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Abstract: - In this paper, the dynamical behavior of some eco-epidemiological models is investigated. Prey-

predator models involving infectious disease in prey population, which divided it into two compartments; 

namely susceptible population S and infected population I, are proposed and analyzed. The proposed model 

deals with SIS infectious disease that transmitted directly from external sources, as well as, through direct 

contact between susceptible and infected individuals. in addition to the infectious disease in a prey species, 

predator switching among susceptible and infected prey population .  The model are represented mathematically 

by the set of nonlinear differential equations .The existence, uniqueness and boundedness of this model are 

investigated. The local and global stability conditions of all possible equilibrium points are established. Finally, 

using numerical simulations to study the global dynamics of the model . 
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I. INTRODUCTION 
 A prey-predator model inovlving predator switching is received a lot of attention in literatures. It is 

well known that in nature there are different factors; such as stage structure, disease, delay, harvesting and 

switching; effect the dynamical behavior of the model. In addition, the existence of some type of disease divides 

the population into two classes known as susceptible and infected. Further, since the infected prey is weaker 

than the susceptible prey therefore catching the infected prey by a predator will be easer than catching the 

susceptible prey. Consequently most of the prey-predator models assume that the  predator  prefers  to  eat  the  

infected prey, however when the infected prey species is rare or in significant  defense capability with respect to 

predation then  a predator switches to feed on the susceptible prey species. Number of mathematical  models  

involving  predator  switching  due  to  various  reasons  have been studied. Tansky [6]investigated a 

mathematical model of one predator and two prey system where the predator has switching tendency. Khan 

[3]studied a prey- predator model with predator switching where the prey species have the group defense 

capability. Malchow [4]studied an excitable plankton ecosystem model with lysogenic viral infection that 

incorporates predator switching using a Holling type-III functional response.  

 Keeping the above in view, in this paper, a prey-predator model involving SIS  infectious disease in 

prey species with predator switching is proposed and analyzed. It is assumed that the disease transmitted within 

the prey population by direct contact and though an external sources. The existence, uniqueness and 

boundedness of the solution are discussed. The existence and the stability analysis of all possible equilibrium 

points are studied. Finally, the global dynamics of the model is carried out analytically as well as numerically. 

 

The mathematical model: 

 In this section an eco-epidemiological model describing a prey-predator system with switching in the 

predator is proposed for study, the system involving an SIS epidemic disease in prey population. In the presence 

of disease, the prey population is divided into two classes: the susceptible individuals S(t) and the infected 

individuals  tI , here  tS  represents the density of susceptible individuals at time t while  tI represents 

the infected individuals at time t. The prey population grows logistically with intrinsic growth rate 0r  and 

environmental carrying capacity 0K . The existence of disease causes death in the infected prey with 

positive death rate 01 d .
 

 The predator species consumes the prey species (susceptible as well as infected) 

according to predation rate represented by the switching functions [5]with switching rate constants 0
1
P  

and 0
2
P  respectively, however it converts the food from susceptible and infected prey with a conversion 

rates 0
1
e  and 0

2
e  respectively. Finally, in the absence of prey species the predator species decay 
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exponentially with a natural death rate 02 d . Now in order to formulate our model, the following 

assumptions are adopted: 

  Consider a prey-predator system in which the density of prey at time t  is denoted by  tN   while 

the density of predator species at time t  is denoted by  tY . Let the following assumptions are adopted:  

1. Only the susceptible prey can reproduce logistically, however the infected prey can't reproduce but still has 

a capability to compete with the other prey individuals for carrying capacity.  

2. The susceptible prey becomes infected prey due to contact between both the species as well as external 

sources for the infection with the contact infection rate constant 0  and an external infection rate 

0C . However, the infected prey recover and return to the susceptible prey with a recover rate 

constant 0 .   

3. The functions 

 2
1

1
S
I

SYP



 and 

 2
2

1
I
S

IYP



 mathematically characterize the switching property [34] 

Biologically these functions signify the fact that the predatory rate decreases when the population of one 

prey species becomes rare compared to the population of the other prey species. Since logically the amount 

of food taken by a predator from one of its prey effected by the amount of food taken from the other prey 

species, consequently we will use the following modified switching functions, which are give by 

   22
1

1
I
S

S
I

SYP



  and 

   22
2

1
I
S

S
I

IYP



  instead of the above functions. 

 According to the above hypothesis the dynamics of a prey-predator model involving an SIS epidemic 

disease in prey population can be describe by the following set of nonlinear differential equations:  

 

   

   

   22
2211

2

22
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1
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S
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I
S

S
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I
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S
IK

IS

IYPeSYPe
Yd

dt

dY

IYP
IIdSCI

dt

dI

SYP
ISCIrS

dt

dS












 





                (.1) 

here   00 S ,   00 I   and   00 Y . Obviously the interaction functions of the system (1) are 

continuous and have continuous partial derivatives on the region. 

        .00,00,00:,, 33  YISRYISR . Therefore these functions are 

Lipschitzian on 
3
R , and hence the solution of the system (1) exists and is unique. Further, in the following 

theorem the boundedness of the solution of the system (1) in 
3
R   is established. 

Theorem (1): All the solutions of the system (1) are uniformly bounded. 

Proof: Let YISW   then we get  

 
dt
dY

dt
dI

dt
dS

dt
dW    

So, by substituting the values of 
dt
dI

dt
dS , , 

dt
dY

 and then simplifying the resulting terms we get 

   YdIdSrS
dt

dW
211    

Now since S  growth logistically in the absence of other species with internist growth rate r  and carrying 
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capacity K  then it is easy to verify that S  is bounded above by   KSK ,0maxˆ  . Further let 

 21,,1minˆ ddd   then we get: 

   WdrK
dt

dW ˆ1ˆ                                                                                             thus as  

t   it is obtain that 
 

d

rK
W

ˆ

1ˆ
0


 . Hence all solutions of system (1) are uniformly bounded and 

therefore we have finished the proof.                                                                                        ■ 

 

The equilibrium points: 

In this section all possible equilibrium points of system (1) are presented: 

1. Although, system (1) is not well defined at the origin and the vanishing equilibrium point  0,0,00E  is not 

exist mathematically, the extinction of all species in any environment is still possible and hence the equilibrium 

point 0E  exists biologically and need to study.  

2. The predator free equilibrium point that denoted by  0,ˆ,ˆ1 ISE  , where 

 
2

4 2
2
11ˆ

BBB
S


  and 

Sd

SCI
ˆ

ˆ

1

ˆ
 

              (2a) 

here 




r

KdrCr
B

)(
1

1
  and 





r

KCddrK
B 11 )(

2


 , exists uniquely in the 
2. RInt  of 

SI plane provided that the following condition holds 

  
r

Cd
dS 1

1
ˆ          (2b)  

3. The positive equilibrium point    YISE ,,2  exists uniquely in 
3. RInt  provided that the follow 

algebraic system has a unique positive solution given by 
 IS ,   and 

Y  . 
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3.4 The stability analysis of system (1): 

 In this section the stability of each equilibrium point of system (1) is studied and the results are 

summarized as follows: 

Since the Jacobian matrix of system (1) near the trivial equilibrium  0,0,00 E  is not defined. Hence 

the dynamical behavior of system (1) around 0E  is studied by using the technique of Venturino (2008) and 

Arino [1]. Now, rewrite system (1) in 
NR  as follows: 

      tXQtXH
dt

dX
         (3) 

in which H  is 
1C  outside the origin and homogenous of degree 1, thus 

    XsHsXH                   
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For all 
NRXs  ,0 , and Q  is a 

1C  function such that in the vicinity of the origin we have 

   XoXQ  . 

To study the behavior of the system at the origin point, we use   that denotes the Euclidian norm on ,NR  

and ,  denotes the associated inner product, in the case of our model, 3N . Let 

   YISxxxX ,,,, 321  ;         XHXHXHXH 321 ,, ; 

        XQXQXQXQ 321 ,, . 

Therefore, the functions iH  and  3,2,1iQi   are given by 

  2111 xCxrxXH  ;   22112 xxdCxXH  ;   323 xdXH   
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
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4
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2

2
2

2
1

3
2
1

3
2223
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3
111

3
xxxx

xxxPexxxPe
XQ




  

Let  tX  be a solution of system (3). Assume that 0)(inflim 


tX
t

and X  is bounded. Then it is 

possible to extract the sequences    nn ttX , , from the family  
0

)(



t

tX  such that 

  0. ntX  locally uniformly on Rs .  

Define  
 
 stX

stX
sy

n

n
n




                                               (4) 

Recall that,    XoXQ   in the vicinity of the origin. Then Q  can be written as  

    1
2
OXXQ    .                                             (5) 

We have  

 
 

     .stXQstXH
ds

stdX
nn

n 


                                (6)  

from (4) we have  

             2
1

, stXstXsystXsystX nnnnnn     (7) 

On the other hand we have 

      
 
ds

stdX
stXstXstX

ds

d n
nnn


 ,2,                   (8) 

So, by take the derivative of  stX n   in Eq. (7) with respect to s, and using Eq. (8) we obtain  

 
   

 
 

 
 

 
ds

stdX
stX

stX
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stX
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sdy

ds

stdX n
n

n

n
n

nn 






,  

Therefore we have 
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Now dividing by )( stX n   and replacing 
)(

)(

stX

stX

n

n




 by  syn , then simplifying the resulting terms 

give  

 

      

  
   

  



























22
)(

,
(

),())((
)(

stX

stXQ
sysy

stX

stXQ

stXsyHsysysyH
ds

sdy

n

n
nn

n

n

nnnnn
n

 

Which is equivalent to 

 
          

            syQsysysyQstX
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Clearly, ny  is bounded, ,,1)( ssyn   and 
ds

dyn
 is bounded too. So, applying the Ascoli – Arzela 

theorem [2], one can extract from )(syn  a subsequence-also denoted by )(syn , which converges locally 

uniformly on R  towards some function y, such that:  

           0,))((  
nt

nnnnn syQsysysyQstX  

and y satisfies the following system: 

          tyHtytytyH
dt

dy
, ;   ,1ty  t                       (9) 

Equation (9) is defined for all Rt . 

Let us, for a moment, focus on the study of equation (9). The steady states of H  are vectors V  satisfying  

    VHVVVH ,  

This is a so-called nonlinear eigenvalue. Note that the equation can be alternatively written as  

   VVH                                                          (10) 

with 1V ; it then holds that  VHV , . These stationary solutions correspond to fixed directions 

that the trajectories of equation (9) may reach asymptotically. Further more equation (10) can be written as 

 

 

 

  0

0

0

32

211

21







vd

vdCv

vvCr







                                                   (11) 

Now, we are in a position to discuss in detail the possibility of reaching the origin following fixed 

directions. 

Case (1)   03 v  

(a) 01 v  and  02 v : in this case, there is a possibility to reach the origin following the I axis when 

1d  with 0 . 
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(b) 01 v  and 02 v : in this case there is a possibility to reach the origin following S  axis when 

r  with 0C . 

 (c) 01 v  and 02 v : in this case, we obtain different results depending on the parameters:  

 Sub case (1): there is a possibility to reach the origin if  

 11
2

1 4)(4)( CddrrCd    
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
 

 Sub case (2): we can not reach the origin otherwise. 

Case (2) 03 v  

 In this case, we obtain different results depending on the parameters  

as these given case 1 above with 2d . 

 The Jacobian matrix of system (1) at the predator free equilibrium point 1E can be written as: 
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Consequently, the characteristic equation can be written as  
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Clearly the eigenvalues of this Jacobian matrix satisfy the following relationships: 

 IST 11   , ISD 11 . , and 
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Accordingly the equilibrium point 1E  is locally asymptotically stable provided that: 

    CIr
K

IS   ˆ1
ˆˆ2        (13a) 
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However, it is unstable point otherwise. 

The Jacobian matrix of coexistence equilibrium point 2E  can be written as:  
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


 





    0
4

32

2
23 
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

M
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c  

2
4
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22

M

SIMSMMSIY

c














 





 

2
4

674

32

2222

22

M

ISMIMMSIY

c













 





   

033 c . 

where CIM  3 , 

4422

4
  SIISM .  

  IPeSPeM 22115 23 , 
  IPeSPeM 22116   

and 
  IPeSPeM 22117 32  .  

Then the characteristic equation of  2EJ  can be written as: 

 032
2

1
3  CCC      

here  22111 ccC  , 32233113211222112 ccccccccC   

    211323113223122213313 ccccccccccC   
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However 

    

 2113232232

1223131131221121122211321

ccccc

cccccccccccCCC




  

According to Routh-Hurwitz criterion the equilibrium point 2E  is locally asymptotically stable 

provided that 01 C  , 03 C  and 0321  CCC . Hence straightforward computation show that the 

positive equilibrium point 2E  is locally asymptotically stable provided that 

 
  ISK 2        (14a) 

 
444

3   ISI        (14b)

 






 


 1d

Kr

K
S         (14c) 

 















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
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


























7

22

6

2

5

22

6

2 22
22

4 ,.max
M

ISMI

M

SIMS

M   (14d) 

        






   2225

32 12
2
4211 SIYISPPMIPdSSP   (14e) 

 

  
















 






 







4444223 2
1

2
2

2

2
41312

23 SIPSIISPYIS

MSPMSdIP 

(14f) 

 

Clearly, the condition (14a)-(14c) guarantee that 1211,cc  and 22c   are negative while 21c  is positive. 

However, condition (14d) guarantee that 31c  and 32c  are positive and hence 01 C . Further the conditions 

(14a)-( 14d)  with condition (14e) guarantee that 03 C . Finally the condition (14a)-(14d) with condition 

(14e) guarantee that 0321 CCC .  

Theorem (3): Assume that 1E  is a locally asymptotically stable point in  
3
R  then 1E  is globally 

asymptotically stable on the sub region of 
3
R  that satisfy the following conditions:  

 31
2
2 4 GGG                                                                             (15a) 

    

   22

2211
2

2311
1

I
S

S
I

NIPNSPY
UGUG




                    (15b) 

here    S
K

r
IrCG

K
r ˆˆ

1    ,   ISCG
K
r ˆ

2    

 SdG   13 , SSU ˆ
1   .  

IIU ˆ
2  , 11

ˆ eSN   , 22
ˆ eIN   

Proof: Consider the following positive definite function: 

 
   

YL
IISS




2

ˆ

2

ˆ

1

22
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Clearly, RRL 
3

1 :
 

is continuously differentiable function so that   00,ˆ,ˆ1 ISL  and 

  00,,1 ISL   for all   3,, RYIS  with    0,ˆ,ˆ,, ISYIS  .  

Therefore by differentiating this function with respect to the variable t  we get:  

    
dt
dY

dt
dI

dt
dS IISS

dt

dL
 ˆˆ1

  

Substituting the value of ,
dt
dS

dt
dI

 and 
dt
dY

 in this equation and then simplifying the resulting terms we obtain: 

 
 

   22
22112

23212
2

11
1

1
I
S

S
I

NIPNSPY
UGUUGUG

dt

dL




                

So, by using condition (15a) we obtain that: 

   

   22
22112

2311
1

1
I
S

S
I

NIPNSPY
UGUG

dt

dL




               

Further according to condition (3.15b) it is easy to verify that 01 
dt

dL
, and hence 1L  is a Lyapnuov function. 

Thus 1E  is globally asymptotically stable on the sub region of 
3
R  that satisfy the given conditions.             ■    

 

Theorem (4): Assume that 2E  is a locally asymptotically stable point in  
3
R , then 2E  is globally 

asymptotically stable on the sub region of 
3
R  that satisfies the following condition:     

 64
2

5 4 GGG             (16a) 

    
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 
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NIPNSPYNIPNSPY
UGUG  (16b)                                                                                               

where     S
K

r
IrCG

K
r 4 ,      CISG

K
r

5 , 

 SdG   16 , 
 SSU3 .  

 IIU4 ,
  YeSN 13 .   

  YeIN 24 , 
 YeSN 15 , 

 YeIN 26 . 

Proof: Consider the following positive definite function: 

     
2222

222  


YYIISS
L  

Clearly, RRL 
3

2 :  is continuously differentiable function so that   0,,2  YISL  and 

  0,,2 YISL ;    3,,  RYIS  with     YISYIS ,,,, .  

Therefore by differentiating this function with respect to the variable t  we get: 
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       
dt
dY

dt
dI

dt
dS YYIISS

dt

dL  2
                                                       

Substituting the value of  ,
dt
dS

dt
dI

 and 
dt
dY

 in this equation and then simplifying the resulting terms we obtain:  
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dt
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So, by using condition (16a) we obtain that: 

   
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I

NIPNSPYNIPNSPY
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Now according to condition (16b) it is easy to verify that 02 
dt

dL
, and hence 2L  is a Lyapnuov 

function. Thus 2E  is globally asymptotically stable on the sub region of 
3
R  that satisfy the given conditions.                                                   

 

II. NUMERICAL SIMULATION 

In this section the dynamical behavior of system (1) is studied numerically for different sets of 

parameters and different sets of initial points. The objectives of this study are: to investigate the effect of 

varying the value of each parameter (especially the switching rate) on the dynamical behavior of system (1) and 

toconfirm our obtained analytical results. Now for the following set of hypothetical parameters values:  

 
6.0,5.0,1.0,1.0

,1,1,4.0,1.0,2.0,200,1

2121

21
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eedd

PPCKr 
           (17) 

The trajectory of system (1) is drawn in the Fig.(1) for different initial point 
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Fig.(1): Phase plot of system (1) starting from different initial points. 

 

In the above figure, system (1) approaches asymptotically to the stable coexistence equilibrium point starting 

from different initial points, which indicates the global stability of the positive equilibrium point. 

Note that in time series figures, we will use throughout this section that: blue color for describing the 

trajectory of S , green color for describing the trajectory of I  and red color for describing the trajectory of Y . 

Now in order to discuss the effect of varying the intrinsic growth rate r on the dynamical behavior of 

system (1), the system is solved numerically for different values of parameter 2,1.0r  keeping other 
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parameters fixed as given in Eq.(17) and then the solution of system (1) is drawn in Fig.(2a)-(2b) while their 

time series are drawn in Fig. (3a)-(3b) respectively. 
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Fig.(2): Phase plots of system (1) for the data given by Eq.(17) (a) System (1) approaches asymptotically to 0E  

when 1.0r . (b) System (1) approaches asymptotically to coexistence equilibrium point when r=2 
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Fig. (3): Time series for the solution of system (3.1). (a) Time series for the attractor in Fig.( 2a) (b) Time series 

for the attractor in Fig.(2b). 

 

Clearly from the Figs. (2a) and (3a), the solution of system (1) approaches asymptotically to the vanishing  

equilibrium point  E 0 , which confirm our analytical results regarding to possibility of approaching of the 

solution to the vanishing equilibrium point.   

The effect of varying the switching rate 2P  of infected prey species on the dynamics of system (1) is 

studied and the trajectories of system (1) are drawn in Fig. (4a)-(4b) for the values 36.0,6.02 P  

respectively, while their time series are drawn in Fig. (5a)-(5b) respectively.  
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Fig.(4): Phase plots of system (1) for the data given in Eq.(17). (a) System (1) approaches asymptotically to 

coexistence equilibrium point for 6.02 P . (b) System (1) approaches to periodic attractor for 

36.02 P . 
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Fig.( 5): Time series for the solution of system (1). (a) Time series for the attractor in Fig. (4a) (b) Time series 

for the attractor in Fig.(4b). 

According to the above figures the system loses it stability of positive equilibrium point and the 

solution approaches to periodic dynamics in  
3. RInt  due to decreasing in the switching rate constant 2P . 

The effect of varying death rate of predator 2d  on the dynamical behavior of system (1) is studied and 

the trajectories of system (1) are drawn in Fig. (6a)-( 6b) for the values 4.0,8.02 d  respectively, while 

their time series are drawn in Fig.( 7a) -(7b) respectively. 
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Fig. (6): Phase plots of system (1) for the data given in Eq. (17) (a) System (1) approaches asymptotically to 

predator free equilibrium point in the  SI-plane for 2d 0.8. (b) System (1) approaches asymptotically to 

coexistence equilibrium point for 2d 0.4.  
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Fig.( 7): Time series for the solution of system (1). (a) Time series for the attractor in Fig.(6a) (b) Time series 

for the attractor in Fig.( 6b) . 
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According to these figures, increasing the predator death rate causes extinction in predator species of system (1).   

 

2.5 Discussion and conclusion:          
In this chapter, we proposed and analyzed an eco-epidemiological model that described the dynamical 

behavior of a prey-predator model with modify switching  function. The model include three non-linear 

differential equations that describe the dynamics of three different populations namely predator Y susceptible 

prey S infected prey I. The boundedness of the system (1) has been discussed. The conditions for existence and 

stability of each equilibrium points are obtained. To understand the effect of varying each parameter, system (1) 

is solved numerically and then the obtained results can be summarized as follow: 

1. Decreasing the intrinsic growth rate r  causes extinction in all species and the solution of the system (1) 

approaches asymptotically to the vanishing equilibrium point E 0  for 2.0r . However increasing the 

intrinsic growth rate causes persists of all species and the solution of system (1) approaches asymptotically to 

the positive equilibrium point 2E . 

2. Decreasing the values of predator switching rate 2P  in the range 39.02 P  causes destabilizing of the 

coexistence equilibrium point 2E  in the
3. RInt  and the solution of system (1) approaches asymptotically to 

periodic dynamics in 
3. RInt . 

3. Increasing the values of death rate of predator 2d  causes extinction in predator species and the solution of 

the system (1) approaches asymptotically to the predator free equilibrium point 1E  for 73.02 d   

4. Finally it is observed that, varying each of the values of parameters ,,,,,,, 211 eCePK  1d  has no 

effect on the dynamics of the system (1) and the system still approaches asymptotically to coexistence 

equilibrium point.  
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