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Abstract: - Black-Scholes equation is a well known partial differential equation in financial mathematics. In 

this paper we try to solve the European options (Call and Put) using different numerical methods as well as 

analytical methods. We approximate the model using a Finite Element Method (FEM) followed by weighted 

average method using different weights for numerical approximations. We present the numerical result of semi-

discrete and full discrete schemes for European Call option and Put option by Finite Difference Method and 

Finite Element Method. We also present the difference of these two methods. Finally, we investigate some 

linear algebra solvers to verify the superiority of the solvers. 

 

Keywords: Black-Scholes model; call and put options; exact solution; finite difference schemes, Finite Element 

Methods. 

 

I. INTRODUCTION 
A powerful tool for valuation of equity options is the Black-Scholes model[12,15]. This model is used for 

finding the prices of stocks. 

R. Company, A.L. Gonzalez, L. Jodar [14] solved the modified Black-Scholes equation pricing option with 

discrete dividend. 

A delta-defining sequence of generalized Dirac-Delta function and the Mellin transformation are used toobtain 

an integral formula. Finally numerical quadrature approximation is used to approximate the solution. 

 

In some papers like [13] Mellin transformation is used. They were required neither variable transformation nor 

solving diffusion equation. 

 

R. Company, L. Jodar, G. Rubio, R.J. Villanueva [13] found the solution of BS equation with a wide class of 

payoff functions that contains not only the Dirac delta type functions but also the ordinary payoff functions with 

discontinuities of their derivatives. 

Julia Ankudiova, Matthias Ehrhardt [20] solved non linear  Black-Scholes equations numerically. They focused 

on various models relevant with the Black-Scholes equations with volatility depending on several factors. 

They also worked on the European Call option and American Call option analytically using transformation into  

a convection -diffusion equation with non-linear term and the free boundary problem respectively. 

In our previous paper [7] we discussed about the analytical  solution of Black-Scholes equation using Fourier 

Transformation method for European options. We formulated the Finite Difference Scheme and found the 

solutions of them. 

In this paper we discuss the solution with Finite Element Method and compare the result with the result obtained 

by Finite Difference Schemes. 

 

II. MODEL EQUATION 
The linear Black-Scholes equation [12,15] developed by Fischer Black and Myron Scholes in 1973 is 

  𝑉𝑡 + 𝑟𝑆𝑉𝑆 +
1

2
𝜎2𝑆2𝑉𝑆𝑆 − 𝑟𝑉 = 0…………………………………………………… (1) 

  

where 

𝑉 = 𝑉 𝑆, 𝑡 , 𝑡ℎ𝑒 𝑝𝑎𝑦 − 𝑜𝑓𝑓 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛                 
𝑆 = 𝑆(𝑡), 𝑡ℎ𝑒 𝑠𝑡𝑜𝑐𝑘 𝑝𝑟𝑖𝑐𝑒,𝑤𝑖𝑡ℎ 𝑆 = 𝑆(𝑡) ≥  0, 
𝑡 =  𝑡𝑖𝑚𝑒,                                                                   
𝑟 = 𝑅𝑖𝑠𝑘 − 𝐹𝑟𝑒𝑒 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑟𝑎𝑡𝑒,                           
𝜎 = 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛                                     

and also 𝑡 ∈  (0,𝑇). 

where T is time of maturity. 

The terminal and boundary conditions [16] for both the European Call and Put options stated below. 
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European Call Option [16] 

The solution to the Black-Scholes equation (1) is the value 𝑉(𝑆, 𝑡) of the European Call option on $0 ≤  𝑆 <
∞, 0 ≤  𝑡 ≤  𝑇. The boundary and terminal conditions are as follows 

𝑉 0, 𝑡 = 0  𝑓𝑜𝑟   0 ≤  𝑡 ≤  𝑇, 

𝑉 𝑆, 𝑡 ∼  𝑆 − 𝐾𝑒−𝑟 𝑇−𝑡   𝑎𝑠  𝑆 → ∞, …………………………………………………… (2) 
𝑉 𝑆,𝑇 =  𝑆 − 𝐾 +  𝑓𝑜𝑟   0 ≤  𝑆 < ∞.  
 

European Put Option[16] 

European Put option  is the reciprocal of the European Call option and the boundary and terminal conditions are 

𝑉 0, 𝑡 = 𝐾𝑒−𝑟 𝑇−𝑡     𝑓𝑜𝑟    0 ≤  𝑡 ≤  𝑇,  
𝑉 𝑆, 𝑡 →  0   𝑎𝑠   𝑆 → ∞, ………………………………………………………………… (3) 
𝑉 𝑆,𝑇 =  𝐾 − 𝑆 +   𝑓𝑜𝑟    0 ≤  𝑆 < ∞.  
 

III. TRANSFORMATION 
The model problem stated in (1) is a backward type. This type is little bit difficult to solve. To solve the problem 

in (1) with the conditions stated in (2) and (3) we need to make the model in forward type. In this regard, we 

have the following transformations. 

Let 

𝑆 = 𝐾𝑒𝑥  

𝑡 = 𝑇 −
𝜏

𝜎2 /2
 

And 

𝑣(𝑥, 𝜏) =
1

𝐾
𝑉(𝑆, 𝑡) 

𝜕𝑉

 𝜕 𝑡
  =

𝜕𝑉

 𝜕𝜏
 
𝜕𝜏

𝜕𝑡
+

𝜕𝑉
𝜕𝑆
𝜕𝑆

 𝜕𝑡
 

=  −
𝜎2

2
 𝐾
𝜕𝑣

 𝜕𝜏
 

𝜕𝑉

𝜕𝑆
= 𝐾

𝜕𝑣

𝜕𝑆
=
𝐾

𝑆

𝜕𝑣

𝜕𝑥
 

𝜕2𝑉

𝜕𝑆2
= 𝐾

𝜕2𝑣

𝜕𝑆2
=
𝐾

𝑆2

𝜕2𝑣

𝜕𝑥2
−
𝜕𝑣

𝜕𝑥
 

inserting these derivatives in equation (1) we have 

−
𝜎2

2
 𝐾
𝜕𝑣

𝜕𝜏
+
𝜎2

2
 𝐾
𝜕2𝑣

𝜕𝑥2
−
𝜕𝑣

𝜕𝑥
+ 𝑟𝐾

𝜕𝑣

𝜕𝑥
− 𝑟𝐾𝑣 = 0. 

implies 

𝜕𝑣

𝜕𝜏
=
𝜕2𝑣

𝜕𝑥2
+  

𝑟

𝜎2

2

 − 1 
𝜕𝑣

𝜕𝑥
−

𝑟

𝜎2

2

 𝑣 …………………………………………… (4) 

Let 
𝑟

𝜎2

2

= 𝜃 

∴ (4) implies 

𝜕𝑣

𝜕𝜏
=
𝜕2𝑣

𝜕𝑥2
+  𝜃 − 1 

𝜕𝑣

𝜕𝑥
− 𝜃𝑣.   ……………………………………………… . . (5) 

 

Now let 

 𝜆 =
1

2
(𝜃 − 1), 𝜈 =

1

2
(𝜃 + 1) = 𝜆 + 1 

so that 

𝜈2 = 𝜆2 + 𝜃 

𝑣(𝑥, 𝜏) = 𝑒−𝜆𝑥−𝜈
2𝜏𝑢(𝑥, 𝜏). 

𝜕𝑣

𝜕𝜏
= 𝑒−𝜆𝑥−𝜈

2𝜏 −𝜈2 𝑢 𝑥, 𝜏 +
𝜕𝑢

𝜕𝜏
𝑒−𝜆𝑥−𝜈

2𝜏  

= 𝑒−𝜆𝑥−𝜈
2𝜏[−𝜈2𝑢 +

𝜕𝑢

𝜕𝜏
], 

𝜕𝑣

𝜕𝑥
= 𝑒−𝜆𝑥−𝜈

2𝜏[−𝜆𝑢 +
𝜕𝑢

𝜕𝑥
], 
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𝜕2𝑣

𝜕𝑥2
= 𝑒−𝜆𝑥−𝜈

2𝜏[𝜆2𝑢 − 2𝜆
𝜕𝑢

𝜕𝑥
+
𝜕2𝑢

𝜕𝑥2
]. 

inserting these into equation(5) and dividing by 𝑒−𝜆𝑥−𝜈
2𝜏we get 

−𝜈2𝑢 +
𝜕𝑢

𝜕𝜏
= [𝜆2𝑢 − 2𝜆

𝜕𝑢

𝜕𝑥
+ (𝜕2𝑢)/(𝜕𝑥2)] + (𝜃 − 1)[−𝜆𝑢 +

𝜕𝑢

𝜕𝑥
] − 𝜃𝑢 

implies 

𝑢𝜏 =  𝑢𝑥𝑥 +  −2𝜆 + 𝜃 − 1 𝑢𝑥 + (𝜆2 + 𝜈2 − 𝜆(𝜃 − 1))𝑢  
 =  𝑢𝑥𝑥 . 

∴  𝑢𝜏 = 𝑢𝑥𝑥 …………………………………………………………………………… (6) 
 

And the initial & boundary conditions for the European Call and Put options are respectively 

𝑢 𝑥, 0 =   𝑒 𝜆+1 𝑥 − 𝑒𝜆𝑥  
+

          𝑎𝑠  𝑥 ∈ ℝ

𝑢 𝑥, 𝜏 =  0                                   𝑎𝑠  𝑥 →  −∞

𝑢 𝑥, 𝜏 =  𝑒 𝜆+1 𝑥+𝜈2𝜏 − 𝑒𝜆𝑥+𝜆2𝜏  𝑎𝑠   𝑥 → ∞

……………………… . .………………… . (7)   

and 

𝑢 𝑥, 0 =   𝑒𝜆𝑥 − 𝑒 𝜆+1 𝑥 
+

 𝑎𝑠 𝑥 ∈ ℝ  

𝑢 𝑥, 𝜏 =  𝑒𝜆𝑥+𝜆2𝜏                     𝑎𝑠   𝑥 →  −∞…………………… . .……………………… . (8)   
𝑢 𝑥, 𝜏 =  0                                𝑎𝑠   𝑥 → ∞  
Thus the Black-Scholes equation reduced to a heat diffusion equation. 

 

IV. NUMERICAL APPROXIMATION OF TRANSFORMED LINEAR BLACK-

SCHOLES MODEL 
Now we solve the problems numerically. We use the Finite Element Method (FEM) to solve the problems 

related to the differential equation (6). Finally back substitution of the coordinate transformation gives the 

solution of the problems related to the differential equation (1). 

We have the model 

𝑢𝜏 = 𝑢𝑥𝑥 , 𝑥 ∈ ℝ, 0 ≤ 𝜏 ≤ 𝑇 . ……………………………………………………………… (9) 
and the initial and boundary conditions for call option are 

𝑢 𝑥, 0 =   𝑒 𝜆+1 𝑥 − 𝑒𝜆𝑥  
+

  𝑎𝑠  𝑥 ∈  ℝ,  

𝑢 𝑥, 𝜏 =  0                                     𝑎𝑠  𝑥 →  −∞…………………………………… . . (10) 

𝑢 𝑥, 𝜏 =  𝑒 𝜆+1 𝑥+𝜈2𝜏 − 𝑒𝜆𝑥+𝜆2𝜏  𝑎𝑠   𝑥 → ∞  

The weak form of the governing equation is 

 
𝜕𝑢

𝜕𝜏ℝ
𝑣(𝑥)𝑑𝑥 +  

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑥
𝑑𝑥

ℝ
= 0 ………………………………………………… . (11) 

Since 𝑣 𝑥 →  0 as 𝑥 →  ±∞. 
Discretizing 𝑢(𝑥, 𝜏) spatially, we have 

 

𝑢 𝑥, 𝜏 =  𝜙𝑖 𝜏 𝑁𝑖 𝑥 

𝑛

−𝑛

……………………………………………………… . (12) 

where 𝑁𝑖(𝑥) are given shape functions, and 𝜙𝑖(𝜏) are unknown, and 𝑛 is the ordinal number of nodes. 

Substituting (12) into (11), we get the weak semidiscretized equation  

 𝜙𝑖
′ 𝜏  𝑁𝑖 𝑥 𝑁𝑗 (𝑥)𝑑𝑥

1

0

𝑛

−𝑛

+  𝜙𝑖 𝜏  𝑁′𝑖 𝑥 𝑁′𝑗 (𝑥)𝑑𝑥
1

0

𝑛

−𝑛

= 0…………… . . (13) 

Let 𝑄,𝑀 ∈ ℝ 2𝑛−1 × 2𝑛−1  denote the so-called mass and stiffness matrices, respectively, defined by: 

𝑀𝑖𝑗 =  𝑁′𝑖 𝑥 𝑁′𝑗 (𝑥)𝑑𝑥
1

0

  ……………………………………… . . (14) 

𝑄𝑖𝑗 =  𝑁𝑖 𝑥 𝑁𝑗 (𝑥)𝑑𝑥
1

0

  ………………………………… . .…… . . (15) 

   

Then (13) can be expressed as: 

𝑄𝛷′ +𝑀𝛷 = 0…………………………………… . (16) 
where Φ ∈  ℝ2𝑛−1 is a vector function with the components 𝜙𝑖 . 
After performing the integral in (14) and (15) for the linear shape functions, the mass and the stiffness matrices 

have the following form 
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𝑀 =
1

ℎ
 

−1 2 −1 … 0
⋮   ⋱    ⋱  ⋱ ⋮
0
0

…
…

−1
0

2 −1
−1 1

 ; 𝑄 =
6

ℎ
 

1 4 1 … 0
⋮   ⋱  ⋱ ⋱ ⋮
0
0

…
…

1
0

4 1
1 2

  

where ℎ is the length of the spatial approximation. 

 

Now we would like to discrete the equation (16) with respect to time. One may start with a simple scheme. 

One of the trivial choice is to use the forward Euler scheme.  Firstly we discrete  (16) explicitly and we have 

𝑄Φ′ + 𝑀Φ = 0, 

Φ′ + 𝑄−1𝑀Φ = 0, 
Φ𝑚+1 − Φ𝑚

Δ𝜏
+ 𝑄−1𝑀Φ𝑚 = 0, 

Φ𝑚+1 − Φ𝑚 + Δ𝜏𝑄−1𝑀Φ𝑚 = 0, 
Φ𝑚+1 −  𝐼 − Δ𝜏𝑄−1𝑀 Φ𝑚 = 0, 

Φ𝑚+1 =  𝐼 − Δ𝜏𝑄−1𝑀 Φ𝑚 .   ………………………………………… . (17) 
The difficulty of using the scheme is that it needs very little step size to converge , as a result the scheme is a 

slow one, and is not of interest in this advance study. 

 

We want a fast and efficient scheme, so we want larger time stepping, and interested in using implicit 

techniques.  We discrete (16) implicitly and  have 
Φ𝑚+1 −Φ𝑚

Δ𝜏
+ 𝑄−1𝑀Φ𝑚+1 = 0, 

Φ𝑚+1 − Φ𝑚 + Δ𝜏𝑄−1𝑀Φ_(𝑚 + 1) = 0, 
 𝐼 + Δ𝜏𝑄−1𝑀 Φ𝑚+1 = Φ𝑚 , 

Φ𝑚+1 =  𝐼 + Δ𝜏𝑄−1𝑀 −1 Φ𝑚 .    ……………………………………………… (18) 
which is a system of linear equations with unknowns Φ𝑚+1. The advantage of using (18) 

is that the scheme is unconditionally stable . Equation (18) accuracy of order 𝑂(𝑘). It is faster than the explicit 

Euler scheme since (18) allows us to use large time steps. 

 

We use an weighted average method to discrete (16) with weight 𝛿  and we have 
Φ𝑚+1 − Φ𝑚

Δ𝜏
+ 𝑄−1𝑀(𝛿Φ𝑚+1 +  1 − 𝛿 Φ𝑚 ) = 0, 

Φ𝑚+1 − Φ𝑚 + Δ𝜏𝑄−1𝑀(𝛿Φ𝑚+1 +  1 − 𝛿 Φ𝑚 ) = 0, 
 𝐼 + Δ𝜏𝑄−1𝑀𝛿 Φ𝑚+1 =  𝐼 − Δ𝜏𝑄−1𝑀 1 − 𝛿  Φ𝑚 , 

 

 

Φ𝑚+1 =  𝐼 + Δ𝜏𝑄−1𝑀𝛿 −1 𝐼 − Δ𝜏𝑄−1𝑀 1 − 𝛿  Φ𝑚 .  ………………… . . (19) 

This system is also a linear one with unknowns Φ𝑚+1, where 𝛿  varies from 0 to 1. This 

method turns to the explicit method when 𝛿 = 0 i.e., equations (17) and (19) are same and implicit method 

when 𝛿 = 1, i.e., equations  (18) and (19)are same. For 0 ≤ 𝛿 ≤
1

2
, the scheme is conditionally stable and 

unconditionally stable for 
1

2
≤ 𝛿 ≤  1. 

The order of the accuracy of the scheme is 𝑂(𝑘). 

 

V. RESULTS, DISCUSSION AND CONCLSTION 
In this section we have presented the results by various methods. We have solved the model 

analytically [7] by the method of Fourier Transformation. In Figure fig. 1 we placed the analytic solution of two 

options (Call Option and Put Option). To solve the model numerically we have applied [7] Finite difference 

methods (FDM) and have shown the result of the two options in Figure 2. Our interest in this paper was in the 

methods of Finite Elements (FEM) [1]. Firstly, we have discretized the model (6) spatially in the section (4). 

Then we have used various one step Euler’s time integrations to discretize the system of linear equations 

obtained by semi-discretization. The results have been presented in the Figure 3. We have tried to show 

comparison between the methods (FDM and FEM) in Figure 4. 

 

 

 

 

 

 



Numerical Solution of a Linear Black-Scholes Models: A Comparative Overview 

International organization of Scientific Research                                                      49 | P a g e  

 
(a) Call Optin     (b) Put Option 

 

Figure 1: Analytic solutions 

 

 
(a) Call Option     (b) Put Option 

Figure 2: Numerical Solutions by Finite Difference Method 

 

 

 
(a) Call Option       (b) Put Option 

 

Figure 3: Numerical Solutions by Finite Element Method 
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Figure 4: Comparison of Finite Difference Method and Finite Element Method 

 

The system of linear equations (19) generated by the discretization of the Black-Scholes model can be 

solved by many conventional processes. For a large scale linear system, scientists rarely use direct methods as 

they are computationally costly. Here, in this section, it is our motivation to solve the system of equation (19) 

using various iterative techniques. Here we first investigate which linear solver converges swiftly. To that end, 

we consider Jacobi iterative method, Gauss-Seidel iterative method and successive over relaxation method to 

start with. In terms of matrices, the Jacobi method can be expressed as 

x(k)  =  D−1 L +  U x(k−1)  +  D−1b, 
Gauss-Seidel method 

x(k)  =   D −  L −1(Ux k−1  +  b), 
 

and the SOR algorithm can be written as 

 

x k  =   D − ωL −1  ωU +  1 − ω D x k−1  + ω D − ωL −1b, 
where in each case the matrices D,−L, and −U represent the diagonal, strictly lower triangular, and strictly 

upper triangular parts of A, respectively. 

 

 
Figure 5: Time comparison of different linear algebra solvers 

 

We investigate Preconditioned Conjugate Gradient (PCG) Method and Generalized Minimal Residual 

(GMRES) Method with a diagonal preconditioning [6]. Here for all computations we consider  𝐾 = 100, 𝜎 =
.2, 𝑟 = .1,𝑇 = 1𝑦𝑒𝑎𝑟, Δ𝑡 =  0.001. The results are presented with different weights  𝛿. Observing Figure (5), 

we notice that Preconditioned Conjugate Gradient (PCG) Method performs the best. 
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