IOSR Journal of Engineering (IOSRJEN) www.iosrjen.org
ISSN (e): 2250-3021, ISSN (p): 2278-8719
Vol. 05, Issue 04 (April. 2015), ||V3|| PP 46-58

Study of predator switching in an eco-epidemiological model with
disease in the prey

Ala'a Abbas M.Rasheed® , Raid Kamel Naji?, Basim N.Abood*

1 Department of mathematics, College of science, University Technology, Baghdad, Iraq.
% Department of mathematics, College of science, University Baghdad, Baghdad, Irag.

Abstract: - In this paper, the dynamical behavior of some eco-epidemiological models is investigated. Prey-
predator models involving infectious disease in prey population, which divided it into two compartments;
namely susceptible population S and infected population 1, are proposed and analyzed. The proposed model
deals with SIS infectious disease that transmitted directly from external sources, as well as, through direct
contact between susceptible and infected individuals. in addition to the infectious disease in a prey species,
predator switching among susceptible and infected prey population . The model are represented mathematically
by the set of nonlinear differential equations .The existence, uniqueness and boundedness of this model are
investigated. The local and global stability conditions of all possible equilibrium points are established. Finally,
using numerical simulations to study the global dynamics of the model .
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l. INTRODUCTION

A prey-predator model inovlving predator switching is received a lot of attention in literatures. It is
well known that in nature there are different factors; such as stage structure, disease, delay, harvesting and
switching; effect the dynamical behavior of the model. In addition, the existence of some type of disease divides
the population into two classes known as susceptible and infected. Further, since the infected prey is weaker
than the susceptible prey therefore catching the infected prey by a predator will be easer than catching the
susceptible prey. Consequently most of the prey-predator models assume that the predator prefers to eat the
infected prey, however when the infected prey species is rare or in significant defense capability with respect to
predation then a predator switches to feed on the susceptible prey species. Number of mathematical models
involving predator switching due to various reasons have been studied. Tansky [6]investigated a
mathematical model of one predator and two prey system where the predator has switching tendency. Khan
[3]studied a prey- predator model with predator switching where the prey species have the group defense
capability. Malchow [4]studied an excitable plankton ecosystem model with lysogenic viral infection that
incorporates predator switching using a Holling type-111 functional response.

Keeping the above in view, in this paper, a prey-predator model involving SIS infectious disease in
prey species with predator switching is proposed and analyzed. It is assumed that the disease transmitted within
the prey population by direct contact and though an external sources. The existence, uniqueness and
boundedness of the solution are discussed. The existence and the stability analysis of all possible equilibrium
points are studied. Finally, the global dynamics of the model is carried out analytically as well as numerically.

The mathematical model:

In this section an eco-epidemiological model describing a prey-predator system with switching in the
predator is proposed for study, the system involving an SIS epidemic disease in prey population. In the presence
of disease, the prey population is divided into two classes: the susceptible individuals S(t) and the infected

individuals | (t) here S(t) represents the density of susceptible individuals at time t while I (t)represents

the infected individuals at time t. The prey population grows logistically with intrinsic growth rate I >0 and
environmental carrying capacityK > (0. The existence of disease causes death in the infected prey with
positive death rate dl >0. The predator species consumes the prey species (susceptible as well as infected)

according to predation rate represented by the switching functions [5]with switching rate constants Pl >0
and P2 >0 respectively, however it converts the food from susceptible and infected prey with a conversion

rates € 1 >0 and € 9 >0 respectively. Finally, in the absence of prey species the predator species decay
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exponentially with a natural death rate d2 > (0. Now in order to formulate our model, the following
assumptions are adopted:

Consider a prey-predator system in which the density of prey at time { is denoted by N (t) while

the density of predator species at time { is denoted by Y (t) Let the following assumptions are adopted:

1.

2.

Only the susceptible prey can reproduce logistically, however the infected prey can't reproduce but still has
a capability to compete with the other prey individuals for carrying capacity.
The susceptible prey becomes infected prey due to contact between both the species as well as external

sources for the infection with the contact infection rate constant /3 >0 and an external infection rate

C > 0. However, the infected prey recover and return to the susceptible prey with a recover rate
constanty >0
P.SY P 1Y _ _ o

and mathematically characterize the switching property [34]

1+ (é)z 1+ (?)2

Biologically these functions signify the fact that the predatory rate decreases when the population of one

prey species becomes rare compared to the population of the other prey species. Since logically the amount

of food taken by a predator from one of its prey effected by the amount of food taken from the other prey

species, consequently we will use the following modified switching functions, which are give by
PSY P,1Y

5 5 and > > instead of the above functions.
) JUT N

According to the above hypothesis the dynamics of a prey-predator model involving an SIS epidemic

The functions

disease in prey population can be describe by the following set of nonlinear differential equations:

& rSL—2) - (81 +C)S + 4 - RSy

z LT 4B

o msc)s—dyt—p—— Y .
(Bl +C) = 1+(é)2+(?)2 (1)

dt
dY _ gy 4 GPSY F€oPlY

LT

here S(0)>0, 1(0)>0 and Y(0)>0. Obviously the interaction functions of the system (1) are
continuous and have continuous partial derivatives on the region.

RJ::’ = {(S, I ,Y)E R3 . S(O) > O, | (O) > O,Y(O) > O} Therefore these functions are

Lipschitzian on Rf, and hence the solution of the system (1) exists and is unique. Further, in the following

theorem the boundedness of the solution of the system (1) in Rf is established.
Theorem (1): All the solutions of the system (1) are uniformly bounded.
Proof: Let W =S + | +Y then we get

aw _ds  di dY

dt — dt ' dt ' dt
- ds dl dy L .
So, by substituting the values of a9t ot dt and then simplifying the resulting terms we get

W <S(r+1)—-S—d;l —dyY

Now since S growth logistically in the absence of other species with internist growth rate I' and carrying
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capacity K then it is easy to verify that S is bounded above by K = max {S(O), K}. Further let

d =min {l, dl, dz} then we get:
dw ’ 0
TS K(I’ +1)—dW thus as
o K(r+1) . .
t —> oo itis obtain that 0 <W < . Hence all solutions of system (1) are uniformly bounded and

therefore we have finished the proof. [

The equilibrium points:
In this section all possible equilibrium points of system (1) are presented:

1. Although, system (1) is not well defined at the origin and the vanishing equilibrium point Eq (0,0,0) is not
exist mathematically, the extinction of all species in any environment is still possible and hence the equilibrium
point EO exists biologically and need to study.

AA

2. The predator free equilibrium point that denoted by El = ( ) I ,0), where

2 A
SA_—BlJM/B1 ~4B, . cé

and | = —==>— (2a)
2 di+y=pS
Cr+r(y+d;+Kp) rk(dy+y)-Cd1K . . 2
here By =— ” and By = ” , exists uniquely inthe INt.RY of
Sl — plane provided that the following condition holds
2 Cdl
S<d+y< - (2b)

* * *
3. The positive equilibrium point E2 = (S A7Y )exists uniquely in Int.Rf provided that the follow

algebraic system has a unique positive solution given by S ) " and Y™ .

PS312y
rSL—S*1) (B +C)S + 4 — 1 =0
( K) ('B ) 7 82I2+I4+S4
3c2
(Bl +C)S —dyl — A — RIS 7Y 0

s212 414 +5% -
P S31%Y +e,P, 1352y
S%12 414 +s*

—d2Y+ 0

3.4 The stability analysis of system (1):
In this section the stability of each equilibrium point of system (1) is studied and the results are
summarized as follows:

Since the Jacobian matrix of system (1) near the trivial equilibrium Eg = (0,0,0) is not defined. Hence
the dynamical behavior of system (1) around EO is studied by using the technique of Venturino (2008) and

Arino [1]. Now, rewrite system (1) in R N as follows:

= HX(0)+QX(0) ®

inwhich H is Cl outside the origin and homogenous of degree 1, thus

H(sX)=sH(X)
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For all SZO,X € RN, and Q is a Cl function such that in the vicinity of the origin we have
Q(X)=0(X).
To study the behavior of the system at the origin point, we use H . H that denotes the Euclidian norm on R

and < -,-> denotes the associated inner product, in the case of our model, N =3. Let
X = (x1,%2,%3)=(S,1,Y): H(X)=(Hy(X), Ha(X), H3(X)):
Q(X)=(Qu(X),Q2(X),Q3(X)).

Therefore, the functions H; and Q; (i = 1,2,3) are given by

H(X)=rxg —Cxq + pXp: Hy(X)=Cxq —diXy — X,: Ha(X)=—dyX3

2 3,2
(X):—rxl + I'X1 X5 — Boxg — PIX{XoX3
K 2 X2XZ2 + X3+ xb
1 A2 2 T X
3,2
PaXoX1 X3

QZ(X):ﬂXZ)(l_ 2 2 4 4°

Xl X2 + XZ + Xl
elPlex§ X3 +e5P, x%xl2 X3

Qs(X) =
0= ke

Let X (t) be a solution of system (3). Assume that lim inf HX (t)H =0 and X isbounded. Then it is
t—>w

possible to extract the sequences X(tn +-),tn —> 00, from the family (X (t+:))., such that
X (tn + ) —> 0 1ocally uniformlyon S€ R..

X(t, +s

Define yn( ) M (4)
Recall that, Q( ) O(X ) in the vicinity of the origin. Then Q can be written as

Q(x)=[x[*0@) . ©)
We have

%;S) H(X(t, +5))+ Q(X(t, +3)) o
from (4) we have

1

X(tn +5)=Yn (SX‘x(tn + S]‘ = Yn(s): <X(tn +5), X (tn + S)>2 Q)
On the other hand we have

%<X(tn +5), X(t, +s)>:2<X(tn +s),%s+s)> @®)

So, by take the derivative of X (t + S) in Eq. (7) with respect to s, and using Eq. (8) we obtain

dX (tdns+ S) dyn( )HX t, +S)ﬂ H (+)S)ﬂ< (t +S) dX (:jns+ S)>

Therefore we have

International organization of Scientific Research 49|Page



Study of predator switching in an eco-epidemiological model with disease in the prey

H(X(t, +5)) + Q(X(t, +5)) :%\\X(tn +9)|

()i, +5) H(X b +5)) + QX (t, +5)

Xty +9)]
Now dividing by Hx (tn + S)H and replacing i g” :3 by Yn (S) then simplifying the resulting terms
give
dy, (s
ydn_s() = H(Yn(9) = Yn(S) (¥ (8). H (yn () +[ X (ty + )

X {Q(x(tn -s)_ yn(s)<yn (6 QX + s»>}

X (ty +s|” IX (t +3)|°

Which is equivalent to

Y _[H(yn ()= Yn(S)(ya(s) H(ya(s)))

ds
+ HX (ty + SMQ(Yn ()= yn(s) <yn (s).Q(yn (S))>]
. dyn . : .
Clearly, Y, is bounded,Hyn (S)H =1VSs, and s is bounded too. So, applying the Ascoli — Arzela

theorem [2], one can extract from Y, (S) a subsequence-also denoted by Y, (S) , which converges locally
uniformly on R towards some function Yy, such that:

[X (tn + )[QCyn () = yn(s)(¥n () QYn ()]0

and y satisfies the following system:

Y Hy(O) - vy, HO): [y =2 v ®

Equation (9) is defined forall t € R.
Let us, for a moment, focus on the study of equation (9). The steady states of H are vectors V satisfying

H(V)=V V. HV)
This is a so-called nonlinear eigenvalue. Note that the equation can be alternatively written as
HV)=uv (10)
with "\/” =1, it then holds that £/ = <V, H (V )> . These stationary solutions correspond to fixed directions
that the trajectories of equation (9) may reach asymptotically. Further more equation (10) can be written as

(=T +Chy =, =0
Cv —(u+dy+yN, =0 (11)
(1 +dag=0

Now, we are in a position to discuss in detail the possibility of reaching the origin following fixed
directions.

Case (1) V3 =0
(@ V1= 0 and Vo # 0 : in this case, there is a possibility to reach the origin following the | —axis when

i =—01 with y=0.
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(b) V1 #0 and Vo =0: in this case there is a possibility to reach the origin following S — axis when

L=r with C=0.

(Vi # 0 and Vo # 0 : in this case, we obtain different results depending on the parameters:

Sub case (1): there is a possibility to reach the origin if

(dy + 7 +C —r)% +4r(d, + ) > 4Cd,

(d{+y+C-r)
H=— L 2

Sub case (2): we can not reach the origin otherwise.

Case (2) V3 =0

1
+%(d1+y+C—r)2+(r(d1+7)‘Cdl)F

In this case, we obtain different results depending on the parameters

as these given case 1 above with L = —d 2.

The Jacobian matrix of system (1) at the predator free equilibrium point El can be written as:

Bl +C

Consequently, the characteristic equation can be written as

ps

e1piS +eppol

_dl

(112 —T/ll +D —d2 +

here
2S+1

1+([
S

f

r6—2§K+r)—(ﬂf+C) ‘Trsj—ﬂSAﬂ/

A

T:rﬁ— K A)—(ﬁlA+C)+@’5A—d1—7)
D:[r(;l—%)—(ﬂf+c)h5§—d1—7)—(ﬁf+CX_Tr§_IB§+7J

Clearly the eigenvalues of this Jacobian matrix satisfy the following relationships:

T:ﬂls +ﬂ.1|, D=ﬂ.13.ﬂ.1|,and ﬂ’lY =—d2+

-7

A

1S

elplé + 82 P2 IA

wlif o

€1P1S + eyl

]

(12)

Accordingly the equilibrium point El is locally asymptotically stable provided that:

r‘;l— LK“)< (,Bf + C)

(13a)
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K A
BV (13b)
r+ pK
e pS +epol _

- N <Us (13c)
I S
1*(5)2 +(r)2

However, it is unstable point otherwise.

The Jacobian matrix of coexistence equilibrium point E2 can be written as:

J(E2) =(Gij)axs3

where:
PS™ 1™ Y* S™ 1™ —s* 43I
_ 28T 41T _
Cll—r(l K j M3 2
4
2P;S IY[S -1 j
=18 pstty
C —_ — —
12 K Mf
3 4 4
—P18*3I*2 2P23*|*Y*[|* -s* J
Clg=———"<0,Cyy =Mz —
13 M, 21 3 Mf
2 2 2 2 4 4
P,S™ 17 Y*(s* 1" —1" +38" ) o |
Cpp =S —dy—y M2 C23 v, <0
2 2 2 2
Y F S*(M4M5—28* MG[I* +2S* D
C31 =
Mj
2 2 2 2
Y*1*s” [M4M7—2I* MG(S* +21° ﬂ
Ca2 =
M
C33 =0.

where |\/|3=,3|*+C, |\/|4=S*2|>1<2 + |>l<4 +S*4.

Mg =3, S™ +2e,P, 1", Mg =¢;RS™ +e,P,1"

and M7 =26,P,S™ +3e,P, 17 .

Then the characteristic equation of J (Ez) can be written as:
B +CA2+CoA+Cq=0

here Cy=—(C11 +Cp2). C =C11Cpp — C12Cp1 — C13C31 — C23Ca2
C3 = C31(C13C22 — €12€23) + C32(C11C23 — C13C21)
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However
A=CyCy —Cz =(Cyg +Cpp NC12C21 — C11C22 ) + €31 (C11C13 + C3C12)
+C35(C2pCo3 + C13C21)
According to Routh-Hurwitz criterion the equilibrium point E2 is locally asymptotically stable

provided that C, >0 ,C, >0 and A =C,C, —C, > 0. Hence straightforward computation show that the

positive equilibrium point E2 is locally asymptotically stable provided that

K<2S*+1" (14a)
4 4 4
I <S* <31" (14b)
Ky w _Oy+y
r+Kﬁ<S < 7 (14c)
2 2 2
2 2 2 * * *
M, >max. M , M (14d)

(Rs*(65* —d—y)-Pyly M2 <2P,P5™" *ZY*(I 135" j (14¢)

P 1*((dy + 7 — A5*)-MsPS* M %

x2 43 2 - x4 x4 2(  +% x4 (141)
~5* Y(PZ(S 1*" — 1% +3S )+2P1(I -s D

Clearly, the condition (14a)-(14c) guarantee that C11,C1o and Coo are negative while Coq is positive.
However, condition (14d) guarantee that C3q and C3y are positive and hence C, > 0. Further the conditions
(14a)-( 14d) with condition (14e) guarantee that C, > 0. Finally the condition (14a)-(14d) with condition
(14e) guarantee that C,C, —C, > 0.

Theorem (3): Assume that El is a locally asymptotically stable point in RJ?: then El is globally

asymptotically stable on the sub region of Rf that satisfy the following conditions:

G2 <4G,Gy (15a)
Y(SPN, +IP,N,)
G,U, U 15
Vo, - 3. - 1+<§>2+<%>2 )
here 61:C—r+( +ﬂ) S.Gy=y+C— (r+,8)8+ﬂf

ngd1+]/—ﬁS,U1:S—S .
Uy=1—-1,N=S+e;, N, =1 +e,
Proof: Consider the following positive definite function:

L = s _2§)2 + { —Zf)z +Y
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Clearly, Lj: Rf —> R is continuously differentiable function so that Ll(é, f,O): 0 and
L4(S,1,0)>0 foran (S,1,Y)eR> witn (S, | ,Y)¢(§, f,O).

Therefore by differentiating this function with respect to the variable t we get:

%:(S—SA)%+(I —IA)%+%—I
ds di__ dv

Substituting the value of =, = and —— in this equation and then simplifying the resulting terms we obtain:

dt ' dt dt
%S—G]_U]_Z + G2U1U2 —G3U22 + Y(SP1N12+ IP2|\2|2)
ot 1+ + ()

So, by using condition (15a) we obtain that:
dL 2 Y(SP,N; + IP,N
R N T

1+(5)2+(|)
dly
dt

Thus El is globally asymptotically stable on the sub region of Rf that satisfy the given conditions. |

Further according to condition (3.15b) it is easy to verify that <0, and hence Ll is a Lyapnuov function.

Theorem (4): Assume that E2 is a locally asymptotically stable point in Rf, then E2 is globally

asymptotically stable on the sub region of Rf that satisfies the following condition:

G52 < 46466 (16a)

(@U3—J€6U4)Z >Y(SP1N3+ |P2N4) +Y*(P18*N5+P2I*N6)(16b)

R T NES,

*

where G4:C—r+(%+ﬁ)l*+%8*,G5:(%+,B)S—,BI*—C—7,
GG :d1+7—ﬁS,U3=S—S*.
Ug=1-1"N3g=S"+e)Y".

Ng=1"+eY" Ng=S+eY" Ng=1+eY"
Proof: Consider the following positive definite function:

L, s 0f v

2 2 2

Clearly, Lo : Ri —> R is continuously differentiable function so that L, (S*, I *,Y*):O and
L,(5.1,Y)>0; V(S,1,Y)eR3witn (S,1,Y) = (S*, I*,Y*).

Therefore by differentiating this function with respect to the variable t we get:
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e R R R B

Substituting the value of as di and av in this equation and then simplifying the resulting terms we obtain:

dt ' dt dt
0o 6,02 16U, G2+ YSRNs +IPNG) Y (PiS*Ng + P,1 "N

! PGP () ()

So, by using condition (16a) we obtain that:
dL Y(SPN3+IP,Ny) Y*(PS*Ng+P, "N
2 (Fus \/7U4) 1N3 24)Jr (1 5+ M 6)

1+(;)2+(?)2 (L) 4[5

*
|

dL
Now according to condition (16b) it is easy to verify that d_t2 < 0, and hence L2 is a Lyapnuov

function. Thus E2 is globally asymptotically stable on the sub region of Rf that satisfy the given conditions.

1. NUMERICAL SIMULATION
In this section the dynamical behavior of system (1) is studied numerically for different sets of
parameters and different sets of initial points. The objectives of this study are: to investigate the effect of
varying the value of each parameter (especially the switching rate) on the dynamical behavior of system (1) and
toconfirm our obtained analytical results. Now for the following set of hypothetical parameters values:

r=1,K =200,8=0.2,C=0.1y=04,P=1P, =1,

d]_ =0.], d2 = O.l,el = 0.5,62 =0.6
The trajectory of system (1) is drawn in the Fig.(1) for different initial point

17

16

14
initial point
12 (84.4)

initial point

(05.9)

initial point

S (:1:)

Stable point

4 (IEZ[IE77BN

15

Fig.(1): Phase plot of system (1) starting from different initial points.

In the above figure, system (1) approaches asymptotically to the stable coexistence equilibrium point starting
from different initial points, which indicates the global stability of the positive equilibrium point.
Note that in time series figures, we will use throughout this section that: blue color for describing the
trajectory of S, green color for describing the trajectory of I and red color for describing the trajectory of Y .
Now in order to discuss the effect of varying the intrinsic growth rate r on the dynamical behavior of

system (1), the system is solved numerically for different values of parameter I' = 0.1,2 keeping other
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parameters fixed as given in Eq.(17) and then the solution of system (1) is drawn in Fig.(2a)-(2b) while their
time series are drawn in Fig. (3a)-(3b) respectively.

@ ()

Fig.(2): Phase plots of system (1) for the data given by Eq.(17) (a) System (1) approaches asymptotically to EO

when r =0.1. (b) System (1) approaches asymptotically to coexistence equilibrium point when r=2
(@

(b)
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=
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)

\.
T~— th
— L

0 . . . — . n n n I I I
0 1000 2000 3000 4000 5000 6000 7000 8000 0 1000 2000 3000 4000 5000 6000 7000 8000
Time Time

Fig. (3): Time series for the solution of system (3.1). (a) Time series for the attractor in Fig.( 2a) (b) Time series
for the attractor in Fig.(2b).

Clearly from the Figs. (2a) and (3a), the solution of system (1) approaches asymptotically to the vanishing
equilibrium point  Eq, which confirm our analytical results regarding to possibility of approaching of the
solution to the vanishing equilibrium point.

The effect of varying the switching rate P2 of infected prey species on the dynamics of system (1) is

studied and the trajectories of system (1) are drawn in Fig. (4a)-(4b) for the values P, =0.6,0.36

respectively, while their time series are drawn in Fig. (5a)-(5b) respectively.
(@)

(b)

4

Fig.(4): Phase plots of system (1) for the data given in Eq.(17). (a) System (1) approaches asymptotically to
coexistence equilibrium point for P2 =0.6. (b) System (1) approaches to periodic attractor for

P, =0.36.
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(@ (b)
14 . . . . . . . ; ; . .
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Fig.( 5): Time series for the solution of system (1). (a) Time series for the attractor in Fig. (4a) (b) Time series
for the attractor in Fig.(4b).

According to the above figures the system loses it stability of positive equilibrium point and the

0 , /\ . . . . .
0 1000 2000 3000 4000 5000 6000 7000 8000
Time

solution approaches to periodic dynamics in |I’lt.RJ3: due to decreasing in the switching rate constant P2.
The effect of varying death rate of predator d 2 on the dynamical behavior of system (1) is studied and

the trajectories of system (1) are drawn in Fig. (6a)-( 6b) for the values 05 =0.8,0.4 respectively, while
their time series are drawn in Fig.( 7a) -(7b) respectively.

(@ (b)

35

25
30

20
25

> 20 s> 15
15

10
10

5 5

20 20

15 10 s 10
10 . 8 . 8
10
5 4 4
| 02 s I 5 2

Fig. (6): Phase plots of system (1) for the data given in Eqg. (17) (a) System (1) approaches asymptotically to

predator free equilibrium point in the Sl-plane for d2 =0.8. (b) System (1) approaches asymptotically to

coexistence equilibrium point for d2 =0.4.

@ (b)
10 . . . . . . . . . ; ; . :

Population
@
Population

\ /1"&/ \

0 . . . . . . .
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time

. . . . . . .
0 1000 2000 3000 4000 5000 6000 7000 8000
Time

Fig.( 7): Time series for the solution of system (1). (a) Time series for the attractor in Fig.(6a) (b) Time series
for the attractor in Fig.( 6b) .
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According to these figures, increasing the predator death rate causes extinction in predator species of system (1).

2.5 Discussion and conclusion:

In this chapter, we proposed and analyzed an eco-epidemiological model that described the dynamical
behavior of a prey-predator model with modify switching function. The model include three non-linear
differential equations that describe the dynamics of three different populations namely predator Y susceptible
prey S infected prey I. The boundedness of the system (1) has been discussed. The conditions for existence and
stability of each equilibrium points are obtained. To understand the effect of varying each parameter, system (1)
is solved numerically and then the obtained results can be summarized as follow:

1. Decreasing the intrinsic growth rate I' causes extinction in all species and the solution of the system (1)
approaches asymptotically to the vanishing equilibrium point E( for I <0.2. However increasing the
intrinsic growth rate causes persists of all species and the solution of system (1) approaches asymptotically to
the positive equilibrium point E .

2. Decreasing the values of predator switching rate Py in the range P, <0.39 causes destabilizing of the
coexistence equilibrium point E2 in the |n'[.RJ?: and the solution of system (1) approaches asymptotically to

periodic dynamics in Int.Rf.

3. Increasing the values of death rate of predator d 2 causes extinction in predator species and the solution of

the system (1) approaches asymptotically to the predator free equilibrium point El for d2 >0.73

4. Finally it is observed that, varying each of the values of parameters K, 3, P;,7,e;,C, €5, dq has no

effect on the dynamics of the system (1) and the system still approaches asymptotically to coexistence
equilibrium point.
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