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Abstract: This paper studies two stochastic bulk arrival and bulk service PH/PH/1 queue Models (A) and (B) 

with randomly varying k* distinct environments. The arrival and service distributions are (𝛼𝑖 , 𝑇𝑖) and (𝛽𝑖 , 𝑆𝑖) in 

the environment i for 1 ≤ i ≤ k* respectively. Whenever the environment changes from i to j the arrival PH and 

service PH distributions change from the i version to the j version with the exception of the first remaining 

arrival time and first remaining service time have stationary PH distributions of the j version which is known as 

equilibrium PH distribution for 1 ≤ i, j ≤  k* and on completion of the same the arrival and service distributions 

become initial versions  (𝛼𝑗 , 𝑇𝑗 ) and (𝛽𝑗 , 𝑆𝑗 ). The queue system has infinite storing capacity and the state space 

is identified as five dimensional one to apply Neuts’ matrix methods. The arrivals and the services occur 

whenever absorptions occur in the corresponding PH distributions. The sizes of the arrivals and the services are 

finite valued discrete random variables with distinct distributions with respect to environments and with respect 

to PH phases from which the absorptions occur. Matrix partitioning method is used to study the models. In 

Model (A) the maximum of the arrival sizes is greater than the maximum of the service sizes and the 

infinitesimal generator is partitioned mostly as blocks of the sum of the products of PH arrival and PH service 

phases in the various environments times the maximum of the arrival sizes for analysis. In Model (B) the 

maximum of the arrival sizes is less than the maximum of the service sizes. The generator is partitioned mostly 

using blocks of the same sum-product of phases times the maximum of the service sizes. Block circulant matrix 

structure is noticed in the basic system generators. The stationary queue length probabilities, its expected 

values, its variances and probabilities of empty levels are derived for the two models using matrix methods. 

Numerical examples are presented for illustration.                                                                                                                                                                                             
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I. INTRODUCTION 
 In this paper two bulk arrival and bulk service PH/PH/1 queues with random environment have been 

studied using matrix geometric methods.  Numerical studies on matrix methods are presented by Bini, Latouche 

and Meini [1]. Multi server model has been of interest in Chakravarthy and Neuts [2].  Birth and death model 

has been analyzed by Gaver, Jacobs and Latouche [3]. Analytic methods are focused in Latouche and 

Ramaswami [4] and for matrix geometric methods one may refer Neuts [5]. For M/M/1 bulk queues with 

random environment models one may refer Rama Ganesan, Ramshankar and Ramanarayanan [6] and M/M/C 

bulk queues with random environment models are of interest in Sandhya, Sundar, Rama, Ramshankar and 

Ramanarayanan [7]. PH/PH/1 bulk queues without variation of environments have been treated by Ramshankar, 

Rama Ganesan and Ramanarayanan [8]. The models considered here are general compared to existing models. 
Random number of arrivals and random number of services are considered at a time. Fixed numbers of 

customers are cleared by a service in the models of Neuts and Nadarajan [9]. In real life situations when a 

machine manufactures a fixed number of products in every production schedule, the defective items are rejected 

in all production lots’, making the production lot is only of random size and not a fixed one always. Situations 

of random bulk services are seen often in software based industries where finished software projects waiting for 

marketing are sold in bulk sizes when there is economic boom and the business may be insignificant when there 

is economic recession. In industrial productions, bulk types are very common. Manufactured products arrive in 

various bulk sizes for sale in markets and the products are sold in various bulk sizes depending on market 

requirements. Noam Paz and Uri Yechali [10] have studied M/M/1 queue with disaster. Usually bulk arrival 

models have M/G/1 upper-Heisenberg block matrix structure. The decomposition of a Toeplitz sub matrix of the 
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infinitesimal generator is required to find the stationary probability vector as done in William J. Stewart [11] 

and matrix geometric structures have not been noted.  In such models the recurrence relation method to find the 

stationary probabilities is stopped at a certain level in most general cases using a terminating analysis very well 

explained by Qi-Ming He [12] and this stopping limitation of terminating method converts an infinite arrival 

system to a finite arrival one. In special cases generating function has been identified by Rama and 

Ramanarayanan [13]. However the division modulo partitioning of the infinitesimal generator along with 

environment and PH phases used in the paper is presenting matrix geometric solution for finite sized arrivals 

and services models. The M/PH/1 and PH/M/C queues with random environments have been studied by Usha 

[14] and [15] without bulk arrivals and bulk services. It has been noticed by Usha [14, 15] that when the 
environment changes the remaining arrival and service times are to be completed in the new environment. The 

residual arrival time and the residual service time distributions in the new environment are to be considered in 

the new environment at an arbitrary epoch since the spent arrival time and the spent service time have been in 

the previous environment with distinct sizes of PH phase. Further new arrival time and new service time from 

the start using initial PH distributions of the new environment cannot be considered since the arrival and the 

service have been partly completed in the previous environment indicating the stationary versions of the arrival 

and service distributions in the new environments are to be used for the completions of the residual arrival and 

service times in the new environment and on completion of the same the next arrival and service onwards they 

have initial versions of the PH distributions of the new environment. The stationary version of the distribution 

for residual time has been well explained in Qi-Ming He [12] where it is named as equilibrium PH distribution. 

Randomly varying environment PH/PH/1 queue models with bulk arrival and bulk service have not been treated 
so far at any depth. In this paper the partitioning of the matrix is carried out in a way that the stationary 

probability vector exhibits a matrix geometric structure for PH/PH/1 bulk queues with random environment 

where the arrivals and service sizes are finite. Two models (A) and (B) on PH/PH/1 bulk queue systems with 

infinite storage space for customers are studied using the block partitioning method. Model (A) presents the case 

when M, the maximum of the arrival sizes is bigger than N, the maximum of the service sizes. In Model (B), its 

dual case N is bigger than M, is treated. In general in Queue models, the state space of the system has the first 

co-ordinate indicating the number of customers in the system but here the customers in the system are grouped 

and considered as members of blocks of sizes of the maximum for finding the rate matrix. Using the maximum 

of the bulk arrival size or the maximum of the bulk service size and grouping the customers as members of 

blocks in addition to coordinates of the arrival and service phases for the partitioning the infinitesimal generator 

is a new approach in this area. The matrices appearing as the basic system generators in these two models due to 

block partitioned structure are seen as block circulant matrices. The paper is organized in the following manner. 
In sections II and III the stationary probability of the number of customers waiting for service, the expectation 

and the variance and the probability of empty queue are derived for these Models (A) and (B). In section IV 

numerical cases are presented to illustrate them.   

 

II.MODEL (A): MAXIMUM ARRIVAL SIZE M > MAXIMUM SERVICE SIZE N 
2.1Assumptions                                                                                                                                                              
(i)There are k* environments. The environment changes as per changes in a continuous time Markov chain with 

infinitesimal generator 𝑄1 of order k* with stationary probability vector π’. 

(ii)In the environment i for 1 ≤ i ≤ k*, the time between consecutive epochs of bulk arrivals of customers has 

phase type distribution ( 𝛼𝑖 , 𝑇𝑖) where 𝑇𝑖 is a matrix of order 𝑘𝑖  with absorbing rate 𝑇′𝑖 =  −𝑇𝑖𝑒 to the  absorbing 

state 𝑘𝑖+1 from where the arrival process moves instantaneously to a starting state as per the starting vector  𝛼𝑖   

= (𝛼𝑖 ,1 , 𝛼𝑖 ,2 . , … ,   𝛼𝑖 ,𝑘𝑖
) and  𝛼𝑖 ,𝑗

𝑘𝑖
𝑗=1  = 1. Let 𝜑𝑖  be the invariant probability vector of the generator matrix 

(𝑇𝑖 + 𝑇′𝑖  𝛼𝑖).                                                                                                         
(iii) In the environment i for 1 ≤ i ≤ k*,when the absorption occurs in the PH arrival  process due to  transition 

from a state  j to state 𝑘𝑖 +1,  𝜒𝑗
𝑖  number of customers arrive  with probabilities P ( 𝜒𝑗

𝑖 = n) = 𝑝𝑛𝑗
𝑖 for 1 ≤ n ≤ 𝑀𝑗

𝑖  

and  𝑝𝑛𝑗
𝑖

𝑀𝑗
𝑖

𝑛=1 =1where 𝑀 𝑗
𝑖 is the maximum arrival size for PH phase j where 1≤  j ≤ 𝑘𝑖  .                                                                                                                                                                               

(iv) In the environment i for 1 ≤ i ≤ k*,  the time between consecutive epochs of bulk services of customers has 

phase type distribution  (𝛽𝑖 , 𝑆𝑖) where 𝑆𝑖  is a matrix of order 𝑘′𝑖   with absorbing rate 𝑆′𝑖 =  −𝑆𝑖𝑒 to the  

absorbing state 𝑘′𝑖+1 from where the service process moves instantaneously to a starting state as per the staring 

vector 𝛽𝑖   = (𝛽𝑖 ,1 , 𝛽𝑖 ,2 . , … ,   𝛽𝑖 ,𝑘′ 𝑖
) and  𝛽𝑖 ,𝑗

𝑘′ 𝑖
𝑗=1  = 1. Let 𝜙𝑖 be the invariant probability vector of the generator 

matrix (𝑆𝑖 + 𝑆′𝑖  𝛽𝑖).                                                                                             

(v) In the environment i for1 ≤ i ≤ k*, customers of bulk size  𝜓𝑗
𝑖  are served at epoch when the absorption occurs 

due to a transition from state j to state  𝑘′𝑖+1, with probabilities P( 𝜓𝑗
𝑖  = n) = 𝑞𝑛𝑗

𝑖  for 1≤ n ≤ 𝑁𝑗
𝑖   and  𝑞𝑛𝑗

𝑖
𝑁𝑗
𝑖

𝑗=1
 = 

1, when more than 𝑁𝑗
𝑖  customers are waiting for service where 𝑁𝑗

𝑖  is the maximum  service size for PH phase j 
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where  1 ≤ j ≤ 𝑘′𝑖  . When n customers n < 𝑁𝑗
𝑖  are waiting for service, then n’ customers are served with 

probability  𝑞𝑛′𝑗
𝑖    for 1≤ n’ ≤ n-1 and n customers are served with probability   𝑞𝑛𝑗

𝑖
𝑁𝑗
𝑖

𝑗=𝑛
  for PH phase j where   

1 ≤ j ≤ 𝑘′𝑖 .                                       
(vi) When the environment changes from i to j for 1 ≤ i, j ≤ k*, the arrival and service distributions in the new 

environment j are the stationary (equilibrium )versions of arrival time and service time distributions in the new 

environment, namely, (𝜑𝑗  , 𝑇𝑗 ) and  (𝜙𝑗 , 𝑆𝑗 ) respectively for the completions of the residual arrival and service 

times and on completion of the same the next arrival and service onwards they have initial versions of the PH 

distributions of the new environment namely (𝛼𝑗  , 𝑇𝑗 ) and  (𝛽𝑗 , 𝑆𝑗 ) respectively.                                                                                                                                                  

(vii) The maximum arrival size M= ma𝑥1≤𝑖≤𝑘∗ max1 ≤𝑗  ≤𝑘𝑖
𝑀 𝑗

𝑖  is greater than the maximum service size                                           

N= ma𝑥1≤𝑖≤𝑘∗ max1 ≤𝑗  ≤𝑘′ 𝑖
𝑁 𝑗

𝑖 .                                                                                                                              

2.2.Analysis                                                                                                                                                                                        

The state of the system of the continuous time Markov chain X (t) under consideration is presented as follows.                                                                                                                                                                                                  

X(t) = {(0, i, j) : for 1 ≤ i ≤ k* 1 ≤ j ≤ 𝑘𝑖)} U {(0, k, i, j, j’) ; for 1 ≤ k ≤ M-1; 1 ≤ i ≤ k*; 1 ≤ j ≤ 𝑘𝑖 ; 1 ≤ j ≤ 𝑘′𝑖}                        
U {(n, k, i, j, j’): for 0 ≤ k ≤ M-1; 1 ≤ i ≤ k*; 1 ≤ j ≤ 𝑘𝑖 ; 1 ≤ j ≤ 𝑘′𝑖  and n ≥ 1}.                                                 (1)                                                                                                                                                                                                             

The chain is in the state (0, i, j) when the number of customers in the queue is 0, the environment state is i for 1 

≤ i ≤ k*and the arrival phase is j for 1 ≤ j ≤ 𝑘𝑖 . The chain is in the state (0, k, i, j, j’) when the number of 

customers is k for 1 ≤ k ≤ M-1, the environment state is i for 1 ≤ i ≤ k*, the arrival phase is j for 1 ≤ j ≤ 𝑘𝑖 and 

the service phase is j’ for 1 ≤ j’ ≤  𝑘′𝑖. The chain is in the state (n, k, i, j, j’) when the number of customers in the 

queue is n M + k, for 0 ≤ k ≤ M-1 and 1 ≤ n < ∞, the environment state is i for 1 ≤ i ≤ k*, the arrival phase is j 

for 1 ≤ j ≤ 𝑘𝑖 and the service phase is j’ for 1 ≤ j’ ≤ 𝑘′𝑖 . When the number of customers waiting in the system is 

r, then r is identified with (n, k) where r on division by M gives n as the quotient and k as the remainder. Let the 

survivor probabilities of arrivals 𝜒𝑗
𝑖  and of services 𝜓𝑗

𝑖  be respectively  P( 𝜒𝑗
𝑖 >m)= 𝑃𝑚𝑗

𝑖  =1- 𝑝𝑛𝑗
𝑖 𝑚

𝑛=1 ,for                       

1 ≤ m ≤ 𝑀𝑗
𝑖  -1 and 1≤ j ≤ 𝑘 𝑖                                                                                                                                  (2)                                                                                                                                                                                                                                                       

P( 𝜓𝑗
𝑖 >m)= 𝑄𝑚𝑗

𝑖 =1- 𝑞𝑛𝑗
𝑖 𝑚

𝑛=1 , for 1 ≤ m ≤ 𝑁𝑗
𝑖  -1and 1≤ j ≤ 𝑘′𝑖                                                                               (3)                                                                                                             

with 𝑃0𝑗
𝑖 = 1,  for all j, 1≤ j ≤ 𝑘𝑖  and  𝑄0𝑗

𝑖 = 1 for all j , 1≤ j ≤ 𝑘′𝑖  for the environment state i for 1 ≤ i ≤ k* .                                                                                                                                                                                                                                                                                                           

The chain X (t) describing model has the infinitesimal generator 𝑄𝐴 of infinite order which can be presented in 

block partitioned form given below. 

𝑄𝐴=

 
 
 
 
 
 
𝐵1 𝐵0 0 0 . . . ⋯
𝐵2 𝐴1 𝐴0 0 . . . ⋯
0 𝐴2 𝐴1 𝐴0 0 . . ⋯
0 0 𝐴2 𝐴1 𝐴0 0 . ⋯
0 0 0 𝐴2 𝐴1 𝐴0 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ⋱ ⋱  

 
 
 
 
 

                                                                                                                           (4)                                                                                 

 In (4) the states of the matrices are listed lexicographically as 0, 1, 2, 3, …. For partition purpose the zero states 

in the first two sets given in (1) are combined. The vector 0 is of type 1 x [ 𝑘𝑖
𝑘∗
𝑖=1 + (𝑀 − 1)  𝑘𝑖

𝑘∗
𝑖=1 𝑘′𝑖] and is                                        

0=((0,1,1),(0,1,2),(0,1,3)…(0,1, 𝑘1),(0,2,1),(0,2,2),(0,2,3)…(0,2, 𝑘2),……(0,k*,1),(0,k*,2),(0,k*,3)…(0,k*,𝑘𝑘∗), 

(0,1,1,1,1),(0,1,1,1,2)….(0,1,1,1, 𝑘′1),(0,1,1,2,1),(0,1,1,2,2)….(0,1,1,2,𝑘′1),(0,1,1,3,1)....(0,1,1,3,𝑘′1)…..(0,1,1,

𝑘1,1)…(0,1,1,𝑘1 , 𝑘′1),(0,1,2,1,1),(0,1,2,1,2)….(0,1,2,1, 𝑘′2),(0,1,2,2,1),(0,1,2,2,2)….(0,1,2,2,𝑘′2),(0,1,2,3,1)....(0

,1,2,3,𝑘′2)….(0,1,2,𝑘2,1)…(0,1,2,𝑘2 , 𝑘′2),(0,1,3,1,1)…(0,1,3,𝑘3 , 𝑘′3)…(0,1,k*,1,1),…,(0,1,k*,𝑘𝑘∗ , 𝑘′𝑘∗),(0,2,1,1

,1),(0,2,1,1,2),…,(0,2,k*,𝑘𝑘∗,𝑘′𝑘∗),(0,3,1,1,1)…(0,3,k*,𝑘𝑘∗𝑘𝑘∗),(0,4,1,1,1)…(0,4,k*,𝑘𝑘∗𝑘′𝑘∗)…(0,M-1,1,1,1)…     

(0,M-1,k*,𝑘𝑘∗, 𝑘′𝑘∗)) and the vector 𝑛 is of type 1x[𝑀  𝑘𝑖
𝑘∗
𝑖=1 𝑘′𝑖] and is given in a similar manner as follows 

𝑛=(n,0,1,1,1),(n,0,1,1,2)….(n,0,1,1, 𝑘′1),(n,0,1,2,1),…(n,0,1,2,𝑘′1),…(n,0,k*,1,1),…(n,0,k*,𝑘𝑘∗, 𝑘′𝑘∗),(n,1,1,1,1)

….(n,1,k*,𝑘𝑘∗,𝑘′𝑘∗),(n,2,1,1,1)....(n,2,k*,𝑘𝑘∗,𝑘′𝑘∗)……..(n,M-1,1,1,1),(n,M-1,1,1,2)……(n,M-1,k*,𝑘𝑘∗, 𝑘′𝑘∗)).                     

The matrices𝐵1𝑎𝑛𝑑 𝐴1 have negative diagonal elements, they are of orders [ 𝑘𝑖
𝑘∗
𝑖=1 + (𝑀 − 1)  𝑘𝑖

𝑘∗
𝑖=1 𝑘′𝑖] and 

[𝑀 𝑘𝑖
𝑘∗
𝑖=1 𝑘′𝑖] respectively and their off diagonal are non-negative.                                                                                                                                         

The matrices  𝐴0  𝑎𝑛𝑑𝐴2 have nonnegative elements and are of order [ 𝑀 𝑘𝑖
𝑘∗
𝑖=1 𝑘′𝑖  ]   . The matrices 𝐵0  𝑎𝑛𝑑 𝐵2   

have non-negative elements and are of types [ 𝑘𝑖
𝑘∗
𝑖=1 + (𝑀 − 1)  𝑘𝑖

𝑘∗
𝑖=1 𝑘′𝑖] x [ 𝑀 𝑘𝑖

𝑘∗
𝑖=1 𝑘′𝑖  ]   and                         

[ 𝑀  𝑘𝑖
𝑘∗
𝑖=1 𝑘′𝑖  ]   x [ 𝑘𝑖

𝑘∗
𝑖=1 + (𝑀 − 1)  𝑘𝑖

𝑘∗
𝑖=1 𝑘′𝑖]. Component matrices of 𝐴𝑖  𝑎𝑛𝑑 𝐵𝑖for i=0,1,2 are defined 

below. Let ⊕ 𝑎𝑛𝑑 ⨂ denote the Kronecker sum and Kronecker product. 

Let 𝒬𝑖
′ =𝑇𝑖 ⊕ 𝑆𝑖  + diag ((𝑄1)𝑖 ,𝑖) = (𝑇𝑖⨂𝐼𝑘′ 𝑖

) + ( 𝐼𝑘𝑖
⨂𝑆𝑖) + diag ((𝑄1)𝑖 ,𝑖) for 1 ≤ i ≤ k*                 (5)                                                                

where I indicates the identity matrices of orders given in the suffixes,  𝒬𝑖
′  is of order 𝑘𝑖𝑘′𝑖  and the last term is a 

diagonal matrix of order  𝑘𝑖𝑘′𝑖  . Considering the change of environment switches on stationary distributions in 

PH arrival time and PH service time in the new environment, the following matrix Ω of order  𝑘𝑖
𝑘∗
𝑖=1 𝑘′𝑖 is 

defined which is concerned with change of environment during arrival time and service time. 
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  Ω=

 
 
 
 
 
 

𝚀′1 𝛺1,2 𝛺1,3 ⋯ 𝛺1,𝑘∗

𝛺2,1 𝚀′2 𝛺2,3 ⋯ 𝛺2,𝑘∗

𝛺3,1 𝛺3,2 𝚀′3 ⋯ 𝛺3,𝑘∗

⋮ ⋮ ⋮ ⋱ ⋮
𝛺𝑘∗,1 𝛺𝑘∗,2 𝛺𝑘∗,3 ⋯ 𝚀′𝑘∗  

 
 
 
 
 

                                                                                                              (6)               

where   𝛺𝑖 ,𝑗  is a rectangular matrix of type  𝑘𝑖𝑘′𝑖  x 𝑘𝑗 𝑘′𝑗 whose all rows are equal to  (𝑄1)𝑖 ,𝑗  (𝜑𝑗  ⨂ 𝜙𝑗 ) for i ≠ j ,                       

1 ≤ i, j ≤ k*.   The arrival rate of n customers for 1≤ n ≤  𝑀𝑗
𝑖  corresponding to absorption to state 𝑘𝑖+1 from the 

arrival PH phase j for 1≤ j ≤  𝑘𝑖 , in the environment i for 1≤ i ≤ k*  is given by the component j of the column 

vector 𝑇𝑖 ,𝑛
′  of type  𝑘𝑖  x1 where  𝑇𝑖 ,𝑛

′ = ( (𝑇′𝑖)1( 𝑝𝑛1
𝑖 ) , (𝑇′𝑖)2( 𝑝𝑛2

𝑖 ) , (𝑇′𝑖)3( 𝑝𝑛3
𝑖 ) , ….(𝑇′𝑖)𝑘𝑖

( 𝑝𝑛𝑘𝑖

𝑖 ) )’;   (7)                                                                                                                                                                                                                 

the service rate of n customers for 1≤ n ≤  𝑁𝑗
𝑖  corresponding to absorption to state 𝑘′𝑖+1 from the service PH 

phase j for  1≤ j ≤  𝑘′𝑖 , in the environment i for 1≤ i ≤ k* is given by the component j of the column vector 𝑆𝑖 ,𝑛
′  

of type  𝑘′𝑖  x1where  𝑆𝑖 ,𝑛
′ = ( (𝑆′𝑖)1( 𝑞𝑛1

𝑖 ) , (𝑆′𝑖)2( 𝑞𝑛2
𝑖 ) , (𝑆′𝑖)3( 𝑞𝑛3

𝑖 ) , ….(𝑆′𝑖)𝑘′ 𝑖
( 𝑞𝑛𝑘′ 𝑖

𝑖 ))’ .                 (8)                                                                                                                                                                                                                                                                                                                                  

Let 𝛬𝑛   = 

 
 
 
 
 
 
𝑇1,𝑛

′  𝛼1 ⊗ 𝐼𝑘′1
0 0 ⋯ 0

0 𝑇2,𝑛
′  𝛼2 ⊗ 𝐼𝑘′2

0 ⋯ 0

0 0 𝑇3,𝑛
′  𝛼3 ⊗ 𝐼𝑘′3

⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝑇𝑘∗,𝑛

′  𝛼𝑘∗ ⊗ 𝐼𝑘′𝑘∗ 
 
 
 
 
 

 for 1 ≤ n ≤ M  (9)                                                 

In (9) 𝛬𝑛  is a square matrix of order  𝑘𝑖
𝑘∗
𝑖=1 𝑘′𝑖 ;  𝑇𝑗 ,𝑛

′  𝛼𝑗 ⊗ 𝐼𝑘′𝑗
is a square matrix of order 𝑘𝑗 𝑘′𝑗  for 1 ≤ j ≤ k* and 

0 appearing as (i, j) component of (9) is a block zero rectangular matrix of type 𝑘𝑖𝑘′𝑖  x 𝑘𝑗 𝑘′𝑗  .                                                  

Let 𝑈𝑛  =   

 
 
 
 
 
 
𝐼𝑘1

⊗ 𝑆1,𝑛
′  𝛽1 0 0 ⋯ 0

0 𝐼𝑘2
⊗ 𝑆2,𝑛

′  𝛽2 0 ⋯ 0

0 0 𝐼𝑘3
⊗ 𝑆3,𝑛

′  𝛽3 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝐼𝑘𝑘∗

⊗ 𝑆𝑘∗,𝑛
′  𝛽𝑘∗ 

 
 
 
 
 

 for 1 ≤ n ≤ N  (10)                                      

In (10) 𝑈𝑛  is a square matrix of order  𝑘𝑖
𝑘∗
𝑖=1 𝑘′𝑖 ;  𝐼𝑘𝑗

⊗ 𝑆𝑗 ,𝑛
′  𝛽𝑗 is a square matrix of order 𝑘𝑗 𝑘′𝑗  for 1 ≤ j ≤ k* 

and 0 appearing as (i, j) component of (10) is a block zero rectangular matrix of type 𝑘𝑖𝑘′𝑖  x 𝑘𝑗 𝑘′𝑗  .The matrix 𝐴𝑖  

for i = 0,1,2 are as follows. 

𝐴0 =

 
 
 
 
 
 
 
 

𝛬𝑀 0 ⋯ 0 0 0
𝛬𝑀−1 𝛬𝑀 ⋯ 0 0 0
𝛬𝑀−2 𝛬𝑀−1 ⋯ 0 0 0
𝛬𝑀−3 𝛬𝑀−2 ⋱ 0 0 0

⋮ ⋮ ⋱ ⋱ ⋮ ⋮
𝛬3 𝛬4 ⋯ 𝛬𝑀 0 0
𝛬2 𝛬3 ⋯ 𝛬𝑀−1 𝛬𝑀 0
𝛬1 𝛬2 ⋯ 𝛬𝑀−2 𝛬𝑀−1 𝛬𝑀  

 
 
 
 
 
 
 

 (11)        𝐴2 =

 
 
 
 
 
 
 
 
0 ⋯ 0 𝑈𝑁 𝑈𝑁−1 ⋯ 𝑈2 𝑈1

0 ⋯ 0 0 𝑈𝑁 ⋯ 𝑈3 𝑈2

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 ⋯ 0 0 0 ⋯ 𝑈𝑁 𝑈𝑁−1

0 ⋯ 0 0 0 ⋯ 0 𝑈𝑁

0 ⋯ 0 0 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 0 0 0 ⋯ 0 0  

 
 
 
 
 
 
 

 (12)

𝐴1 =

 
 
 
 
 
 
 
 
 
 
𝛺 𝛬1 𝛬2 ⋯ 𝛬𝑀−𝑁−2 𝛬𝑀−𝑁−1 𝛬𝑀−𝑁 ⋯ 𝛬𝑀−2 𝛬𝑀−1

𝑈1 𝛺 𝛬1 ⋯ 𝛬𝑀−𝑁−3 𝛬𝑀−𝑁−2 𝛬𝑀−𝑁−1 ⋯ 𝛬𝑀−3 𝛬𝑀−2

𝑈2 𝑈1 𝛺 ⋯ 𝛬𝑀−𝑁−4 𝛬𝑀−𝑁−3 𝛬𝑀−𝑁−2 ⋯ 𝛬𝑀−4 𝛬𝑀−3

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝑈𝑁 𝑈𝑁−1 𝑈𝑁−2 ⋯ 𝛺 𝛬1 𝛬2 ⋯ 𝛬𝑀−𝑁−2 𝛬𝑀−𝑁−1

0 𝑈𝑁 𝑈𝑁−1 ⋯ 𝑈1 𝛺 𝛬1 ⋯ 𝛬𝑀−𝑁−3 𝛬𝑀−𝑁−2

0 0 𝑈𝑁 ⋯ 𝑈2 𝑈1 𝛺 ⋯ 𝛬𝑀−𝑁−4 𝛬𝑀−𝑁−3

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 𝑈𝑁 𝑈𝑁−1 𝑈𝑁−2 ⋯ 𝛺 𝛬1

0 0 0 ⋯ 0 𝑈𝑁 𝑈𝑁−1 ⋯ 𝑈1 𝛺  
 
 
 
 
 
 
 
 
 

                                            (13)                      

For defining the matrices 𝐵𝑖 for i = 0,1,2 the following component matrices are required                                                                           

𝛬′𝑛   = 

 
 
 
 
 
 
𝑇1,𝑛

′  𝛼1 ⊗ 𝛽1 0 0 ⋯ 0

0 𝑇2,𝑛
′  𝛼2 ⊗ 𝛽2 0 ⋯ 0

0 0 𝑇3,𝑛
′  𝛼3 ⊗ 𝛽3 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝑇𝑘∗,𝑛

′  𝛼𝑘∗ ⊗ 𝛽𝑘∗ 
 
 
 
 
 

 for 1 ≤ n ≤ M                           (14)                                    

 𝛬′𝑛   is a rectangular matrix of type  (  𝑘𝑖)x  (𝑘𝑖𝑘′𝑖)
k∗
i=1   𝑘∗

𝑖=1  for 1 ≤ n ≤ M ; 𝑇𝑖 ,𝑛
′  𝛼𝑖 ⊗ 𝛽𝑖  is a rectangular matrix 

of order 𝑘𝑖𝑥𝑘𝑖𝑘′𝑖 and 0 appearing as (i, j) component of (14) is a block zero rectangular matrix of type 𝑘𝑖  x 𝑘𝑗 𝑘′𝑗            
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for 1 ≤ i, j ≤ k*. Let    𝑉′𝑖 ,𝑛 =  𝐼𝑘𝑖
⊗ ( (𝑆′

𝑖)1( 𝑄𝑛1
𝑖 ) , (𝑆′

𝑖)2( 𝑄𝑛2
𝑖 ) , (𝑆′

𝑖)3( 𝑄𝑛3
𝑖 ) , … . (𝑆′

𝑖)𝑘 ′
𝑖
 𝑄𝑛𝑘 ′

𝑖

𝑖  )′                                    

for 1 ≤ n ≤ N -1 is a matrix of type 𝑘𝑖𝑘′𝑖  x 𝑘𝑖  for 1 ≤ i ≤ k*and let 

 𝑉𝑛  = 

 
 
 
 
𝑉′1,𝑛 0 0 ⋯ 0

0  𝑉′2,𝑛 0 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯  𝑉′𝑘∗,𝑛  

 
 
 

  for 1 ≤ n ≤ N.                                                                                       (15)                         

This is a rectangular matrix of type (  𝑘𝑖𝑘′𝑖
𝑖=𝑘∗
𝑖=1 ) 𝑥   𝑘𝑖

𝑘∗
𝑖=1   and 0 appearing in the (i, j) component is a 

rectangular 0 matrix of type 𝑘𝑖𝑘′𝑖  x 𝑘𝑗  for 1 ≤ i, j ≤ k*.  

Let U =

 
 
 
 
𝐼𝑘1

⊗ 𝑆1
′  0 0 ⋯ 0

0 𝐼𝑘2
⊗ 𝑆2

′  0 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝐼𝑘1

⊗ 𝑆𝑘∗
′   

 
 
 

                                                                                        (16)       

In (16), U is a rectangular matrix of type (  𝑘𝑖𝑘′𝑖
𝑖=𝑘∗
𝑖=1 ) 𝑥   𝑘𝑖

𝑘∗
𝑖=1   and 0 appearing in the (i, j) component is a 

rectangular 0 matrix of type 𝑘𝑖𝑘′𝑖  x 𝑘𝑗  for 1 ≤ i, j ≤ k*.  𝐼𝑘𝑖
 ⨂𝑆𝑖

′  is a rectangular matrix of type 𝑘𝑖𝑘′𝑖  𝑥 𝑘𝑖  for 1 ≤ 

i ≤ k*.  The matrix 𝐵0   is same as that of 𝐴0 when 𝛬𝑀  in the first row of   𝐴0is replaced by𝛬′𝑀 . The matrix  𝐵1  is 

given below. The matrix 𝐵2 is same as that of 𝐴2when the first block column with 0 is considered as  𝑘𝑖
𝑘∗
𝑖=1  

columns block instead of  𝑘𝑖𝑘′𝑖
𝑘∗
𝑖=1 columns block of 𝐴2. To write 𝐵1 the block for 0 is to be considered which 

has queue length, L= 0, 1, 2…M-1. When L = 0 there is only arrival process and no service process. The change 

in environment from i to j switches on stationary PH (equilibrium PH) distribution in the new environment j 

whenever it occurs for 1 ≤ i ≠ j, ≤ k*. When an arrival occurs and queue length becomes L in the environment i 

both the arrival time and the service time start with starting probability vector 𝛼𝑖  and 𝛽𝑖  respectively for 1 ≤ i ≤ 

k*. In the 0 when L =1,2, …M-1 all the processes  arrival, service and environment are active as in other blocks 

𝑛 for n > 0. Considering the change of environment switches on the stationary (equilibrium) distribution in PH 

arrival time in the new environment when the queue is empty, the following matrix Ω’ of order  𝑘𝑖
𝑘∗
𝑖=1 is defined 

which is concerned with change of environment during arrival time. 

  Ω’=

 
 
 
 
 
 

𝑇′1 𝛺′1,2 𝛺′1,3 ⋯ 𝛺′1,𝑘∗

𝛺′2,1 𝑇′2 𝛺′2,3 ⋯ 𝛺′2,𝑘∗

𝛺′3,1 𝛺′3,2 𝑇′3 ⋯ 𝛺′3,𝑘∗

⋮ ⋮ ⋮ ⋱ ⋮
𝛺′𝑘∗,1 𝛺′𝑘∗,2 𝛺′𝑘∗,3 ⋯ 𝑇′𝑘∗  

 
 
 
 
 

                                                                                                              

(17)                                                                                                                 

Here 𝑇′𝑖= 𝑇𝑖 + 𝑑𝑖𝑎𝑔(𝑄1)𝑖 ,𝑖  and  𝛺′𝑖,𝑗  is a rectangular matrix of type  𝑘𝑖  x 𝑘𝑗 whose all rows are equal to           

(𝑄1)𝑖 ,𝑗  𝜑𝑗   presenting the rates of changing to phases in the new environment for i ≠ j and 1 ≤ i, j ≤ k*.                      

𝐵1 =  

 
 
 
 
 
 
 
 
 
 

𝛺′ 𝛬′1 𝛬′2 ⋯ 𝛬′𝑀−𝑁−2 𝛬′𝑀−𝑁−1 𝛬′𝑀−𝑁 ⋯ 𝛬′𝑀−2 𝛬′𝑀−1

𝑈 𝛺 𝛬1 ⋯ 𝛬𝑀−𝑁−3 𝛬𝑀−𝑁−2 𝛬𝑀−𝑁−1 ⋯ 𝛬𝑀−3 𝛬𝑀−2

𝑉1 𝑈1 𝛺 ⋯ 𝛬𝑀−𝑁−4 𝛬𝑀−𝑁−3 𝛬𝑀−𝑁−2 ⋯ 𝛬𝑀−4 𝛬𝑀−3

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝑉𝑁−1 𝑈𝑁−1 𝑈𝑁−2 ⋯ 𝛺 𝛬1 𝛬2 ⋯ 𝛬𝑀−𝑁−2 𝛬𝑀−𝑁−1

0 𝑈𝑁 𝑈𝑁−1 ⋯ 𝑈1 𝛺 𝛬1 ⋯ 𝛬𝑀−𝑁−3 𝛬𝑀−𝑁−2

0 0 𝑈𝑁 ⋯ 𝑈2 𝑈1 𝛺 ⋯ 𝛬𝑀−𝑁−4 𝛬𝑀−𝑁−3

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 𝑈𝑁 𝑈𝑁−1 𝑈𝑁−2 ⋯ 𝛺 𝛬1

0 0 0 ⋯ 0 𝑈𝑁 𝑈𝑁−1 ⋯ 𝑈1 𝛺  
 
 
 
 
 
 
 
 
 

                                          (18)    

𝒬𝐴
′ =

 
 
 
 
 
 
 
 
 
 
 
 
 

𝛺 + 𝛬𝑀 𝛬1 ⋯ 𝛬𝑀−𝑁−2 𝛬𝑀−𝑁−1 𝛬𝑀−𝑁 + 𝑈𝑁 ⋯ 𝛬𝑀−2 + 𝑈2 𝛬𝑀−1 + 𝑈1

𝛬𝑀−1 + 𝑈1 𝛺 + 𝛬𝑀 ⋯ 𝛬𝑀−𝑁−3 𝛬𝑀−𝑁−2 𝛬𝑀−𝑁−1 ⋯ 𝛬𝑀−3 + 𝑈3 𝛬𝑀−2 + 𝑈2

𝛬𝑀−2 + 𝑈2 𝛬𝑀−1 + 𝑈1 ⋯ 𝛬𝑀−𝑁−4 𝛬𝑀−𝑁−3 𝛬𝑀−𝑁−2 ⋯ 𝛬𝑀−4 + 𝑈3 𝛬𝑀−3 + 𝑈3

⋮ ⋮ ⋮⋮⋮ ⋮ ⋮ ⋮ ⋮⋮⋮ ⋮ ⋮
𝛬𝑀−𝑁+2 + 𝑈𝑁−2 . ⋯ . . . ⋯ 𝛬𝑀−𝑁 + 𝑈𝑁 𝛬𝑀−𝑁+1 + 𝑈𝑁−1

𝛬𝑀−𝑁+1 + 𝑈𝑁−1 . ⋯ . . . . 𝛬𝑀−𝑁−1 𝛬𝑀−𝑁 + 𝑈𝑁

𝛬𝑀−𝑁 + 𝑈𝑁 . ⋯ 𝛺 + 𝛬𝑀 𝛬1 𝛬2 ⋯ 𝛬𝑀−𝑁−2 𝛬𝑀−𝑁−1

𝛬𝑀−𝑁−1 𝛬𝑀−𝑁 + 𝑈𝑁 ⋯ 𝛬𝑀−1 + 𝑈1 𝛺 + 𝛬𝑀 𝛬1 ⋯ 𝛬𝑀−𝑁−3 𝛬𝑀−𝑁−2

𝛬𝑀−𝑁−2 𝛬𝑀−𝑁−1 ⋯ 𝛬𝑀−2 + 𝑈2 𝛬𝑀−1 + 𝑈1 𝛺 + 𝛬𝑀 ⋯ 𝛬𝑀−𝑁−4 𝛬𝑀−𝑁−3

⋮ ⋮ ⋮⋮⋮ ⋮ ⋮  ⋮ ⋮⋮⋮ ⋮ ⋮
𝛬2 𝛬3 ⋯ 𝛬𝑀−𝑁 + 𝑈𝑁 𝛬𝑀−𝑁+1 + 𝑈𝑁−1 𝛬𝑀−𝑁+2 + 𝑈𝑁−2 ⋯ 𝛺 + 𝛬𝑀 𝛬1

𝛬1 𝛬2 ⋯ 𝛬𝑀−𝑁−1 𝛬𝑀−𝑁 + 𝑈𝑁 𝛬𝑀−𝑁+1 + 𝑈𝑁−1 ⋯ 𝛬𝑀−1 + 𝑈1 𝛺 + 𝛬𝑀  
 
 
 
 
 
 
 
 
 
 
 
 

 (19)                                                                                                                                                                                                                   

The basic generator of the bulk queue which is concerned with only the arrival and service is a matrix of order 

[ 𝑀 𝑘𝑖
𝑘∗
𝑖=1 𝑘′𝑖  ]   given above in (19) where 𝒬𝐴

′ =𝐴0 +  𝐴1 + 𝐴2                       (20)                                                                                                                                                                                                                                                                                                                                                                                                                                
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Its probability vector  w’ gives,  𝑤′𝒬𝐴
′  =0 and w’. e = 1                                               (21)                                                                                                                 

It is well known that a square matrix in which each row (after the first) has the elements of the previous row 

shifted cyclically one place right, is called a circulant matrix. It is very interesting to note that the matrix 𝒬𝐴
′    is 

a block circulant matrix where each block matrix is rotated one block to the right relative to the preceding block 

partition. In (19), the first block-row of type [  𝑘𝑖
𝑘∗
𝑖=1 𝑘′𝑖  ]   x[ 𝑀 𝑘𝑖

𝑘∗
𝑖=1 𝑘′𝑖  ]   is, 𝑊 = (𝛺 + 𝛬𝑀 ,𝛬1, 𝛬2 , 

…, 𝛬𝑀−𝑁−2 ,  𝛬𝑀−𝑁−1,  𝛬𝑀−𝑁 + 𝑈𝑁 , …, 𝛬𝑀−2 + 𝑈2,  𝛬𝑀−1 + 𝑈1) which gives as the sum of the blocks  𝛺 +
𝛬𝑀 + 𝛬1+ 𝛬2 +…+𝛬𝑀−𝑁−2 + 𝛬𝑀−𝑁−1 + 𝛬𝑀−𝑁 + 𝑈𝑁+…+𝛬𝑀−2 + 𝑈2 +  𝛬𝑀−1 + 𝑈1= Ω’’ which is the matrix 
given by  

   Ω’’=

 
 
 
 
 
 
𝚀′′1 𝛺1,2 𝛺1,3 ⋯ 𝛺1,𝑘∗

𝛺2,1 𝚀′′2 𝛺2,3 ⋯ 𝛺2,𝑘∗

𝛺3,1 𝛺3,2 𝚀′′3 ⋯ 𝛺3,𝑘∗

⋮ ⋮ ⋮ ⋱ ⋮
𝛺𝑘∗,1 𝛺𝑘∗,2 𝛺𝑘∗,3 ⋯ 𝚀′′𝑘∗ 

 
 
 
 
 

                                                                                                           (22)            

where using (5) and (6), 𝑄’’𝑖  = ((𝑇𝑖 + 𝑇′𝑖  𝛼𝑖)⨂𝐼𝑘′ 𝑖
) + ( 𝐼𝑘𝑖

⨂(𝑆𝑖 + 𝑆′𝑖  𝛽𝑖)) + diag ((𝑄1)𝑖 ,𝑖) for 1 ≤ i ≤ k*.  The 

stationary probability vector of the basic generator given in (19) is required to get the stability condition. 

Consider the vector w = ( 𝜋′1𝜑1 ⊗ 𝜙1, 𝜋′2𝜑2 ⊗ 𝜙2,…, 𝜋′𝑘∗𝜑𝑘∗ ⊗ 𝜙𝑘∗) where π’ = (𝜋′1 , 𝜋′2 ,… , 𝜋′𝑘∗) is the 

stationary probability vector of the environment, 𝜑𝑖  𝑎𝑛𝑑 𝜙𝑖  are the stationary probability vectors of the arrival 

and service PH processes (𝑇𝑖 + 𝑇′
𝑖  𝛼𝑖) and (𝑆𝑖 + 𝑆′

𝑖  𝛽𝑖) respectively. It may be noted 𝜋′𝑖(𝜑𝑖 ⊗ 𝜙𝑖)[((𝑇𝑖 +
𝑇′𝑖  𝛼𝑖)⨂𝐼𝑘 ′

𝑖
) + ( 𝐼𝑘𝑖

⨂(𝑆𝑖 + 𝑆′
𝑖  𝛽𝑖))] =0. This gives 𝜋′𝑖(𝜑𝑖 ⊗ 𝜙𝑖)𝑄’’𝑖  = 𝜋′𝑖(𝑄1)𝑖 ,𝑖  (𝜑𝑖 ⊗ 𝜙𝑖) 𝐼  = 𝜋′𝑖(𝑄1)𝑖 ,𝑖  

(𝜑𝑖 ⊗ 𝜙𝑖) for 1 ≤ i ≤ k*. Now the first column of the matrix multiplication of wΩ’’ is 𝜋′1(𝑄1)1,1𝜑1,1𝜙1,1 + 

𝜋′2 (𝑄1)2,1𝜑11𝜙11 [(𝜑2 ⊗ 𝜙2 )𝑒] +.....+ 𝜋′𝑘∗ (𝑄1)𝑘∗,1𝜑11𝜙11 [(𝜑𝑘∗ ⊗ 𝜙𝑘∗)]𝑒 = 0 since (𝜑𝑖 ⊗ 𝜙𝑖)𝑒 = 1 and 

π′𝑄1=0. In a similar manner it can be seen that the first column block of wΩ’’ is 𝜋′1(𝑄1)1,1𝜑1 ⊗ 𝜙1  + 

𝜋′2 (𝑄1)2,1𝜑1 ⊗ 𝜙1 [(𝜑2 ⊗ 𝜙2 )𝑒] +.....+ 𝜋′𝑘∗ (𝑄1)𝑘∗,1𝜑1 ⊗ 𝜙1 [(𝜑𝑘∗ ⊗ 𝜙𝑘∗)]𝑒 = 0 and i-th column block is 

𝜋′1(𝑄1)1,𝑖𝜑𝑖 ⊗ 𝜙𝑖[(𝜑1 ⊗ 𝜙1 )𝑒] +𝜋′2 (𝑄1)2,𝑖𝜑𝑖 ⊗ 𝜙𝑖[(𝜑2 ⊗ 𝜙2)𝑒] +.....+𝜋′𝑖 (𝑄1)𝑖 ,𝑖𝜑𝑖 ⊗ 𝜙𝑖+…+  

𝜋′𝑘∗ (𝑄1)𝑘∗,𝑖𝜑𝑖 ⊗ 𝜙𝑖[(𝜑𝑘∗ ⊗ 𝜙𝑘∗)]𝑒= 0. This shows that 𝑤 𝛺 + 𝛬𝑀 + 𝑤𝛬1+ 𝑤𝛬2 +…+𝑤𝛬𝑀−𝑁−2 +
 𝑤𝛬𝑀−𝑁−1 + 𝑤𝛬𝑀−𝑁 + 𝑤𝑈𝑁+…+𝑤𝛬𝑀−2 + 𝑤𝑈2 +  𝑤𝛬𝑀−1 + 𝑤𝑈1= w Ω’’=0. So (w, w,…,w) .W= 0 = (w, w, 

….w) W’ where W’ is the transpose W. This shows (w,w...w) is the left eigen vector of  𝒬𝐴
′  and the 

corresponding probability vector is             w’ =  
𝑤

𝑀
,
𝑤

𝑀
,
𝑤

𝑀
, … . . ,

𝑤

𝑀
  where w is given by  

 w = ( 𝜋′1(𝜑1 ⊗ 𝜙1), 𝜋′2(𝜑2 ⊗ 𝜙2),……, 𝜋′𝑘∗(𝜑𝑘∗ ⊗ 𝜙𝑘∗) )                                 (23)                                                                               

Let 𝜑𝑖 = (𝜑𝑖  ,𝑗 ) and  𝜙𝑖 = (𝜙𝑖 ,𝑗 ) be the stationary probability components of the arrival and service processes. 

Neuts [5], gives the stability condition as, w′ 𝐴0  𝑒 < 𝑤′ 𝐴2  𝑒 where w is given by (23). Taking the sum                                     

cross diagonally in the  𝐴0  𝑎𝑛𝑑 𝐴2 matrices, it can be seen using (9) that                                                                                                

w’ 𝐴0  𝑒=
1

𝑀
 𝑤  𝑛𝛬𝑛

𝑀
𝑛=1  𝑒=

1

𝑀
    𝑛𝑘∗

𝑖=1 𝜋′𝑖(𝜑𝑖 ⊗ 𝜙𝑖)(𝑇𝑖 ,𝑛
′  ⊗ 𝑒) 𝑀

𝑛=1    =                  
1

𝑀
    𝑛𝑘∗

𝑖=1 𝜋′𝑖(𝜑𝑖𝑇𝑖 ,𝑛
′ ⊗ 𝜙𝑖𝑒) 𝑀

𝑛=1   =
1

𝑀
    𝑛𝑘∗

𝑖=1 𝜋′𝑖(𝜑𝑖𝑇𝑖 ,𝑛
′ ) 𝑀

𝑛=1  = 
1

𝑀
( 𝜋′𝑖  𝑛𝑀

𝑛=1
𝑘∗
𝑖=1  𝜑𝑖 ,𝑗

𝑘𝑖
𝑗=1 (𝑇𝑖 ,𝑛

′ )𝑗 ) 

=
1

𝑀
( 𝜋′𝑖  𝑛𝑀

𝑛=1
𝑘∗
𝑖=1  𝜑𝑖 ,𝑗

𝑘𝑖
𝑗 =1 (𝑇′

𝑖)𝑗  𝑝𝑛𝑗
𝑖  ) =

1

𝑀
( 𝜋′𝑖  𝜑𝑖 ,𝑗 (

𝑘𝑖
𝑗=1

𝑘∗
𝑖=1 𝑇′

𝑖)𝑗 E( 𝜒𝑗
𝑖 )<𝑤′𝐴2  𝑒 

=
1

𝑀
 𝑤  𝑛𝑈𝑛

𝑁
𝑛=1  𝑒=

1

𝑀
    𝑛𝑘∗

𝑖=1 𝜋′𝑖(𝜑𝑖 ⊗ 𝜙𝑖)(𝑒 ⊗ 𝑆𝑖 ,𝑛
′ ) 𝑁

𝑛=1    =
1

𝑀
    𝑛𝑘∗

𝑖=1 𝜋′𝑖(𝜑𝑖𝑒 ⊗ 𝜙𝑖𝑆𝑖 ,𝑛
′ ) 𝑁

𝑛=1   

=
1

𝑀
    𝑛𝑘∗

𝑖=1 𝜋′𝑖(𝜙𝑖𝑆𝑖 ,𝑛
′ ) 𝑁

𝑛=1  =
1

𝑀
( 𝜋′𝑖  𝑛𝑁

𝑛=1
𝑘∗
𝑖=1  𝜙𝑖,𝑗

𝑘′ 𝑖
𝑗 =1 (𝑆𝑖 ,𝑛

′ )𝑗 ) 

=
1

𝑀
( 𝜋′𝑖  𝑛𝑁

𝑛=1
𝑘∗
𝑖=1  𝜙𝑖,𝑗

𝑘′ 𝑖
𝑗 =1 (𝑆′

𝑖)𝑗  𝑞𝑛𝑗
𝑖  )=

1

𝑀
( 𝜋′𝑖  𝜙𝑖 ,𝑗 (

𝑘′ 𝑖
𝑗=1

𝑘∗
𝑖=1 𝑆′

𝑖)𝑗 E( 𝜓𝑗
𝑖 ). This gives the stability condition 

as   𝜋′𝑖  𝜑𝑖 ,𝑗 (
𝑘𝑖
𝑗=1

𝑘∗
𝑖=1 𝑇′

𝑖)𝑗 E( 𝜒𝑗
𝑖 ) <  𝜋′𝑖  𝜙𝑖 ,𝑗 (

𝑘′ 𝑖
𝑗=1

𝑘∗
𝑖=1 𝑆′

𝑖)𝑗 E( 𝜓𝑗
𝑖 )                                                                 (24)                                                                          

From the result (24) result for the case of PH/PH/1 bulk queue without environment Ramshankar et al., [8] can 

be deduced. This result (24) is the stability condition for the random environment PH/PH/1 bulk queue with 

random sizes of arrivals and of services where maximum arrival size is greater than the maximum service size. 

When (24) is satisfied, the stationary distribution of the queue length exists Neuts [5]. Let π(0, i, j) : for 1 ≤ i ≤ 

k* 1 ≤ j ≤ 𝑘𝑖 ;  π(0, k, i, j, j’) ; for 1 ≤ k ≤ M-1; 1 ≤ i ≤ k*; 1 ≤ j ≤ 𝑘𝑖 ; 1 ≤ j ≤ 𝑘′𝑖     and π(n, k, i, j, j’): for 0 ≤ k ≤ 

M-1; 1 ≤ i ≤ k*; 1 ≤ j ≤ 𝑘𝑖 ; 1 ≤ j ≤ 𝑘′𝑖  and n ≥ 1 be the stationary probability vectors of Markov chain X(t) states. 

Let 𝜋0=(π(0,1,1),π(0,1,2),…π(0,1,𝑘1),π(0,2,1),π(0,2,2),……π(0,2,𝑘2),……,π(0,k*,1),π(0,k*,2),……π(0,k*,𝑘𝑘∗),     

π(0,1,1,1,1),π(0,1,1,1,2)…π(0,1,1,𝑘1 , 𝑘′1),π(0,1,2,1,1),π(0,1,2,1,2)…π(0,1,2,𝑘2 , 𝑘′2),π(0,1,3,1,1),π(0,1,3,1,2)… 

π(0,1,3,𝑘2 , 𝑘′2)…π(0,1,k*,1,1),π(0,1,k*,1,2)……π(0,1,k*,𝑘𝑘∗, 𝑘′𝑘∗),π(0,2,1,1,1),……π(0,2,k*,𝑘𝑘∗ , 𝑘′𝑘∗)………        

π(0,M-1,1,1,1),π(0,M-1,1,1,2)……π(0,M-1,k*,𝑘𝑘∗ , 𝑘′𝑘∗)) be a vector of type 1x[ 𝑘𝑖
𝑘∗
𝑖=1 + (𝑀 − 1)  𝑘𝑖

𝑘∗
𝑖=1 𝑘′𝑖].                                       

Let 𝜋𝑛=(π(n,0,1,1,1),π(n,0,1,1,2)……π(n,0,1,𝑘1 , 𝑘′1),π(n,0,2,1,1),π(n,0,2,1,2)……π(n,0,2,𝑘2 , 𝑘′2),π(n,0,3,1,1),                

π(n,0,3,1,2)…π(n,0,3,𝑘3 , 𝑘′3)…π(n,0,k*,1,1),π(n,0,k*,1,2)……π(n,0,k*,𝑘𝑘∗, 𝑘′𝑘∗),π(n,1,1,1,1),π(n,1,1,1,2)…… 

π(n,1,1,𝑘1 , 𝑘′1),π(n,1,2,1,1),π(n,1,2,1,2)……π(n,1,2,𝑘2 , 𝑘′2),π(n,1,3,1,1),π(n,1,3,1,2)……π(n,1,3,𝑘3 , 𝑘′3)……  

π(n,1,k*,1,1),π(n,1,k*,1,2)…π(n,1,k*,𝑘𝑘∗, 𝑘′𝑘∗),π(n,2,1,1,1),…π(n,2,k*,𝑘𝑘∗ , 𝑘′𝑘∗),π(n,3,1,1,1)…      
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π(n,3,k*,𝑘𝑘∗, 𝑘′𝑘∗)….π(n,M-1,1,1,1),π(n,M-1,1,1,2)………π(n,M-1,k*,𝑘𝑘∗ , 𝑘′𝑘∗)) be a vector of type 

1x[𝑀 𝑘𝑖
𝑘∗
𝑖=1 𝑘′𝑖].  The stationary probability vector 𝜋 = (𝜋0 , 𝜋1 , 𝜋3 , … ) satisfies the equations                                  

𝜋𝑄𝐴=0 and πe=1.                           (25)                                                                                                                                                                                                                                                                                                                            

From (25), it can be seen 𝜋0𝐵1 + 𝜋1𝐵2=0.                               (26)                                                                                               

 𝜋0𝐵0+𝜋1𝐴1+𝜋2𝐴2 = 0                                                       (27)                                                                                                                                                                                                                                                                                                                         

𝜋𝑛−1𝐴0+𝜋𝑛𝐴1+𝜋𝑛+1𝐴2 = 0, for n ≥ 2.                              (28)                                                                                                                                                                                                                                                                                                

Introducing the rate matrix R as the minimal non-negative solution of the non-linear matrix equation                                              

𝐴0+R𝐴1+𝑅2𝐴2=0,                                                              (29)                                                                                                                                                                                                                                                                                                                                                           

it can be proved (Neuts [5]) that 𝜋𝑛   satisfies the following. 𝜋𝑛  = 𝜋1 𝑅
𝑛−1    for n ≥ 2.      (30)                                                                                                                                                                                                                                                               

Using (26),  𝜋0 satisfies  𝜋0   = 𝜋1𝐵2 (−𝐵1)−1                   (31)                                                                                                                                                                                                                                                                                                                                                 

So using (27) and (31) and (30) the vector  𝜋1 can be calculated up to multiplicative constant since 𝜋1 satisfies 

the equation   𝜋1  [𝐵2 −𝐵1 
−1𝐵0 + 𝐴1 + 𝑅𝐴2] =0.                (32)                                                                                                                                                                                                                                                                                                                                                                                                         

Using (31) and (30) it can be seen that                          𝜋1[𝐵2 (−𝐵1)−1e+(I-R)−1𝑒]  = 1.                     (33)                                                                                          

Replacing the first column of the matrix multiplier of   𝜋1 in equation (32), by the column vector multiplier of 

𝜋1 in (33), a matrix which is invertible may be obtained. The first row of the inverse of that same matrix is 𝜋1 

and this gives along with (31) and (30) all the stationary probabilities of the system.   The matrix R is iterated 

starting with  𝑅 0 = 0; and finding  𝑅(𝑛 + 1)=−𝐴0𝐴1
−1–𝑅2(𝑛)𝐴2𝐴1

−1, for n ≥ 0. The iteration may be 

terminated to get a solution of R at a norm level where   𝑅 𝑛 + 1 − 𝑅(𝑛 )   < ε

 

2.3. Performance Measures of the System   
(i) The probability of the queue length S = r > 0, P(S=r) can be seen as follows. For 1 ≤ r ≤ M-1, P(S =r) = 

   𝜋(0, 𝑟, 𝑖, 𝑗1 , 𝑗2
𝑘′1
𝑗2=1

𝑘𝑖
𝑗1=1

𝑘∗
𝑖=1 ). For r ≥ M, let n and k be non negative integers such that r = n M + k. Then                     

P(S=r) =   𝜋(𝑛, 𝑘, 𝑖, 𝑗1 , 𝑗2
𝑘′ 𝑖
𝑗2=1

𝑘𝑖
𝑗1=1

𝑘∗
𝑖=1 ) , where r = n M + k, n ≥ 1 and k ≥ 0.                                                (34)                                                            

(ii) The probability that the queue length is zero is      P(S =0) =   𝜋 0, 𝑖, 𝑗 .  
𝑘𝑖
𝑗=1

𝑘∗
𝑖=1                                      (35)                                                 

(iii) The expected queue level E(S), can be calculated. Using (35) and (34), it may be seen that              

E(S)= 𝑟∞
0 𝑃(𝑆 = 𝑟)=  0𝜋 0, 𝑖, 𝑗   

𝑘𝑖
𝑗=1

𝑘∗
𝑖=1 +    𝑘𝜋(0, 𝑘, 𝑖, 𝑗1 , 𝑗2

𝑘′ 𝑖
𝑗2=1

𝑘𝑖
𝑗1=1

𝑘∗
𝑖=1 ) 𝑀−1

𝑘=1  

+     𝜋(𝑛, 𝑘, 𝑖, 𝑗1 , 𝑗2
𝑘′ 𝑖
𝑗2=1

𝑘𝑖
𝑗1=1

𝑘∗
𝑖=1 )(𝑛𝑀 + 𝑘)𝑀−1

𝑘=0
∞
𝑛=1                                                               

=    𝑘𝜋(0, 𝑘, 𝑖, 𝑗1 , 𝑗2
𝑘′ 𝑖
𝑗2=1

𝑘𝑖
𝑗1=1

𝑘∗
𝑖=1 ) + 𝑀−1

𝑘=1  𝜋𝑛
∞
𝑛=1 .(Mn,…,Mn,Mn+1,…,Mn+1,Mn+2,…,Mn+2,…,         

Mn+M-1,…,Mn+M-1) =  𝑘    𝜋(0, 𝑘, 𝑖, 𝑗1 , 𝑗2
𝑘′ 𝑖
𝑗2=1

𝑘𝑖
𝑗1=1

𝑘∗
𝑖=1 ) + 𝑀−1

𝑘=1 M 𝑛𝜋𝑛
∞
𝑛=1 𝑒+𝜋1( 𝐼 − 𝑅)−1𝜉.                                                         

Here ξ= 0, … 0,1, … ,1,2, … ,2, … , 𝑀 − 1, … , 𝑀 − 1 ′  is of type [( 𝑘𝑖𝑘′𝑖)
𝑘∗
𝑖=1 M]x1 column vector                                                                                                                

in which consecutively ( 𝑘𝑖𝑘′𝑖)
𝑘∗
𝑖=1  times 0,1,2,3.., M-1 appear. Let it be called ξ’ when 0 appears 

( 𝑘𝑖)
𝑘∗
𝑖=1 times and others in that order appear ( 𝑘𝑖𝑘′𝑖)

𝑘∗
𝑖=1  times.                                                                              

Then E(S)= 𝜋0ξ’+  𝜋1( 𝐼 − 𝑅)−1𝜉 + 𝑀𝜋1(𝐼 − 𝑅 )−2𝑒

(iv)Variance of S can be derived. Let η be column vector η=[0, . . ,0, 12 , … 12  22 , . . , 22 , …   𝑀 − 1)2 , … , (𝑀 −
1)2′ of type [(𝑖=1𝑘∗𝑘𝑖𝑘′𝑖)M]x1in which consecutively (𝑖=1𝑘∗𝑘𝑖𝑘′𝑖) times squares of 0,1,2,3.., M-1 appear. Let 

it be called η’ when 0 appears ( 𝑘𝑖)
𝑘∗
𝑖=1  times and others in the same manner as in η appear (  𝑘𝑖𝑘′𝑖)

𝑘∗
𝑖=1  times. 

Then it can be seen that the second moment, 

E(𝑆2)= 𝑟2∞
0 𝑃(𝑆 = 𝑟)=  0𝜋 0, 𝑖, 𝑗   

𝑘𝑖
𝑗=1

𝑘∗
𝑖=1 +    𝜋(0, 𝑘, 𝑖, 𝑗1 , 𝑗2

𝑘′ 𝑖
𝑗2=1

𝑘𝑖
𝑗1=1

𝑘∗
𝑖=1 )𝑘2  𝑀−1

𝑘=1  

+     𝜋(𝑛, 𝑘, 𝑖, 𝑗1 , 𝑗2
𝑘′ 𝑖
𝑗2=1

𝑘𝑖
𝑗1=1

𝑘∗
𝑖=1 )(𝑛𝑀 + 𝑘)2𝑀−1

𝑘=0
∞
𝑛=1  =𝜋0η’ + 𝑀2  𝑛 𝑛 − 1 𝜋𝑛

∞
𝑛=1 𝑒 +  𝑛𝜋𝑛

∞
𝑛=1 𝑒 +

 𝜋𝑛𝜂∞
𝑛=1  + 2M  𝑛 𝜋𝑛

∞
𝑛=1 𝜉.    

So, E(𝑆2)= 𝜋0η’+𝑀2[𝜋1(𝐼 − 𝑅)−32𝑅 𝑒 + 𝜋1(𝐼 −  𝑅)−2𝑒] + 𝜋1(𝐼 − 𝑅)−1𝜂 + 2𝑀𝜋1(𝐼 − 𝑅)−2𝜉

VAR(S)=E(𝑆2) − [𝐸(𝑆)]2may be written from (36) and(37).  

 

III. MODEL (B) MAXIMUM ARRIVAL SIZE M < MAXIMUM SERVICE SIZE N                                                                                                                                                                                    
 The dual case of Model (A), namely the case, M < N is treated here. (When M =N both models are 

applicable and one can use any one of them.) The assumption (vii) of Model (A) is changed and all its other 

assumptions are retained.                                                                                                                                                                                          

 

3.1.Assumption                                                                                                                                                                       
(vii) The maximum arrival size M= ma𝑥1≤𝑖≤𝑘∗ max1 ≤𝑗  ≤𝑘𝑖

𝑀 𝑗
𝑖  is less than the maximum service size                                           

N=ma𝑥1≤𝑖≤𝑘∗ max1 ≤𝑗  ≤𝑘′ 𝑖
𝑁 𝑗

𝑖 .                                                                                                                               
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3.2.Analysis                                                                                                                                                                                                    

Since this model is dual, the analysis is similar to that of Model (A). The differences are noted below. The state 

space of the chain is as follows presented in a similar way. 

The state of the system of the continuous time Markov chain X (t) under consideration is presented as follows.                                                                                                                                                                                                  

X(t) = {(0, i, j) : for 1 ≤ i ≤ k* 1 ≤ j ≤ 𝑘𝑖)} U {(0, k, i, j, j’) ; for 1 ≤ k ≤ N-1; 1 ≤ i ≤ k*; 1 ≤ j ≤ 𝑘𝑖 ; 1 ≤ j ≤ 𝑘′𝑖}                        
U {(n, k, i, j, j’): for 0 ≤ k ≤ N-1; 1 ≤ i ≤ k*; 1 ≤ j ≤ 𝑘𝑖 ; 1 ≤ j ≤ 𝑘′𝑖  and n ≥ 1}. (38)                                                                                                                                                                                                                                                     

The chain is in the state (0, i, j) when the number of customers in the queue is 0, the environment state is i for 1 

≤ i ≤ k*and the arrival phase is j for 1 ≤ j ≤ 𝑘𝑖 . The chain is in the state (0, k, i, j, j’) when the number of 

customers is k for 1 ≤ k ≤ N-1, the environment state is i for 1 ≤ i ≤ k*, the arrival phase is j for 1 ≤ j ≤ 𝑘𝑖 and 

the service phase is j’ for 1 ≤ j’ ≤  𝑘′𝑖. The chain is in the state (n, k, i, j, j’) when the number of customers in the 

queue is n N + k, for 0 ≤ k ≤ N-1 and 1 ≤ n < ∞, the environment state is i for 1 ≤ i ≤ k*, the arrival phase is j for 

1 ≤ j ≤ 𝑘𝑖 and the service phase is j’ for 1 ≤ j’ ≤ 𝑘′𝑖 . When the number of customers waiting in the system is r, 
then r is identified with (n, k) where r on division by N gives n as the quotient and k as the remainder. The 

infinitesimal generator 𝑄𝐵 of the model has the same structure given in (4) but the inner matrices are of different 

orders.                                                                                                                                 

 𝑄𝐵=

 
 
 
 
 
 
𝐵′

1 𝐵′
0 0 0 . . . ⋯

𝐵′
2 𝐴′

1 𝐴′
0 0 . . . ⋯

0 𝐴′
2 𝐴′

1 𝐴′
0 0 . . ⋯

0 0 𝐴′
2 𝐴′

1 𝐴′
0 0 . ⋯

0 0 0 𝐴′
2 𝐴′

1 𝐴′
0 0 ⋯

⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ⋱ ⋱ 
 
 
 
 
 

                                                                                                                   (39)                                                                                                                                                                                                                                                                    

In (39) the states of the matrices are listed lexicographically as 0, 1, 2, 3, …. For partition purpose the zero states 

in the first two sets of (38) are combined. The vector 0 is of type 1 x [ 𝑘𝑖
𝑘∗
𝑖=1 + (𝑁 − 1)  𝑘𝑖

𝑘∗
𝑖=1 𝑘′𝑖] and is                                   

0=((0,1,1),(0,1,2),…(0,1, 𝑘1),(0,2,1),(0,2,2),…(0,2, 𝑘2),……(0,k*,1),(0,k*,2),…(0,k*,𝑘𝑘∗),(0,1,1,1,1),(0,1,1,1,2)

….(0,1,1,1, 𝑘′1),(0,1,1,2,1),(0,1,1,2,2)….(0,1,1,2,𝑘′1),(0,1,1,3,1)....(0,1,1,3,𝑘′1)…..(0,1,1,𝑘1,1)…   

(0,1,1,𝑘1 , 𝑘′1),(0,1,2,1,1),(0,1,2,1,2)….(0,1,2,1, 𝑘′2),(0,1,2,2,1),(0,1,2,2,2)….(0,1,2,2,𝑘′2),(0,1,2,3,1)....(0,1,2,3,

𝑘′2)….(0,1,2,𝑘2,1)…(0,1,2,𝑘2 , 𝑘′2),(0,1,3,1,1)…(0,1,3,𝑘3 , 𝑘′3)…(0,1,k*,1,1),….(0,1,k*,𝑘𝑘∗, 𝑘′𝑘∗),(0,2,1,1,1),   

(0,2,1,1,2)…(0,2,k*,𝑘𝑘∗,𝑘′𝑘∗),(0,3,1,1,1)…(0,3,k*,𝑘𝑘∗𝑘𝑘∗),(0,4,1,1,1)…(0,4,k*,𝑘𝑘∗𝑘′𝑘∗)…(0,N-1,1,1,1)…             

(0,N-1,k*,𝑘𝑘∗, 𝑘′𝑘∗)) and the vector 𝑛 is of type 1x[𝑁  𝑘𝑖
𝑘∗
𝑖=1 𝑘′𝑖] and is given in a similar manner as follows 

𝑛=(n,0,1,1,1),(n,0,1,1,2)….(n,0,1,1, 𝑘′1),(n,0,1,2,1),…(n,0,1,2,𝑘′1),…(n,0,k*,1,1),…(n,0,k*,𝑘𝑘∗, 𝑘′𝑘∗),(n,1,1,1,1)

…. (n,1,k*,𝑘𝑘∗,𝑘′𝑘∗),(n,2,1,1,1)....(n,2,k*,𝑘𝑘∗,𝑘′𝑘∗)……..(n,N-1,1,1,1),(n,N-1,1,1,2)……(n,N-1,k*,𝑘𝑘∗, 𝑘′𝑘∗)).                     

The matrices𝐵′1𝑎𝑛𝑑 𝐴′1 have negative diagonal elements, they are of orders [ 𝑘𝑖
𝑘∗
𝑖=1 + (𝑁 − 1)  𝑘𝑖

𝑘∗
𝑖=1 𝑘′𝑖 ] and 

[𝑁 𝑘𝑖
𝑘∗
𝑖=1 𝑘′𝑖] respectively and their off diagonal elements are non-negative.                                                                                                                                         

The matrices  𝐴′0  𝑎𝑛𝑑𝐴′2 have nonnegative elements and are of order [ 𝑁 𝑘𝑖
𝑘∗
𝑖=1 𝑘′𝑖  ]   . The matrices 

𝐵′0  𝑎𝑛𝑑 𝐵′2   have non-negative elements and are of types [ 𝑘𝑖
𝑘∗
𝑖=1 + (𝑁 − 1)  𝑘𝑖

𝑘∗
𝑖=1 𝑘′𝑖] x [ 𝑁 𝑘𝑖

𝑘∗
𝑖=1 𝑘′𝑖  ]   

and [ 𝑁 𝑘𝑖
𝑘∗
𝑖=1 𝑘′𝑖  ]   x [ 𝑘𝑖

𝑘∗
𝑖=1 + (𝑁 − 1)  𝑘𝑖

𝑘∗
𝑖=1 𝑘′𝑖] and they are given below. Using Model (A) for 

definitions of 𝛬𝑗  𝑎𝑛𝑑𝛬′𝑗 , 𝑎𝑛𝑑   𝑈𝑗 , 𝑉𝑗  , and U and letting Ω and Ω’ as in Model (A), the partitioning matrices are 

defined as follows. The matrix 𝐵′0is same as that of 𝐴′0   with first zero block row is of order[  𝑘𝑖
𝑘∗
𝑖=1 ] x[ 

𝑁 𝑘𝑖
𝑘∗
𝑖=1 𝑘′𝑖]. The matrix 𝐵′2is same as that of 𝐴′2 except the first column block is of type [ 𝑁 𝑘𝑖

𝑘∗
𝑖=1 𝑘′𝑖  ] x 

[  𝑘𝑖
𝑘∗
𝑖=1 ] and is (𝑈′𝑁 , 0, … .0)′ where 

𝑈′𝑁=

 
 
 
 
 
 
𝐼𝑘1

⊗ 𝑆1,𝑁
′  0 0 ⋯ 0

0 𝐼𝑘2
⊗ 𝑆2,𝑁

′  0 ⋯ 0

0 0 𝐼𝑘3
⊗ 𝑆3,𝑁

′  ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝐼𝑘𝑘∗

⊗ 𝑆𝑘∗,𝑁
′   

 
 
 
 
 

  (40)

𝐴′0 =

 
 
 
 
 
 
 
 

0 0 ⋯ 0 0 0 ⋯ 0
⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 ⋯ 0 0 0 ⋯ 0

𝛬𝑀 0 ⋯ 0 0 0 ⋯ 0
𝛬𝑀−1 𝛬𝑀 ⋯ 0 0 0 ⋯ 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮
𝛬2 𝛬3 ⋯ 𝛬𝑀 0 0 ⋯ 0
𝛬1 𝛬2 ⋯ 𝛬𝑀−1 𝛬𝑀 0 ⋯ 0 

 
 
 
 
 
 
 

                                                                                                              (41)   
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𝐴′2 =

 
 
 
 
 
 
 
 
𝑈𝑁 𝑈𝑁−1 𝑈𝑁−2 ⋯ 𝑈3 𝑈2 𝑈1

0 𝑈𝑁 𝑈𝑁−1 ⋯ 𝑈4 𝑈3 𝑈2

0 0 𝑈𝑁 ⋯ 𝑈5 𝑈4 𝑈3

0 0 0 ⋱ 𝑈6 𝑈5 𝑈4

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 ⋯ 𝑈𝑁 𝑈𝑁−1 𝑈𝑁−2

0 0 0 ⋯ 0 𝑈𝑁 𝑈𝑁−1

0 0 0 ⋯ 0 0 𝑈𝑁  
 
 
 
 
 
 
 

             (42)

𝐴′1 =

 
 
 
 
 
 
 
 
 
 
 

Ω 𝛬1 𝛬2 ⋯ 𝛬𝑀 0 0 ⋯ 0 0

𝑈1 Ω 𝛬1 ⋯ 𝛬𝑀−1 𝛬𝑀 0 ⋯ 0 0
𝑈2 𝑈1 Ω ⋯ 𝛬𝑀−2 𝛬𝑀−1 𝛬𝑀 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝑈𝑁−𝑀−1 𝑈𝑁−𝑀−2 𝑈𝑁−𝑀−3 ⋯ Ω 𝛬1 𝛬2 ⋯ 𝛬𝑀−1 𝛬𝑀

𝑈𝑁−𝑀 𝑈𝑁−𝑀−1 𝑈𝑁−𝑀−2 ⋯ 𝑈1 Ω 𝛬1 ⋯ 𝛬𝑀−2 𝛬𝑀−1

𝑈𝑁−𝑀+1 𝑈𝑁−𝑀 𝑈𝑁−𝑀−1 ⋯ 𝑈2 𝑈1 Ω ⋯ 𝛬𝑀−3 𝛬𝑀−2

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝑈𝑁−2 𝑈𝑁−3 𝑈𝑁−4 ⋯ 𝑈𝑁−𝑀−2 𝑈𝑁−𝑀−3 𝑈𝑁−𝑀−2 ⋯ Ω 𝛬1

𝑈𝑁−1 𝑈𝑁−2 𝑈𝑁−3 ⋯ 𝑈𝑁−𝑀−1 𝑈𝑁−𝑀−2 𝑈𝑁−𝑀−1 ⋯ 𝑈1 Ω  
 
 
 
 
 
 
 
 
 
 

                           (43)                                                                                                                                                                                                 

 𝐵′1 =

 
 
 
 
 
 
 
 
 
 
 

𝛺′ 𝛬′1 𝛬′2 ⋯ 𝛬′𝑀 0 0 ⋯ 0 0

𝑈 Ω 𝛬1 ⋯ 𝛬𝑀−1 𝛬𝑀 0 ⋯ 0 0

𝑉1 𝑈1 Ω ⋯ 𝛬𝑀−2 𝛬𝑀−1 𝛬𝑀 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝑉𝑁−𝑀−2 𝑈𝑁−𝑀−2 𝑈𝑁−𝑀−3 ⋯ Ω 𝛬1 𝛬2 ⋯ 𝛬𝑀−1 𝛬𝑀

𝑉𝑁−𝑀−1 𝑈𝑁−𝑀−1 𝑈𝑁−𝑀−2 ⋯ 𝑈1 Ω 𝛬1 ⋯ 𝛬𝑀−2 𝛬𝑀−1

𝑉𝑁−𝑀 𝑈𝑁−𝑀 𝑈𝑁−𝑀−1 ⋯ 𝑈2 𝑈1 Ω ⋯ 𝛬𝑀−3 𝛬𝑀−2

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝑉𝑁−3 𝑈𝑁−3 𝑈𝑁−4 ⋯ 𝑈𝑁−𝑀−2 𝑈𝑁−𝑀−3 𝑈𝑁−𝑀−2 ⋯ Ω 𝛬1

𝑉𝑁−2 𝑈𝑁−2 𝑈𝑁−3 ⋯ 𝑈𝑁−𝑀−1 𝑈𝑁−𝑀−2 𝑈𝑁−𝑀−1 ⋯ 𝑈1 Ω  
 
 
 
 
 
 
 
 
 
 

                                     (44) 

𝒬𝐵
′′ =

  

 
 
 
 
 
 
 
 
 

𝛺 + 𝑈𝑁 𝛬1 + 𝑈𝑁−1 ⋯ 𝛬𝑀−1 + 𝑈𝑁−𝑀+1 𝛬𝑀 + 𝑈𝑁−𝑀 𝑈𝑁−𝑀−1 ⋯ 𝑈2 𝑈1

𝑈1 𝛺 + 𝑈𝑁 ⋯ 𝛬𝑀−2 + 𝑈𝑁−𝑀+2` 𝛬𝑀−1 + 𝑈𝑁−𝑀+1 𝛬𝑀 + 𝑈𝑁−𝑀 ⋯ 𝑈3 𝑈2

⋮ ⋮ ⋮⋮⋮ ⋮ ⋮ ⋮ ⋮⋮⋮ ⋮ ⋮
𝑈𝑁−𝑀−2 𝑈𝑁−𝑀−3 ⋯ 𝛺 + 𝑈𝑁 𝛬1 + 𝑈𝑁−1 𝛬2 + 𝑈𝑁−2 ⋯ 𝛬𝑀 + 𝑈𝑁−𝑀 𝑈𝑁−𝑀−1

𝑈𝑁−𝑀−1 𝑈𝑁−𝑀−2 ⋯ 𝑈1 𝛺 + 𝑈𝑁 𝛬1 + 𝑈𝑁−1 ⋯ 𝛬𝑀−1 + 𝑈𝑁−𝑀+1 𝛬𝑀 + 𝑈𝑁−𝑀

𝛬𝑀 + 𝑈𝑁−𝑀 𝑈𝑁−𝑀−1 ⋯ 𝑈2 𝑈1 𝛺 + 𝑈𝑁 ⋯ 𝛬𝑀−2 + 𝑈𝑁−𝑀+2 𝛬𝑀−1 + 𝑈𝑁−𝑀+1

⋮ ⋮ ⋮⋮⋮ ⋮ ⋮  ⋮ ⋮⋮⋮ ⋮ ⋮
𝛬2 + 𝑈𝑁−2 𝛬3 + 𝑈𝑁−3 ⋯ 𝑈𝑁−𝑀−1 𝑈𝑁−𝑀−2 𝑈𝑁−𝑀−3 ⋯ 𝛺 + 𝑈𝑁 𝛬1 + 𝑈𝑁−1

𝛬1 + 𝑈𝑁−1 𝛬2 + 𝑈𝑁−2 ⋯ 𝛬𝑀 + 𝑈𝑁−𝑀 𝑈𝑁−𝑀−1 𝑈𝑁−𝑀−2 ⋯ 𝑈1 𝛺 + 𝑈𝑁  
 
 
 
 
 
 
 
 

(45)               

The basic generator which is concerned with only the arrival and service is 𝒬𝐵
′′ =  𝐴′0 + 𝐴′1 + 𝐴′2. This is also 

block circulant. Using similar arguments given for Model (A) it can be seen that its probability vector is w’ = 

 
𝑤

𝑁
,
𝑤

𝑁
,
𝑤

𝑁
, … . . ,

𝑤

𝑁
  where w is given by w = ( 𝜋′1(𝜑1 ⊗ 𝜙1),  𝜋′2(𝜑2 ⊗ 𝜙2 ),……, 𝜋′𝑘∗(𝜑𝑘∗ ⊗ 𝜙𝑘∗) ) and the 

stability condition remains the same. Following the arguments given for Model (A), one can find the stationary 

probability vector for Model (B) also in matrix geometric form. All performance measures including expectation 

of customers waiting for service and its variance for Model (B) have the form as in Model (A) except M is 

replaced by N. 

 

IV. NUMERICAL ILLUSTRATIONS 
Numerical cases are presented here to illustrate the application of the study. Three examples are studied namely 

(i) M=N=3 (ii) M=3, N=2 and (iii) M=2, N=3. The environment has two states governed by the Markov chain 

with infinitesimal generator  
−3 3
5 −5

  . In state 1, the arrival time distribution is PH 1 (exponential) with 

parameter 5 and the service time distribution is PH 2with representation  
−3 1
2 −3

   and starting probability 

vector (.6, .4). In environment 2 the arrival time has PH 2 distribution with representation  
−2 1
2 −4

  and 

starting probability vector (.4, .6) and the service time distribution is PH 1 (exponential) with parameter 8. For 

the case (i) M=N=3, in the environment 1, the probabilities of bulk arrivals are taken as 𝑝11
1 =.6, 𝑝21

1 =.2 and 

𝑝31
1 =.2 and the probabilities of bulk services in the two phases are considered as 𝑞1

1 =.5, 𝑞21
1 =.3, 𝑞31

1 =.2, 𝑞12
1 =.4, 

𝑞22
1 =.6 and 𝑞32

1 =0. In the environment 2, the bulk arrival probabilities are assumed as 𝑝11
2 =.4, 𝑝21

2 =.6, 𝑝31
2 =0, 

𝑝12
2 =.5, 𝑝22

2 =.5 and 𝑝32
2 =0 and bulk service probabilities are taken as 𝑞12

2 =.5, 𝑞22
2 =.5 and 𝑞32

2 =0. For the case (ii) 

M=3, N =2 only two probabilities of case (i) alone are changed namely, 𝑞21
1 =.5 and 𝑞31

1 =0, keeping the same 
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values of case (i) for all others. For the case (iii) M=2, N=3, the probabilities of case (i) are assumed changing 

only two values namely, 𝑝21
1 =.4 and 𝑝31

1 = 0. The rate matrix R is taken for calculation after 30 iterations for the 
three models. The results obtained are presented in the table 1 below. The probabilities and expected values 

show significant variation for higher and lower values of M and N. The figures (1) and (2) show the variations 

of probabilities.                                                                                                 

 

Table 1. Results Obtained for the Three Cases. 

  M=N=3 M=3;N=2 M=2;N=3 

P(S=0) 0.060354629 0.050226694 0.115130656 

P(S=1) 0.027940388 0.02353663 0.053013985 

P(S=2) 0.026006538 0.022495782 0.04491614 

P(S=3) 0.025331264 0.022031479 0.042021471 

P(S=4) 0.024460863 0.021384356 0.039162694 

P(S=5) 0.0236716 0.020802411 0.036546073 

π0e 0.116536161 0.097720416 0.227289746 

π1e 0.081693776 0.070317631 0.144526435 

π2e 0.073463727 0.064218246 0.117730239 

π3e 0.06669037 0.059222531 0.095641597 

π4e 0.060580626 0.054651446 0.077721784 

π(n>4)e 0.601035341 0.653869731 0.337090199 

Norm 0.000630675 0.000681993 0.00032906 

Arri rate 1.694444444 1.694444444 1.518518519 

Serv rate 2.462962963 2.433333333 2.462962963 

E(S) 29.86540309 36.01090259 13.28458975 

Std dev(S) 31.21206209 37.35092795 14.41652322 

 

 

Figure 1. Probabilities of Queue Lengths 
 

 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

P(S=0)P(S=1)P(S=2)P(S=3)P(S=4)P(S=5)

M=N=3

M=3;N=2

M=2;N=3



Ph/Ph/1 Bulk Arrival and Bulk Service Queue With Randomly Varying Environment 

International organization of Scientific Research                                                           11 | P a g e  

 

Figure2.The Probabilities of Customer Blocks

V. CONCLUSION 
 Two PH/PH/1 bulk arrival and bulk service queues with random environment have been studied by identifying the 
maximum of the arrival and service sizes and grouping the customers as members of blocks of such maximum sizes. Matrix 
geometric results have been obtained by partitioning the infinitesimal generator by grouping of customers, environment state 
and PH phases together. The basic system generators of the queues are block circulant matrices which are explicitly 

presenting the stability condition in standard forms. Numerical results for bulk queue models are presented and discussed. 
Effects of variation of rates on expected queue length and on probabilities of queue lengths are exhibited. The decrease in 
arrival rates (so also increase in service rates) makes the convergence of R matrix faster which can be seen in the decrease of 
norm values. The standard deviations also decrease. The PH/PH/1 queue with bulk arrival and bulk service with random 
environment has number of applications. The PH distributions include Exponential, Erlang, Hyper Exponential, and Coxian 
distributions as special cases and the PH distribution is also a best approximation for a general distribution. Further the 
PH/PH/1 queue is a most general form almost equivalent to G/G/1 queue. The bulk arrival models because they have non 
zero elements or blocks above the super diagonals in infinitesimal generators, they require for studies  the decomposition 
methods with which queue length probabilities of the system are written in a recursive manner. Their applications are much 

limited compared to matrix geometric results. From the results obtained here, provided the maximum arrival and service 
sizes are not infinity, the most general model of the PH/PH/1 bulk arrivals and bulk services queue with random environment 
admits matrix geometric solution.   Further studies with block circulant basic generator system may produce interesting and 
useful results in inventory theory and finite storage models like dam theory. It is also noticed here that once the maximum 
arrival or service size increases, the order of the rate matrix increases proportionally. However the matrix geometric structure 
is retained and rates of convergence is not much affected. Models with multiple servers with PH distributions may be 
focused for further study which may produce more general results. 
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