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Abstract: Multi-objective non-linear programs occur in various field of engineering application. One of the 

applications of such program is structural design problem. In this paper, we consider a generalized form of a 

multi-objective structural design problem. Triangular norm based fuzzy programming technique is used to solve 

these problem. The test problem includes a three-bar planar truss subjected to a single load condition. The model 

is illustrated with numerical examples.  
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I. INTRODUCTION 
Optimization is the process of minimizing or maximizing an objective function (e.g. cost, weight) of a 

structural system which has been frequently employed as the evaluation criterion in structural engineering 

applications. But in the practical optimization problems, usually more than one objective are required to be 

optimized, such as minimum mass or cost, maximum stiffness, minimum displacement at specific structural 

points, maximum natural frequency of free vibration, and maximum structural strain energy. This makes it 

necessary to formulate a multi-objective optimization problem. The first note on multi-objective optimization 

was given by Pareto; since then the determination of the compromise set of a multi-objective problem is called 

Pareto optimization. That is why the application of different optimization technique [11,16-19] to structural 

problems has attracted the interest of many researchers.  

In conventional mathematical programming, the coefficient or parameters of mathematical models are 

assumed to be deterministic and fixed. But, there are many situations where they may not be exactly known i.e., 

they may be somewhat uncertain in nature. Thus the decision making methods under uncertainty are needed. 
The fuzzy programming has been proposed from this point view. In decision making process, first Zadeh[2] 

introduced fuzzy set theory. Tanaka et al.[20]applied the concept of fuzzy sets to decision making problems by 

considering the objectives as fuzzy goals. Later on Bellman and Zadeh [3] used the fuzzy set theory to the 

decision making problem. Zimmermann [4] proposed a fuzzy multi-criteria decision making set, defined as the 

intersection of all fuzzy goals and their constraints.  

In practical, the problem of structural design may be formed as a typical non-linear programming 

problem with non-linear objective functions and constraints functions in fuzzy environment. Some researchers 

applied the fuzzy set theory to Structural model.  For example Wang et al. [1] first applied  -cut method to 

structural designs where the non-linear problems were solved with various design levels  , and then a 

sequence of solutions are obtained by setting different level-cut value of  . Rao [8] applied the same  -cut 

method to design a four–bar mechanism for function generating problem .Structural optimization with fuzzy 

parameters was developed by Yeh et.al [7]. In 1989, Xu [6] used two-phase method for fuzzy optimization of 

structures. In 2004, Shih et.al [9] used level-cut approach of the first and second kind for structural design 

optimization problems with fuzzy resources .Shih et.al [10] develop an alternative  -level-cuts methods for 

optimum structural design with fuzzy resources in 2003. Dey et.at [5] optimize structural model in fuzzy 

environment.  

Alsina et.al.  [13] introduced the t-norm into fuzzy set theory and suggested that the t-norms be used for 

the intersection of fuzzy sets. Different types of t-norms theory and their fuzzy inference methods were 

introduced by Gupta et.al.[14] .The extension of fuzzy implication operators and generalized fuzzy methods of 

cases were discussed by Ruan et.al. [15].  

In this paper we propose an approach to solve multi-objective structural model using t-norms based 

fuzzy optimization programming technique. In this structural model formulation, the objective functions are the 
weight of the truss and the deflection of loaded joint; the design variables are the cross-sections of 
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the truss members; the constraints are the stresses in members. The test problem includes a three-bar planar truss 

subjected to a single load condition. This approximation approach is used to solve this multi-objective structural 

optimization model.  

The remainder of this paper is organized in the following way. In section II, we discuss about structural 

optimization model. We discuss about mathematics Prerequisites and aggregation operator in section III and IV 

respectively. In section V, we discuss fuzzy optimization technique to solve multi-objective non-linear 

programming problem. In section VI, we discuss Pareto optimality test. In section VII, we solve multi-objective 

structural model using t-norms based fuzzy optimization. In section VIII, numerical solution of structural model 

of three bar truss. Finally we draw conclusions in section IX. 
 

II. MULTI-OBJECTIVE STRUCTURAL MODEL 
In the design of optimal structure i.e. lightest weight of the structure and minimum deflection of loaded 

joint that satisfies all stress constraints in members of the structure. To bar truss structure system the basic 

parameters (including the elastic modulus, material density, the maximum allowable stress, etc.) are known and 

the optimization’s target is that identify the optimal bar truss cross-section area so that the structure is of the 

smallest total weight, the minimum nodes displacement, in a given load conditions.  

The multi-objective Structural model can be expressed as: 

 
0

min max

( )

( )

( ) [ ]

Minimize WT A

minimize A

subject to A

A A A



 

 

                                                                                                                                       (1) 

where  1 2, ,.....,
T

nA A A A are design variables for the cross section, n is the group number of design variables 

for the cross section bar, 
1

n

i i ii
WT A L


 is the total weight of the structure, ( )A  is the deflection of loaded 

joint iL , iA and i  were the bar length, cross section area, and density of the thi  group bars respectively. ( )A is 

the stress constraint and  0 is maximum allowable stress of the group bars under various conditions, minA  and 

maxA  are the minimum and maximum cross section area respectively. 

 

III. PREREQUISITE MATHEMATICS 
III(a). Fuzzy Set:  

Let X is a set (space), with a generic element of X denoted by x  , that is ( )X x  .Then a Fuzzy set (FS) is 

defined as     , ( ) :AA x x x X   

where  : [0,1]
A

X   is the membership function of FS A .  ( )
A

x  is the degree of membership of the element 

x  to the set A . 

III(b).  -Level Set or  -cut of a Fuzzy Set:  

The  -level set  of the fuzzy set A  of X is a crisp set A that contains all the elements of  X that have 

membership values  greater than or equal to   i.e.    : ( ) , , [0,1]
A

A x x x X      . 

III(c). Convex fuzzy set:  

A fuzzy set A of the universe of discourse X  is convex if and only if for all 1 2,x x  in 

X ,           1 2 1 21 min ,
A A A

x x x x        when 0 1  . 

 

IV. AGGREGATION OPERATOR 
 When the rules in the decision support system contain more than one antecedent, the degrees of 

strength of antecedents need to be combined to determine the overall strength of the rule consequent. In the 

language of fuzzy sets, the membership values of the linguistic variables in the rule antecedents have to be 

combined using an aggregation operator. Formally, a general aggregation is a real function     : 0,1 0,1
n

T  , 

non decreasing in all arguments, with the properties  0 0T   and  1 1T  . 

General aggregation operators display the whole range of behavior, disjunctive, conjunctive, averaging, mixed, 

commutative, mutually reinforcing or otherwise and correspond to vague and loosely defined “and” and “or” 

connectives etc. Triangular norms and conforms and averaging operators are well known examples of the 
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aggregation operators. Different class of aggregation operators display substantially different behavior, it is not 

logical to use any particular class to provide generic representation of aggregation. Therefore, we will use 

general aggregation operators to model aggregation of rule antecedents in decision support systems. They will 

provide the highest degree of adaptability and excellent empirical fit. However, if there are strong reasons to 

restrict the selection to a particular family of operators, we will impose the relevant constraints.    

Consider general aggregation operator. The function can have a simple algebraic form, such as  

   1 2 1 2, ,...., min , ,......n nT x x x x x x
  

or  1 2 1 2

1

, ,...., .......

n

n n i

i

T x x x x x x x



    

or  1 2

1

, ,...., min 1,

n

n i

i

T x x x x



  
  

  
  

or   1
1 2, ,....,

n

ii
n

x
T x x x

n




  

The degree of importance of rule antecedents (vector a ) can be easily incorporated into aggregation operators 

in variety of ways. For example 

       1 1 2 2 1 1 2 2, ; , ;.......; , min , min , ...... min ,n n n nT x a x a x a x a x a x a     

   1 1 2 2 1 1 2 2, ; , ;.......; , min ....... ,1n n n nT x a x a x a x a x a x a     

In this article, decision making method used by the weighted bounded sum operator (member of Yager family of 

triangular conorms). 

 

V. FUZZY PROGRAMMING TECHNIQUE TO SOLVE MULTI-OBJECTIVE 

NON-LINEAR PROGRAMMING PROBLEM (MONLP) 
              A Multi-Objective Non-Linear Programming (MONPL) or Vector Minimization problem (VMP) may 

be taken in the following form: 

                 1 2( ) [ ( ), ( ),......... ( )]TkMinimize f x f x f x f x                                                                                        (2) 

subject to  : ( ) 1,2,3,....,n
j jx X x R g x or or b for j m         and ( 1,2,3,...., )i i il x u i n                   

             Zimmermann (1978) showed that fuzzy programming technique can be used to solve the multi-objective 

programming problem. 

            To solve MONLP problem, following steps are used: 

Step 1: Solve the MONLP (2) as a single objective non-linear programming problem using only one objective at 
a time and ignoring the others, these solutions are known as ideal solution. 

Step 2: From the result of step 1, determine the corresponding values for every objective at each solution 

derived. With the values of all objectives at each ideal solution, pay-off matrix can be formulated as follows: 

 

           

              

 

Here 1x , 
2x , 3x ,….., kx are the ideal solutions of the objectives 1( )f x , 2 ( )f x ,….., ( )kf x  respectively. 

So  1 2max ( ), ( ),......, ( )k
r r r rU f x f x f x  and   1 2min ( ), ( ),......, ( )k

r r r rL f x f x f x  

Where rU and rL  be upper and lower bounds of the thr objective function ( )rf x  for 1,2,3,........,r k . 

Step 3: Using aspiration level of each objective of the MONLP (3) may be written as follows: 
            Find x so as to satisfy   

                        ( )r rf x L   with tolerance  r r rP U L     for   1,2,3,........,r k  

                          x X .    ( 1,2,3,...., )i i il x u i n    

 1( )f x  2 ( )f x  …. ( )kf x  

1x  
* 1

1 ( )f x  
* 1

2 ( )f x  …. 
* 1( )kf x  

2x  
* 2

1 ( )f x  
* 2

2 ( )f x  …. 
* 2( )kf x  

…. …. …. …. …. 

kx  
*

1 ( )kf x  
*

2 ( )kf x   
*( )k

kf x  
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Here objective functions of (2) are considered as fuzzy constraints. These types of fuzzy constraints can be 

quantified by eliciting a corresponding membership function: 

 '

'

'

0 ( )

( )
( ( )) ( ) ,

1 ( )

r r

r r
r r r r r

r r

r r

if f x U

U f x
f x if L f x U

U L

if f x L



 

 

  





                                                                                                 (3) 

   where '
r r rL L  and 0 r r rU L   ,  for 1,2,3,...,r k  

                           
Figure 1: Membership function for objective functions ( )rf x  

Having elicited the membership functions as in (3) ( ( ))r rf x for 1,2,3,...,r k  a general aggregation function  

 1 1 2 2( ) ( ( ( )), ( ( )),......, ( ( )))k kD
x F f x f x f x     is introduced. 

So a fuzzy multi-objective decision making problem can be defined as 

               
 ( )

.

D
Maximize x

subject to x X




                                                                                                                                   (4) 

Fuzzy decision making method used by the (weighted) bounded sum operator (member of Yager family of 

triangular conforms) the problem (4) is reduced to 

  
1

1

; ( ( ))

0 ( ( )) 1 1,2,..,

0 1,2,..., , 1

k

r r rD

r

r r

k

r r

r

Maximize x W W f x

subject to x X

f x for r k

where W for all r k W

 











  

  





                                                                                                    (5) 

Step 4: Solve (5) to get optimal solution. 

 

Some basic definitions are introduced below. 

V(a). Complete Optimal Solution 
*x is said to be a complete optimal solution to the MONLP (3) if and only if there exists x X such 

that    *
r rf x f x  for 1,2,...,r k  and for all x X .However, when the objective functions of the MONLP 

conflict with each other, a complete optimal solution does not always exist and hence the Pareto Optimality 

Concept arises and it is defined as follows. 

 

V(b). Pareto Optimal Solution 

'
rL  rU  

( )rf x0 

1 

( ( ))r rf x  
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*x is said to be a Pareto optimal solution to the MONLP (3) if and only if there does not exist 

another x X such that    *
r rf x f x  for all 1,2,...,r k and    *

j jf x f x  for at least one j , 

 1,2,...,j k . 

 

VI. PARETO OPTIMALITY TEST 

A numerical test of Pareto optimality for 
*x  can be performed by solving the following problem: 

   
1

* , 1, 2,...,

; 0.

k

r

r

r r r

r

Maximize R

subject to f x f x r k

x X











  

 



                                                                                                         (6) 

The optimal solution of (6), say **x and  **
rf x  are called strong Pareto optimal solution provided V is very 

small otherwise it is called weak Pareto solution. 

 

VII. FUZZY PROGRAMMING TECHNIQUE IN MULTI-OBJECTIVE  

STRUCTURAL MODEL 
 To solve the above MOSOP (1), step 1 of  V  is used. After that according to step 2 pay-off matrix 

formulated as follows:  

 

 After that according to step 2, the bounds of objective are 1 1,U L  for weight function ( )WT A
 

(where 1 1( )L WT A U  ) and the bounds of objective are 2 2,U L  for deflection function  A
 

(where  2 2L A U  ) are identified. 

Above MOSOPP reduces to a FMOSOPP as follows; 

Find A  

Such that  

   1WT A L  with maximum allowable tolerance  1 1 1P U L   

   2A L   with maximum allowable tolerance  2 2 2P U L   

                                           

0

min max

( ) [ ]A

A A A

 

 
 

Here for simplicity linear membership functions   WT WT A  and
 

  A   for the objective functions 

 WT A  and  A  respectively are defined as follows: 

  

 

 
 

 

'

1

1 '

1 1'

1 1

1

1

0

WT

if WT A L

U WT A
WT A if L WT A U

U L

if WT A U



 


 
   

 
 

                 

  

 

 
 

 

'

2

2 '

2 2'

2 2

2

1

0

if A L

U A
A if L A U

U L

if A U






  



 


 
   

 
 

 

 ( )WT A  ( )A  

1A  
* 1*( )WT A  

1*( )A  

2A  
2*( )WT A  

* 2*( )A  
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 According to step-3, having elicited the above membership functions crisp non-linear programming problem is 

formulated as follows 

 

      1 2WTMaximize W WT A W A  
                                                                                                       (7) 

     

min max

1 2 1 2

0 1, 0 1,

( ) [ ],

,

0, 0, 1;

WT

subject to

WT A A

A

A A A

W W W W

  

 

   



 

   

 

The problem (7) can be written as  

   1 2

1 2' '

1 1 2 2

U WT A U A
maximize W W

U L U L

     
          

                                                                                              (8) 

   1 2

' '

1 1 2 2

min max

1 2 1 2

0 1, 0 1,

( ) [ ],

,

0, 0, 1;

subject to

U WT A U A

U L U L

A

A A A

W W W W



 

    
      

    



 

   

 

                     

VIII. NUMERICAL SOLUTION OF A MULTI-OBJECTIVE STRUCTURAL 

OPTIMIZATION MODEL OF A THREE-BAR TRUSS 
            A well-known three bar [12] planar truss structure is considered. The design objective is to minimize 

weight of the structural  1 2,WT A A  and minimize the deflection  1 2,A A  along x and y axes at loading 

point of a statistically loaded three-bar planar truss subjected to stress   constraints on each of the truss 

members. 

 
Figure 2. Design of the three-bar planar truss 

The multi-objective optimization problem can be stated as follows: 
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   

 
 

 

 
 

 
 

 
 

 

1 2 1 2

1 2
1 2 2

1 1 2

2
1 2 2

1 1 2

1 2
1 1 2 12

1 2 1
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3 1 2 32

1 2 1

min max

, 2

2
,

2 2

,
2 2

2
,

2 2

,
2

,
2 2

;

x

y

T

T

C

i i i

Minimize WT A A L A A

PL A A
minimize A A

E A A A

PLA
minimize A A

E A A A

P A A
subject to A A

A A A

P
A A

A A

PA
A A

A A A

A A A i







 

 

 

 










  
 

  
 

  
 

  1,2

                                                                                                     (9)                          

Where P = applied load;  =material density, L =Length, E=Young’s modulus, 1A = cross section of bar-1 and 

bar-3, 2A =cross section of bar-2. 
x  and 

y are the deflection of loaded joint along x and y axes 

respectively. 1
T 

 
and 2

T 
 

the maximum allowable tensile stress for bar 1 and bar 2 respectively. 3
C 

 
is the 

maximum allowable compressive stress for bar 3. 

 

The input data for MOSOP (9) is given as follows   

 

Table 1: Input data for crisp model (9) 

Appli

ed 
load

P
 

 KN  

Volume 

density 
 

 3/KN m  

Length   

L
 

 m  

Maximum 

allowable   

tensile  

stress 

1
T 

   

 2/KN m  

Maximum 

allowable   

tensile  

stress 

2
T 

   

 2/KN m  

Maximum 

allowable 

compressive 
stress 

3
C 

   

 2/KN m  

Young’s 

modulus E
 

 2/KN m  

min
iA and  

max
iA of  

cross section  

of bars 

 4 210 m
 

20  100  1  20  10  20  82 10  

min
1 0.1A 

 
max
1 5A 

 
min
2 0.1A 

max
2 5A   

Solution: According to step 2 pay off matrix is formulated as follows:  

 

 
1 2( , )WT A A  1 2( , )x A A  1 2( , )y A A  

1A  2.187673 20 5.857864 

2A  15 3 1 

3A  10.1 3.960784 0.039216 

                    

 

Here 15WTU  , 2.187673WTL  , 
' 3WTL  20

x
U  , 3

x
L  ,

' 3.5
x

L  , 5.857864
y

U  , 0.039216
y

L  , 

' 0.15
y

L  ; Here linear membership for the objective functions 1 2( , )WT A A  , 1 2( , )x A A and 1 2( , )y A A are 

defined as follows: 
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Figure 4. Membership and non-membership function for 
1 2( , )x A A
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                                Figure 5. Membership and non-membership function for 

1 2( , )y A A
 

Now Fuzzy decision making method used by weighted bounded sum operator (member of Yager family of 

triangular conorms) , 

     1 1 2 2 1 2 3 1 2( , ) ( , ) ( , )x yMaximize F W WT A A W A A W A A      

 

                                                          (10)
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The solution obtained from Eq. (10) is given in table 2.  

 

Table 2: Optimal results of MOSOP (9) 

1W  2W

 
3W

 

*

1

4 210

A

m
 

*

2

4 210

A

m
 

 *

1 2

2

,

10

WT A A

KN
 

 *

1 2

7

,

10

x A A

m




 

 *

1 2

7

,

10

y A A

m



  

1 3  1 3  1 3  2.661308 0.1029932 5.425610 7.375100 0.14 

0.6 0.2 0.2 1.645225 0.1 3.390449 11.80812 0.3482759 

0.2 0.6 0.2 4.542762 0.3 9.394060 4.262608 0.14 

0.2 0.2 0.6 2.661309 0.1029933 5.425611 7.375099 0.14 

 

In table 3, the value of R  is quite small and hence the optimal results in table 2 are strong Pareto-optimal 

solution and can be accepted.  
 

0.14  5.857864  
1 2( , )y A A  

 1 2( , )y A A 

 

0 

1 
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Table 3: Pareto optimal results of MOSOP (9) 

R

 

**

1

4 210

A

m
 

**

2

4 210

A

m
 

 **

1 2

2

,

10

WT A A

KN
 

 **

1 2

7

,

10

x A A

m




 

 **

1 2

7

,

10

y A A

m



  

60.5277774 10  2.661308 0.1029933 5.425609 7.375100 0.14 

 

IX.  CONCLUSIONS 
The present paper proposes a solution procedure for structural model. The results of this study may 

lead to the development of effective t-norm optimization method. This solution procedure may be used for 

solving other model of nonlinear programming problem in different field. 
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