….Here the state vector is given 

as follows. 𝑛 = ((n, 0, 1),…(n, 0, k),(n, 1, 1),…(n, 1, k),(n, 2, 1),…(n, 2, k),…(n, N-1, 1),…(n, N-1, k)), for 0 ≤ n 

< ∞. The matrices, 𝐵′′1,  𝐴′′0  ,𝐴′′1  𝑎𝑛𝑑 𝐴′′2 are all of order Nk. The matrices  𝐵′′1  𝑎𝑛𝑑 𝐴′′1 have negative 

diagonal elements and their off diagonal elements are non- negative. The matrices 𝐴′′0  𝑎𝑛𝑑 𝐴′′2 have 

nonnegative elements. They are all given below. As in model (A), 

letting 𝛬𝑗 , 𝑓𝑜𝑟 1 ≤ 𝑗 ≤ 𝑀 , 𝑎𝑛𝑑   𝑈𝑗 , 𝑉𝑗   𝑓𝑜𝑟 1 ≤ 𝑗 ≤ 𝑁, Λ and U as diagonal matrices of order k given by (5) 

and (6) and letting 𝒬1
′ = 𝒬1 − 𝛬 − 𝐶𝑈, the partitioning matrices are defined below 

 
 

𝐴′′1 =

 
 
 
 
 
 
 
 
 
 
 

𝒬1
′ 𝛬1 𝛬2 ⋯ 𝛬𝑀 0 0 ⋯ 0 0

𝐶𝑈1 𝒬1
′ 𝛬1 ⋯ 𝛬𝑀−1 𝛬𝑀 0 ⋯ 0 0

𝐶𝑈2 𝐶𝑈1 𝒬1
′ ⋯ 𝛬𝑀−2 𝛬𝑀−1 𝛬𝑀 ⋯ 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝐶𝑈𝑁−𝑀−1 𝐶𝑈𝑁−𝑀−2 𝐶𝑈𝑁−𝑀−3 ⋯ 𝒬1

′ 𝛬1 𝛬2 ⋯ 𝛬𝑀−1 𝛬𝑀

𝐶𝑈𝑁−𝑀 𝐶𝑈𝑁−𝑀−1 𝐶𝑈𝑁−𝑀−2 ⋯ 𝐶𝑈1 𝒬1
′ 𝛬1 ⋯ 𝛬𝑀−2 𝛬𝑀−1

𝐶𝑈𝑁−𝑀+1 𝐶𝑈𝑁−𝑀 𝐶𝑈𝑁−𝑀−1 ⋯ 𝐶𝑈2 𝐶𝑈1 𝒬1
′ ⋯ 𝛬𝑀−3 𝛬𝑀−2

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝐶𝑈𝑁−2 𝐶𝑈𝑁−3 𝐶𝑈𝑁−4 ⋯ 𝐶𝑈𝑁−𝑀−2 𝐶𝑈𝑁−𝑀−3 𝐶𝑈𝑁−𝑀−2 ⋯ 𝒬1

′ 𝛬1

𝐶𝑈𝑁−1 𝐶𝑈𝑁−2 𝐶𝑈𝑁−3 ⋯ 𝐶𝑈𝑁−𝑀−1 𝐶𝑈𝑁−𝑀−2 𝐶𝑈𝑁−𝑀−1 ⋯ 𝐶𝑈1 𝒬1
′  

 
 
 
 
 
 
 
 
 
 

(48)                                                                                                                                                                                                                             
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Here, 𝒬1,𝑗
′ =  𝒬1 − 𝛬 − 𝑗𝑈 for 0 ≤ j ≤ C and  𝒬1,𝐶

′  = 𝒬1
′ . In (49) the case  C > N has been presented. When C=N,  

𝑉𝑗   and 𝑈𝑗  in 𝐵′′1 do not get C as multiplier in (49) and C appears as a multiplier of  𝑈 𝑗  in 𝐴′′2  and 𝐴′′1 in (47) 

and (48). The multiplier of matrices 𝑈𝑗  𝑎𝑛𝑑 𝑉𝑗   concerning the services increase by one in each row block from 

third row block as the row number increases by one, up to the row C+1  and it remains C in row blocks after that 

as given above. 

 
 

The basic generator (50) which is concerned with only the arrival and service is 𝒬𝐵
′′ =  𝐴′′0 + 𝐴′′1 + 𝐴′′2. This is 

also block circulant. Using similar arguments given for Model (A) it can be seen that its probability vector is 

𝑤 =  
ϕ

𝑁
,

ϕ

𝑁
,

ϕ

𝑁
, … ,

ϕ

𝑁
  and the stability condition remains the same. Following the arguments given for Sub Cases 

(A1) and (A2) of Model (A), one can find the stationary probability vector for Sub Case (B1) of Model (B) also 

in matrix geometric form. All performance measures in section 2.3 including the expectation of customers 

waiting for service and its variance for Sub Cases (A1) and (A2) of Model (A) are valid for Sub Case (B1) of  

Model (B) with M is replaced by N. It can also be seen that when N = C the system admits Matrix Geometric 

solution as in Model (A). 

 

3.2.2Sub Case: (B2) C > N                                                                 

The infinitesimal generator 𝑄𝐵,3.2 of the Sub Case (B2) of Model (B) has the same block partitioned structure 

given in (25) for Sub Case (A3) of Model (A) but the inner matrices are of different orders and elements. When 

C > N > M, the M/M/C bulk queue admits a modified matrix geometric solution as follows. The chain X (t) 

describing this Sub Case (B2), can be defined as in the Sub Case (B1). It has the infinitesimal generator 𝑄𝐵,3.2 of 

infinite order which can be presented in block partitioned form given below. When C > N, let C = m* N + n* 

where m* is positive integer and n* is nonnegative integer with 0 ≤ n* ≤ N-1. 

 

𝑄𝐵,3.2=

 
 
 
 
 
 
 
 
 
𝐵′′′1 𝐴′′0 0 0 0 ⋯ 0 0 0 0 ⋯
𝐴′′2,1 𝐴′′1,1 𝐴′′0 0 0 ⋯ 0 0 0 0 ⋯

0 𝐴′′2,2 𝐴′′1,2 𝐴′′0 0 ⋯ 0 0 0 0 ⋯

0 0 𝐴′′2,3 𝐴′′1,3 𝐴′′0 ⋯ 0 0 0 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0 ⋯ 𝐴′′2,𝑚∗ 𝐴′′1,𝑚∗ 𝐴′′0 0 ⋯

0 0 0 0 0 ⋯ 0 𝐴′′2 𝐴′′1 𝐴′′0 ⋯
0 0 0 0 0 ⋯ 0 0 𝐴′′2 𝐴′′1 ⋯
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋱ ⋱ ⋮ ⋱ 

 
 
 
 
 
 
 
 

                                   (51)                                                                           

 In (51) the states of the matrices are listed lexicographically as  0, 1, 2, 3, … . 𝑛, …. Here  the vector 𝑛 is of type                        

1 x k N and  𝑛 = ((n, 0, 1),(n, 0, 2)…(n, 0, k),(n, 1, 1),(n, 1, 2)…(n, 1, k)…(n, N-1, 1),(n, N-1, 2)…(n, N-1, k)                              
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for n ≥ 0. The matrices 𝐵′′′1 , 𝐴′′1𝑗   for 1 ≤ j ≤ m* and  𝐴′′1   have negative diagonal elements, they are of order 

Nk and their off diagonal elements are non- negative. The matrices 𝐴′′0 , 𝐴′′2,𝑗  𝑎𝑛𝑑 𝐴′′2  for 1 ≤ j ≤ m* have 

nonnegative elements and are of order Nk and the matrices 𝐴′′0 ,𝐴′′1𝑎𝑛𝑑 𝐴′′2 are same as defined earlier for Sub 

Case (B1) in equations (46), (47) and (48). Since C > N the number of servers in the system s equals the number 

of customers in the system L up to customer length becomes C= m* N + n*. When the number of customers 

becomes more than C, (L ≥ C), the number of servers in the system becomes constant C. When the number of 

customers becomes less than C, the number of servers again falls and equals the number of customers. As in 

model (A), letting 𝛬𝑗 , 𝑓𝑜𝑟 1 ≤ 𝑗 ≤ 𝑀 , 𝑎𝑛𝑑   𝑈𝑗 , 𝑉𝑗   𝑓𝑜𝑟 1 ≤ 𝑗 ≤ 𝑁, Λ and U as diagonal matrices of order k 

given by (5) and (6) and letting 𝒬1
′ = 𝒬1 − 𝛬 − 𝐶𝑈, the partitioning matrices are defined as follows. The matrix 

𝐴′′2,𝑗  is given below for 1 ≤ j < m*-1 is given below. 

𝐴′′2,𝑗 =

 
 
 
 
 
𝑗𝑁𝑈𝑁 𝑗𝑁𝑈𝑁−1 ⋯ 𝑗𝑁𝑈2 𝑗𝑁𝑈1

0 (𝑗𝑁 + 1)𝑈𝑁 ⋯ (𝑗𝑁 + 1)𝑈3 (𝑗𝑁 + 1)𝑈2

⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ (𝑗𝑁 + 𝑁 − 2)𝑈𝑁 (𝑗𝑁 + 𝑁 − 2)𝑈𝑁−1

0 0 ⋯ 0 (𝑗𝑁 + 𝑁 − 1)𝑈𝑁  
 
 
 
 

  (52)

 

The matrix 𝐴2,𝑚∗ is as follows given in (53) when C = m*N + n* is such that 0 ≤ n* ≤ N-1. 𝐴′′2,𝑚∗ =

 
 
 
 
 
 
 
(𝑁𝑚 ∗)𝑈𝑁 (𝑁𝑚 ∗)𝑈𝑁−1 ⋯ . ⋯ (𝑁𝑚 ∗)𝑈2 (𝑁𝑚 ∗)𝑈1

0 (𝑁𝑚 ∗ +1)𝑈𝑁 ⋯ . ⋯ (𝑁𝑚 ∗ +1)𝑈3 (𝑁𝑚 ∗ +1)𝑈2

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
0 0 ⋯ 𝐶𝑈𝑁 ⋯ 𝐶𝑈𝑛∗+2 𝐶𝑈𝑛∗+1

⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋮
0 0 ⋯ 0 ⋯ 𝐶𝑈𝑁 𝐶𝑈𝑁−1

0 0 ⋯ 0 ⋯ 0 𝐶𝑈𝑁  
 
 
 
 
 
 

            (53) 

 

 

 
 

The matrix 𝐴′′1,𝑚∗ is in (56) when C = m*N + n* and 0 ≤ n* ≤ N-1. From row block n*+1, the multiplier of 𝑈𝑗  is 

C. The matrix  𝐴′′1,𝑚∗ =

 
 
 
 
 
 
 
 
 
 

𝒬1,𝑁𝑚∗
′ 𝛬1 𝛬2 ⋯ 𝛬𝑀 0 0 ⋯ 0 0

(𝑁𝑚 ∗ +1)𝑈1 𝒬1,𝑁𝑚∗+1
′ 𝛬1 ⋯ 𝛬𝑀−1 𝛬𝑀 0 ⋯ 0 0

(𝑁𝑚 ∗ +2)𝑈2 (𝑁𝑚 ∗ +2)𝑈1 𝒬1,𝑁𝑚∗+2
′ ⋯ 𝛬𝑀−2 𝛬𝑀−1 𝛬𝑀 ⋯ 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝐶𝑈𝑛∗ 𝐶𝑈𝑛∗−1 𝐶𝑈𝑛∗−2 ⋯ 𝒬1,𝐶

′ 𝛬1 𝛬2 ⋯ . .

𝐶𝑈𝑛∗+1 𝐶𝑈𝑛∗ 𝐶𝑈𝑛∗−1 ⋯ 𝐶𝑈1 𝒬1
′ 𝛬1 ⋯ . .

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝐶𝑈𝑁−2 𝐶𝑈𝑁−3 𝐶𝑈𝑁−4 ⋯ 𝐶𝑈𝑁−𝑀−2 𝐶𝑈𝑁−𝑀−3 𝐶𝑈𝑁−𝑀−2 ⋯ 𝒬1

′ 𝛬1

𝐶𝑈𝑁−1 𝐶𝑈𝑁−2 𝐶𝑈𝑁−3 ⋯ 𝐶𝑈𝑁−𝑀−1 𝐶𝑈𝑁−𝑀−2 𝐶𝑈𝑁−𝑀−1 ⋯ 𝐶𝑈1 𝒬1
′  
 
 
 
 
 
 
 
 
 

    (56)                                                                               
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The basic generator for this model is also same as (50) which is concerned with only the arrival and the service. 

 𝒬𝐵
′′ =  𝐴′′0 + 𝐴′′1 + 𝐴′′2. This is also block circulant. Using similar arguments given for Model (A) it can be 

seen that its probability vector is 𝑤 =  
ϕ

𝑁
,

ϕ

𝑁
,

ϕ

𝑁
, … ,

ϕ

𝑁
  and the stability condition remains the same. Following 

the arguments given for Sub Case (A3) in section 2.2.2 of Model (A), one can find the stationary probability 

vector for Sub Case (B2) of Model (B) also in modified matrix geometric form. All the performance measures 

given in section 2.3 including the expectation of customers waiting for service and its variance for Sub Case 

(A3) are valid for Sub Case (B2) of Model (B) except M is replaced by N.       

                           

IV. NUMERICAL ILLUSTRATION 

                   For the models the varying environment is considered to be governed by the Matrix 𝒬1 =

 
−5 2 3
2 −4 2
4 2 −6

 . The arrival time and service time parameters of exponential distributions are respectively 

fixed in the three environments E1, E2 and E3 as 𝜆 =  10, 12, 14 𝑎𝑛𝑑 𝜇 = (4, 5, 6). Twelve examples are 

studied with various values for C, M and N. The maximum arrival size M and the maximum service size N in all 

environments are (i) M=N=4 in four examples, (ii) M=4, N=3 in four examples studied for Model (A) and (iii) 

M=3, N=4 in four examples studied for Model (B). In all these sets of different values of M and N, mentioned in 

(i), (ii) and (iii) the number of servers C are varied as C = 3, 4, 6 and 7. When M=N=4 the probabilities of bulk 

arrival and bulk service sizes in the environments are as follows given in Table1.                                                                                                                       

 

Table 1:  Probabilities of χ Arrival and ψ Service Sizes with Maximums = 4 in Three Environments. 

Environment P(Arrival 
size =1) 

P(Arrival 
size= 2) 

P(Arrival 
size =3) 

P(Arrival 
size =4) 

P(service 
size =1) 

P(service 
size =2) 

P(Servi
ce size 
=3) 

P(Servic
e size 
=2) 

 E1 .5 .4 0 .1 .5 .3 .1 .1 

 E2 .6 .4 0 0 .7 .2 .1 0 

 E3 .7 .3 0 0 .8 .2 0 0 

 

For the cases with M=3, without changing the arrival size probabilities given above in Table 1 for the 

environments E2 and E3, the arrival size probabilities in E1 are changed as follows P(Arrival size =1 ) =.5 

P(Arrival size =2) =.4, P(Arrival size=3)= .1 and P(Arrival size =4) =0. For the cases with N=3, without 

changing the service size probabilities given above in Table 1 for the environments E2 and E3, the service size 

probabilities in E1 are changed as follows P(Service size =1 ) =.5 P(Service size =2) =.3, P(Service size =3)= .2 

and P(Service size = 4) =0. Here same numbers of 30 iterations are performed to find the rate matrix R in all the 

twelve cases. When C =3 and C =4 matrix geometric results are seen and the results obtained are presented in 

Table2. When C= 6 and C=7 modified matrix geometric results are seen and the results obtained are presented 

in Table 3. Probabilities of various sizes of queue lengths S = 0, 1, 2, 3 and various blocks 0, 1, 2, 3 are 

obtained. Further P(S> 15), E(S) and VAR (S) are also derived for all the twelve cases. Norms, arrival rate and 

service rate values are presented. Figure 1 and figure 2 present probabilities of various queue sizes and block 

sizes for the twelve examples. Effects of variation of rates on expected queue length and on probabilities of 

queue lengths are exhibited in tables 2 and 3 respectively. The decrease in arrival rates (so also increase in 

service rates) makes the convergence of R matrix faster which can be seen in the decrease of norm values. 

Table2: Results Obtained For Matrix Geometric Models. 

  C=3,M=4=N C=3,M=4,N=3 C=3,M=3,N=4 C=4=M=N c=4,M=4,N=3 C=4,M=3,N=4 

P(S=0) 0.079684166 0.072645296 0.086694481 0.134207116 0.127898311 0.138717179 

P(S=1) 0.094816229 0.089299727 0.103026395 0.160159184 0.158139375 0.165224098 

P(S=2) 0.099972009 0.094739563 0.10844421 0.168932101 0.167596052 0.173956131 

P(S=3) 0.080822795 0.077354801 0.088540336 0.1362632 0.136279652 0.141667691 

π0e 0.3552952 0.334039388 0.386705422 0.599561601 0.589913389 0.619565098 

π1e 0.246062643 0.239774491 0.258608447 0.269420604 0.27246095 0.268090953 

π2e 0.151711966 0.152962345 0.149421908 0.087788452 0.091032247 0.079174934 
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π3e 0.093923215 0.098003396 0.086467581 0.028918419 0.030765921 0.023368742 

P(S>15) 0.153006976 0.175220381 0.118796643 0.014310924 0.015827493 0.009800274 

Norm 8.607020E-05 0.000121229 5.72322E-05 1.70312E-07 2.66577E-07 6.89660E-08 

Arrival 

Rate 4.322222222 4.322222222 4.22962963 4.322222222 4.322222222 4.22962963 

Service 

rate 5.35 5.238888889 5.35 7.133333333 6.985185185 7.133333333 

E(S) 8.177499726 8.832269818 7.221716529 3.754933893 3.853312418 3.52779164 

Var(S) 69.84639946 81.04471283 53.74109494 13.38646744 13.99187868 11.37540035 

 

Table3: Results Obtained For Modified Matrix Geometric Models 

  C=6,M=N=4 C=6,M=4,N=3 C=6,M=3,N=4 C=7,M=N=4 C=7,M=4,N=3 C=6,M=3,N=4 

P(S=0) 0.158294126 0.152216922 0.160879886 0.16058125 0.15450255 0.16284145 

P(S=1) 0.189049227 0.18816547 0.191805374 0.19176482 0.1909816 0.19413942 

P(S=2) 0.19939206 0.199573572 0.20194472 0.20224439 0.20255169 0.20439655 

P(S=3) 0.160751929 0.162182332 0.164403097 0.16305786 0.16458877 0.16641004 

π0e 0.707487342 0.702138296 0.719033078 0.71764832 0.71262461 0.72778746 

π1e 0.253070365 0.25695515 0.248707867 0.2598637 0.25727703 0.24859244 

π2e 0.03378797 0.034926405 0.028523013 0.02598637 0.02682887 0.02168998 

π3e 0.004819942 0.005080227 0.003299621 0.0027537 0.00289556 0.00176931 

P(S>15) 0.000834381 0.000899922 0.000436421 0.00034835 0.00037393 0.0001608 

Norm 3.83737E-12 5.86712E-12 7.50084E-13 5.06990E-14 7.6660E-14 7.2997E-15 

Arrival 

Rate 4.322222222 4.322222222 4.22962963 4.322222222 4.322222222 4.22962963 

Service 

rate 10.7 10.47777778 10.7 12.48333333 12.2240741 12.4833333 

E(S) 3.687861529 3.728565034 3.624089963 3.57175104 3.60833246 3.52397251 

Var(S) 6.669071323 6.652556207 6.393367815 6.24450839 6.21272314 6.06130732 

Figure 1: Probabilities of Queue lengths  
                                                                                                 

Figure 2: Probabilities of Block Queue Sizes  

 

V. CONCLUSION 

Two M/M/C bulk arrival and bulk service queues and their sub cases with randomly varying 

environments have been treated. The environment changes the arrival rates, the service rates, and the 

probabilities of sizes of bulk arrivals and bulk services. Matrix geometric and modified matrix geometric results 

have been obtained by suitably partitioning the infinitesimal generator by grouping of customers and 

environments together respectively when the number of servers is not greater than or greater than the maximum 

of the maximum arrival and maximum service sizes. The basic system generators of the queues are block 

circulant matrices which are explicitly presenting the stability condition in standard form. Numerical results for 
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various bulk queue models are presented and discussed. Effects of variation of rates on expected queue length 

and on probabilities of queue lengths are exhibited. The decrease in arrival rates (so also increase in service 

rates) makes the convergence of R matrix faster which can be seen in the decrease of norm values. The 

variances also decrease. Bulk PH/PH/C queue with randomly varying environments causing changes in sizes of 

the PH phases may produce further results if studied since PH/PH/C queue is a most general form almost 

equivalent to G/G/C queue. 
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