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Abstract:-This work will focus on theoretical treatment of one-dimension harmonic oscillator trapping potential 

HOP applied along the x-axis together with an optical lattice trapping potential OLP applied along y-axis.  

These trapping potentialsare usually used in experiments that lead to produced Bose-Einstein condensation BEC 

in ultra-cold gases. This analysis will concentration mainly on the anisotropy parameter in HOPand q parameter 

in OLP, and the role that these factors play in term of values and shapes of the trapping potential, initial wave 

function, and final wave function.  This specific study will give us the overall view of the region of confinement 

that the HOP and OLPhave employed.  The study is extended to the chemical potential of the working fluid. 
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I. INTRODUCTION 
A periodic potential can be designed simplyby overlapping two counter-propagating laser beams [1]. 

The interference between the two laser beams forms an optical standing wave with period λL/2, which can trap 

the atoms. By interfering more laser beams, onecan obtain one, two, and three-dimensional (1D, 2D and 3D) 

periodic potentials [2-5]. The 1D lattice, formed by a pair of laser beams, generates a single standing wave 

interference pattern excellently an array of 2D disk-like trapping potentials [6,7]. Two orthogonal optical 

standing waves can create an array of 1D potential tube, in which the atoms can only move along the weakly 

confining axis of the potential tube, thus grasping 1D quantum performance, with the radial motion being 

completely frozen out for low-enough temperatures. Three orthogonal optical standing waves correspond to a 

3D simple cubic crystal, in which each trapping site acts as a tightly confining harmonic oscillator potential. 

One important advantage of using optical fieldsto create a periodic trapping potential is that the geometry and 

depth of the potential are under acomplete control of the experimentalist. For example,the geometry of the 

trapping potentials can be alteredby interfering laser beams under a different angle, thus making even more 

complex lattice arrangements [8], such as Kagome lattices [9]. The deepness of such optical potentials can even 

be varied dynamically during an experimental sequence by simply increasing or decreasing the intensity of the 

laser light, thus turning experimental investigations of the time dynamics of essential phase transitions into a 

reality.As a simulator, an optical lattice offersremarkably clean access to a particular Hamiltonianand thereby 

assists as a model system for testing fundamental theoretical concepts, at times providing good examples of 

quantum many-body effects.Usually, ultra-cold neutral atoms are put in storage inmagnetic traps, in which only 

a small subset of the available atomic spin states, the so-called weak field-seeking states can be trapped. This 

restrictionis generally overcome by using optical dipole traps that rely on the interaction between an induced 

dipole moment in an atom and an external electric field. Such a field can, for example, be provided bythe 

oscillating electric light field from a laser, which induces an oscillating dipole moment in the atom while at the 

same time interacts with this dipole moment in order to create a trapping potentialVdip(r) for the atoms [10].  In 

this study we will focus on the relations that connect the chemical potential and wave function with the 

anisotropy of the HOP, and the chemical potential with the parameter q of the OLP.  The study is extended to 

analysis the distribution of the wave function through the working area.  We have confirmed that the parameters 

in HOP, and OLP play a major part in the solution of the GPE and care should be taking into account if one like 

to bring his analysis to a satisfactory experiments result. 

 

II. THEORY 
The Gross-Pitaevskii Equation (GPE), is the result of a mean-fieldtheory that’s most useful in 

treatinghighly dilute and ultra-cold BECs withnegligible many-body correlation effects.It has also been useful in 

dealing with physicalsituations in which a cloud of thermally excitedbosonic atoms or fermionic atoms 

accompany agaseous condensate. In these cases, the GPE’s numericalsolution must be found in conjunction 

withthe solution of appropriate equations for the coexistingcloud, such as the Vlasov-Landau equations [11].   

Under these conditions it is worth first to write down the GPE.  If we consider the macroscopic dynamics of a 

BECloaded onto an elongated optical lattice, similar to thosecreated in a number of experiments (see, e.g., 

Refs.[12-14]). The condensate dynamics is described by thethree-dimensional GP equation, 
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Where ψ(x, y, z, t)  is the wave function of the cigar-shapedcondensate, (y,z) are the directions of 

strongtransverse confinement, and y is the direction of thelattice. The combined potential of the optical 

latticeand magnetic trap V(x, y,z) can be written as, 

V y, r2 = E0sin2  
πy

d
 +

1

2
m(ωx

2x2 + ω⊥
2 r2)          (2) 

 

E0 is the well depth of the opticallattice, d is the characteristic lattice constant, and ωiare trapping frequencies in 

the corresponding directions.The parameter Γ = 4πℊℏ2as/m characterizes the s-wavescattering of atoms in the 

condensate which introducesan effective nonlinearity in the mean-field equation; it ispositive for repulsive 

interactions and negative for attractiveinteractions.Measuring time in units of ω⊥
−1 , the spatial variablesin units 

of the transverse harmonic oscillator length,a0 =  ℏ/mω⊥ 1/2, the wave function amplitude in unitsof a0
−3/2

, 

and the potential in units of ℏω⊥, we obtain thefollowing dimensionless GP equation: 

i
∂ψ

∂t
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1

2
∇2 + V x, y + G2d ψ 2 ψ        (3) 

 

Where,t = Tω⊥, and G2d = 4π as/a0 . The potential now takes the form: 

V x, y = V0sin2 qy +
1

2
 AL 2x2            (4) 

 

Where, V0 = E0/ ℏω⊥ ,and q = πa0/d. The ratio of the confinement for the magnetic trapAL = ωx /ω⊥varies 

from 10
−1

 to,1/ 2, see for example [15-18], but this is not the case in this study.The Crank-Nicolson (CN) 

scheme is the slogger for the numerical integration of quantum wave equations.  The method’s major advantage 

is that it ensures unitarily for an arbitrary size of the time step dt.  This lets the wave function advance by large 

steps—that is, larger than the inverse of the highest eigen value,ωMAX = Emax ℏ . Only accuracy (at the second 

order) limits the time-step size, not stability or unitarily considerations. The CN method requires us to solve a 

matrix algebraic problem at each time step. This is a fairly expensive computational task.   

 

To solve the GPE several properties should be assign that are: 

a)  A first property of the GPE is the time invariance. This means that the equation is time reversible: the 

equation is stable with respect to the time change of variable t →  −t. 

b) A second property is known as invariance by phase shift or gauge invariance: if ψ  is the solution to equation 

(3), then ψ =   ψ e−αt  is solution to (3) with,V →  V +  α. 

c) Invariants: mass conservation The mass is defined by: 

N(t)  =  N(ψ(t,·)) =  |ψ|2
x

dx, ∀t >  0.           (5) 

 

 Then we can prove that we have the mass conservation N(t)  =  N(0). 
d) Another conserved quantity is the energy: let us introduce the energy functional Eψ  as 

Eψ =  {
1

2
 ψ 2 + V(x)

x
 ψ 2 + β( ψ 2)}dx,   ∀t > 0.          (6) 

 

where the primitive Β of β is defined as: 

Β λ =  β λ dλ
λ

0
.                          (7) 

 

  Then we have the energy conservation property,Eψ  =  Eψo
 . 

e) A last property of interest is related to the dispersion relation providing hence special solutions: the plane 

wave 

ψ(t, x)  =  aei(kx −ωt)             (8) 

 

is solution to system (3) (with V = 0) if the following nonlinear dispersion relation holds 

ω =  ||k||2/ 2 +  β(|a|2  ),             (9) 

 

where || · || is the usual 2-norm for complex valued vector fields.  

By taking all these into account the numerical solution of the equation (3) will take the form:  
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III. RESULT AND DISCUSSION 
In this study, we examine and extend the analysis of Bose-Einstein condensation in an external 

harmonic potential applied along X-axis, and optical lattice potentials applied along Y-axis.  The two-

dimensional system of N non-interacting Bosons with the particles contained in an isotropic two-dimensional 

harmonic potential and optical lattice potential are analysis in this work.  In this paper we have examined several 

features of BEC in harmonic potentials and optical lattice potential for the ideal gas theoretically which we are 

going to explain it as follow:  First of all it's worth to mention that the working field is divide into 1000 point in 

space coordinates, and divide into 300000 point in time coordinates, the space interval is DX = 0.020, DY = 

0.020 and the time interval is DT = 0.0001, the nonlinearity is fixed to the value of 12.548, the total  number of 

runs for each case is 500 and the total number of pass is 3000.  Under these conditions we can examine several 

cases along the direction of understanding of BEC as follows: 

1) Figure (1) shows the relation of the chemical potential with the parameter q that appears in optical lattice 

potential.  This parameter is responsible on the distribution of the optical lattice potential along Y-axis.  The 

oscillator harmonic potential for this case kept constant with the value of anisotropy equal to 1.0. one can 

conclude from this figure that the value of the optical lattice potential play an important role in determining 

the chemical potential of the system.  The relation of the chemical potential (µ) of the system with the optical 

lattice potential in term of parameter q can fit the polynomials: 

μ q =  −1.432 ∗ 10−8q6 + 4.121 ∗ 10−6q5 − 4.177 ∗ 10−4q4 + 0.0180q3 − 0.291q2 + 3.127q − 8.355. 

 

2) Figure (2) shows the wave function as a function of an isotropy (AL) for fixed value of optical lattice 

potentials.  From this figure one can says that there is a logarithm relation between the wave function and 

the an isotropy of the harmonic oscillator potential and this relation can be written as: 

ψ(AL) = 0.1591 ln AL + 0.2103,           0.5 ≤ Al ≤ 7.0 

It is worth to say that this relation is restricted to the values of the anisotropy with the range 0.5 ≤ Al ≤ 7.0 

 

3) Figure (3) shows the chemical potential as a function of an isotropy for fixed values of optical lattice 

potential.  This figure is true for the range of anisotropy 0.5 ≤ Al ≤ 7.0,  and the relation between the 

chemical potential and the an isotropy can fit a second order polynomial which is look like the one given 

below: 

μ AL = 0.24994806 Al 2 + 0.00025534148 AL + 70.638367,           0.5 ≤ Al ≤ 7.0 
 

4) Figure (4) shows a two dimension distribution of wave function on the XY-plane.  This distribution is 

calculated for fix value of the optical lattice potential in term of the dimensionless parameter q equal to 45, 

and for two difference values of harmonic oscillator potential in term of the dimensionless an isotropy 

values which are 0.5, and 6.0 respectively.   One can say from this figure that the wave function distribution 

of the condense gas are increases remarkable as the anisotropy increase.   The transvers distribution of the 

wave function along the y-axis is almost controlled by the OPL only, and since the OPL is constant along 

this axis so, we can notice from this figure that the condense gas distribution along the transvers axis is not 

affected at all, although the values of the wave function are not the same.   

 

5) In order to analysis a comprehensive view of the distribution of wave function, one have to compare 

between the initial and final distributions of the wave functions for a fixed values of the trapping potentials 

along the X-axis, and Y-axis as seen in figures (5).  Figure (5a) shows the 2D distributions of wave function 

which is initially in the ground state of the trap potential and is therefore stationary. The effect of an optical 

lattice trapping potentials on this distribution is clear from this figure.  The wave functionis separating into a 

series of localized pieces as shows in figure (5a), with the contour map of the distribution of wave function 

as its projected in XY plane. The potential energy operator therefore takes the form V x, y = V0sin2 qy +
1

2
 AL 2x2, where ALis the trap constant, qis the laser field wave number, V0 is the lattice intensity. In 

applications to quantum computing, this localized wave function is to represent quantum bits. However, due 

to the nonlinearity of the equations, the condensate develops a phase that varies from lattice site to lattice 

site as seen in this figure, which is undesirable for quantum computing, since these algorithms assume that 

there are zero relative phases among the various single quantum bits. The problem is therefore to eliminate 

this phase profile by adjusting the trap strength by applying the laser field in term of the optical lattice 

potentials.  The trap constant AL is taken as the control and the objective is to minimize the variance of the 

phase of the wave function.   In doing that and by keeping the nonlinearity of the equations under control, 
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and after 500 runs with 2000 pass of the computer programs the shape of the distribution of final wave 

function is behave very well as expected  and the phase became constant from lattice site to lattice site as 

one can see this clear in figure (5b).  This figure shows a 2D view of the distribution of final wave function 

together with a contour projection of this distribution on the XY-plane.  As a conclusion one can say that the 

optical lattice trapping potential together with the oscillator harmonic potential play an important part on the 

distribution of the initial and final wave functions of the condensation and by a carful adjustment of these 

trapping potential on can bring the calculated values to a real experiment results. 
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