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Abstract: - This paper intends to introduce a new metaheuristic, designed to solve optimization tasks. The 

proposed algorithm is a population-based neighborhood search inspired by a simplified atomic excitation model, 

where the energy state of an atom has influence in its orbital radius (region around the atom’s nucleus with 

probability of finding electrons). An initial population of atoms is distributed in the search space, evaluating the 

cost function – which here mimics the energy level – at their nuclei’s positions and with this establishing the 

surrounding space that will be investigated by the electrons that orbit each atom. The cost function evaluation 

performed by these electrons then dictates the new positions for their respective nuclei, with this initiating the 

next iteration in a process that is repeated until the convergence criteria are reached. The algorithm was tested 

using some benchmark functions indicated in the literature and then compared with other population-based 

methods, showing a superior overall performance while finding successfully the functions’ minima with fewer 

evaluations and, consequently, with an inferior computational cost. 
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I. INTRODUCTION 

Optimization, initially conceived as the simple act of finding the minimum (or maximum) value of a 

function, long ago left behind this simplistic vision to become a multidisciplinary and increasingly important 

field of study. With a huge amount of problems – not only related to engineering – consisting in minimizing 

disadvantages and costs, maximizing quality and profits, or determining optimum operating points for systems 

and processes, optimization can nowadays be considered as one of the study areas of greater scope in the 

technical-scientific world.In the middle of the current effervescence in the studies of new optimization methods, 

this work presents a novel population-based and nature-inspired metaheuristic: the Atomic Excitation model 

(AE). The optimization algorithm proposed relies on an initial population of atoms randomly distributed around 

the search space, for which the cost function is evaluated at the position corresponding to their nuclei. Based on 

the values obtained – corresponding to energies or excitation levels of the atoms – the radii are established for 

the investigation to be held by their respective “electron clouds”, dictating this way the nuclei’s positions in the 

following iteration. This process is then repeated in order to obtain the lowest and more stable energy state, until 

the convergence criteria are met.The present work has its forthcoming sessions organized as the following 

description. After this Introduction, Section 2 presents a brief review of the pertinent literature, showing 

synopses of some of the most prominent optimization metaheuristics. Section 3 provides a brief description of 

the development of atomic theory, starting from its primordium and reaching the current stage, including the 

quantum modeling with its ground and excited states, that is the source of inspiration for this work. Afterwards, 

Section 4 presents the general characteristics, the implementation details and the particularities of the algorithm 

developed. The subsequent Section 5 shows the results obtained by the Atomic Excitation model in optimizing 

some benchmark functions found in the literature, designed exactly for the purpose of testing the performance of 

optimization methods. These results are compared to those obtained for the same functions by means of a 

Genetic Algorithm and a PSO. Finally, Section 6 brings the final discussions and the concluding remarks. 

 

II. REVIEW ON METAHEURISTIC ALGORITHMS  
Although mathematical optimization methods are being studied for centuries (the renowned Newton’s 

method, for example, dates back to the seventeenth century), the evolution of computer technology over the last 

decades has boosted the development and enhancement of a wide variety of methods and algorithms. 

Traditional and deterministic methods such as the iterative, or linear programming [1] are still the most 

frequently used to handle simple problems, but show their limitations when facing more complex cases. Such 

cases include those where the objective function is not differentiable or there is not a mathematical model 

available, where the problem has uncertain or stochastic information, or where there are several local minima 

(multimodal function), a large number of variables and/or very complex constraints. The handling of these 

problems will usually be more appropriate if done by a metaheuristic, name given to the procedures developed 

for finding sub-optimal, approximate or local solutions that meet the users' needs, or even optimal solutions but 

without a formal proof of its optimality [2]. The greatest robustness brings, however, the burden of a higher 
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computational cost when these methods are compared to deterministic ones (derivative-free or not), due to the 

higher required number of objective function evaluations [3].The multidisciplinary approach is a hallmark of the 

metaheuristics, leading optimization to transcend the areas of mathematics, computer science and operations 

research while finding sources of inspiration for algorithms in areas such as biological and even social sciences. 

These metaheuristics can be based on trajectories or, more commonly, populations [4], where the optimization 

process’ concern is to improve, after each iteration, the overall performance of a group of individuals. Different 

approaches to promote improvements in each step originate different families of methods, and among those, the 

evolutionary and swarm intelligence algorithms are foregrounded because of recent advances. In the following 

paragraphs, some highlights from these families of methods are reviewed.The Simulated Annealing is 

considered to be the first metaheuristic, dating from the early 80’s with the works by Kirkpatrick et al. and 

Cerny [apud 4]. The method is based on the tempering process, in which a material is melted and, in the 

sequence, passes through a cooling with controlled temperature so that at the end of the procedure this material 

is in a crystalline lattice, with lower energy, that here is the analogous of the cost function. When the 

temperature is high, evaluations at points farther away from the current are permitted, and there is a greater 

probability of acceptance of a result worse than the actual, which is the key to the algorithm to escape from local 

minima. As the temperature is reduced, this flexibility also is, resulting in the convergence [3]. 

 The Genetic Algorithms (GA) pioneered the Evolutionary Algorithms and, until nowadays, it is 

perhaps the most prominent expression of this family of metaheuristics, with an infinity of different 

applications, diverse useful adaptations and integration with other computational methods. Its operation is based 

on the concepts of natural selection and evolution, where a population of chromosomes, each of them being 

associated with a point in the search space, evolves over several generations through the exchange of 

characteristics among themselves [5]. For this end, the best-fitted individuals are more likely to be selected for 

the crossover operations. At the same time, mutations are responsible for inserting a larger amount of 

randomness to the process. An important feature of the method is to prioritize the improvement of an entire 

population, at the expense of concerning about individual performances at each iteration [3]. 

Another population method, but introducing a different approach, is the Particle Swarm Optimization 

(PSO), that makes use of a mix of models of artificial life and evolutionary computation to generate a “swarm 

intelligence” [6]. In this method, individuals wander through the search space with movement governed by a 

combination of randomness and attraction to the direction of the best momentary evaluation, what results in a 

robust and efficient optimization method.The success of these groundbreaking metaheuristics incited studies in 

order to develop new methods inspired by nature, whether in its physical processes or populations’ behavior. 

Belonging to the first group, the Gravitational Search [7] and the Central Force Optimization [8] are inspired by 

Newton’s laws of gravity and motion, with probe masses interacting with each other while they act as the search 

agents. In that same group, the Big Bang - Big Crunch method generates random points simulating energy 

dissipation and then converge those points to a center of mass that represents the minimal cost [9]. 

Alluding to population methods, one of the representatives is the Ant Colony Optimization [10], inspired 

by the foraging behavior of some ant species, mimicking even the use of pheromone by these insects to 

reinforce the most favorable paths. Another metaheuristic with similar though is the Artificial Bee Colony [11], 

that simulates the swarm intelligence observed in a population of bees, including the task division among 

different groups of individuals. The Cuckoo Optimization Algorithm, in turn, is based on the reproduction and 

effort for survival observed in the family of birds called Cuckoo, with its particularities while laying eggs and 

immigrating [12].Other algorithms seek inspiration in even more diversified areas, as the Harmony Search [13] 

– inspired by the improvisation of music players, the Mine Blast Algorithm [14] – that simulates a mine bomb 

explosion with shrapnel scattering, and the League Championship Algorithm [15] – that mimics a competition 

among representations of teams for the best fitness values. 

An important branch of the metaheuristics development is the Variable Neighborhood Search, 

abbreviated by VNS. This approach, proposed by Hansen and Mladenovic [16] is guided by the idea of 

combining local search with neighborhood change, promoting descents towards the local minima and trying to 

escape from the valleys in which they are located. Neighborhoods that are more distant will be investigated in 

the subsequent steps, and the algorithm jumps from the current solution in the case of any improvement. VNS is 

effective, with good performance when compared to other heuristics, and user-friendly, with its basic steps easy 

to apply [2]. Diverse uses of this method and its variants are found in the literature, as assets allocation for 

finance portfolio design [17], solution for the traveling tournaments problem in sports [18], test assembly design 

[19], optimization for the bin packing problem [20], and many others. 

 

III. ATOMIC MODELS AND ATOMIC EXCITATION 
The atomic modeling, since its first conception in ancient Greece by Democritus [21], has undergone 

several improvements, being notable the developments among the propositions of Dalton, Thomson, Rutherford 

and Bohr, culminating in the current quantum model. The first, in 1803, theorized that all matter is made up of 
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solid and indivisible atoms, that atoms of a same element are identical to each other but have different properties 

from those atoms of other elements, and that chemical compounds are constituted by combining atoms of two or 

more elements in a fixed ratio [22]. In 1898, Thomson proposed a model that explained the results of 

experiments with cathode ray tubes, which showed that the atoms have parts with opposite electric charges [23]. 

In this model, the atom would be a positively charged sphere encrusted with electrons that could be removed.  

In the second decade of the 20
th

 century Rutherford elaborated a new model, based on the experiment 

conducted along with Geiger and Mardsen that detected deviations in the trajectories of alpha particles while 

being fired against a very thin sheet of platinum. This model had a nucleus with a positive charge and containing 

most of the atom’s mass (that a bit later Chadwick discovered to be split into protons and neutrons) surrounded 

by electrons describing an orbit around it, similar to a solar system [21] [22].With the advent of quantum 

mechanics, especially with the studies by Planck (quantization of energy) and Einstein (photoelectric effect), the 

path was paved for the arrival of a new paradigm for the distribution of electrons around atomic nuclei. And it 

arrived with the model proposed by Bohr for the hydrogen atom, the first to explain the observation that atoms, 

after being excited, emit radiation at only a few well-defined wavelengths, forming a spectrum of lines (and not 

a continuous spectrum) when their measurement is observed. This model based itself on three postulates [23]: 

 Only orbits of certain radii, corresponding to well defined energy levels, are allowed for the electrons in an 

atom; 

 An electron contained in an “allowed” orbit has a specific energy, being in a stable state, and will not radiate 

this energy or move in a spiral path towards the nucleus; 

 Energy is only emitted or absorbed by an electron while moving between two allowed states, with this energy 

emitted or absorbed as a photon E=hυ, where h is the wavelength and υ the Planck constant. 

Based on these concepts, on motion equations, and interactions among charges, Bohr was capable of 

calculating the energies for the allowed orbits for the Hydrogen atom via (1): 
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where the integer n is defined as “quantum number”. Each electron orbit corresponds to a value of this number 

and its radius augments as n increases. The energy, in turn, is more negative for small values of n, according to 

the equation, resulting in more stable states.  

The Bohr’s model, although it has provided ideas that are still considered valid, showed itself unable to 

explain the line spectra in multi-electron atoms. It was then necessary to incorporate the hypothesis of the wave-

particle duality, proposed by de Broglie, along with the Heisenberg Uncertainty Principle to elaborate the 

quantum model that prevails until today [22] [24]. In this model, the electrons have their behavior governed by 

wave functions, ψ, with quantized energies. These functions are derived from the Schrödinger equation, which 

considers the dual wave-particle behavior of the electrons. 

However, according to the quantum model, the exact location of the electrons around the nucleus of an 

atom cannot be determined, but only the probability of finding them at a specific point in space, proportional to 

the probability density ψ
2
 calculated at that point. The so-called electron density distribution consists of a map 

with the probabilities of finding an electron at each point of the space [24]. The allowed wave functions, with 

their respective quantized energies, are called orbitals, in contrast to the orbits of the Bohr’s atomic model. 

These orbitals are described by three variables, the quantum numbers: 

 The principal quantum number, n, is related to the energy of the orbital and the average distance from the 

electrons to the nucleus, being a legacy of the Bohr’s model. It is indicated by the natural numbers: n = 1, 2, 

3,... 

 The azimuthal quantum number, l, represents the shape of the orbital, also determining its angular momentum. 

The allowed values are the integers from 0 to n-1, although usually represented by the letters s, p, d, f,... 

 The magnetic quantum number, ml, represents the orientation of the orbital in the space, and can assume 

integer values ranging from –l to l. 

A fourth quantum number (not related to the orbitals) represents the electron spin, ms, which can assume 

the values +1/2 or -1/2 and can be understood as both directions of rotation of an electron around a particular 

axis. According to the Pauli Exclusion Principle, two electrons belonging to a same atom shall not have the 

same values for the four quantum numbers, what in practice is a limit for a maximum of two electrons 

occupying each orbital, with opposite spins [23]. 

It is called energy level the group of orbitals with the same value of n; e.g. 3s, 3p and 3d. For the 

Hydrogen, all the orbitals in the same energy level have the same energy, but that rule is not applied to multi-

electron atoms. As for the sublevels, each one presents equal values for the quantum numbers n and l, and 

orbitals within a same sublevel have the same energy. In each of the sublevels, the total number of orbitals is 

governed by the magnetic quantum number. 

As aforementioned, each azimuthal quantum number corresponds to a specific shape for the orbital. 

Taking as an example the simplest case of the 1s orbitals, the probability density for an electron is spherically 
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symmetrical, with smaller values as the distance from the nucleus increases. A single node (region where 

probabilities of finding electrons equal zero) is considered, occurring when this distance approaches infinity. 

This configuration changes depending on the principal quantum number, with a higher number of spherical 

nodes appearing as n increases, what can be seen by the radial probability densities of the orbitals 1s, 2s and 3s 

for the hydrogen atom plotted in Figure 1. Further, the variation of the azimuthal quantum number l will result 

in more complex forms for both orbitals and probability densities, as described in [22] and [24]. 

A hydrogen atom whose electron is in the lowest energy orbital, 1s, is said to be in its ground state. 

When the electron occupies any other orbital n ≥ 2, e.g. after receiving energy by the absorption of a photon, it 

moves to an excited state, name given to any quantum state with higher energy than the ground state. For the 

other atoms, the electron configuration of the ground state is the one in which the electrons occupy the orbitals 

of lowest energy available, obeying the Pauli Exclusion Principle and Hund’s rule [23]. The excitation condition 

results in an augmented average distance from the nucleus, and it usually tends to be transient (though there are 

exceptions where this condition can endure), with fugacious return of the atom to its ground state or to an 

excited state of lower energy by emitting a quantum of energy. 

 

 
Figure 1: Radial probability densities for the Hydrogen atom. 

 

IV. OPTIMIZATION THROUGH AN ATOMIC EXCITATION MODEL 
The atomic theory exposed in the previous section served, somehow as a source of inspiration for the 

population-based neighborhood search metaheuristic proposed in this work. The adopted model consists of a 

mimicry of the modern atomic model, contemplating the description of the electronic distribution in its ground 

and excited states. Orbitals in this metaheuristic are, however, a simplified representation of what is found in the 

real atomic model, because they always have the form of a hypersphere with a single node, typical 

representation of the orbitals 1s, the most simple existent as reported in Section 3. Another simplification to be 

noticed in this model is that there is no analogy for the quantization of the energy of electrons, so they can 

assume continuous values according to the probability distribution adopted. A detailed description of the 

operation of the proposed algorithm, including these adaptations and other particularities of the project, is 

presented in the following paragraphs.The optimization process by this model starts with the definition of the 

required parameters for the operation of the algorithm. These include the number of atoms for the search 

(population size), the number of electrons for each atom, the search space (domain of the cost function including 

eventual restrictions) and the stopping criteria, which in this case are the maximum acceptable number of 

iterations and the minimum evolution between iterations for an atom.The atoms, in specified number, then have 

the initial positions of their nuclei established according to random coordinates, dictated by a continuous 

uniform distribution. For the electron clouds of these atoms, maximum and minimum investigation radii inside 

the search space are specified to warrant plausible limits for the position of the electrons. The value 01.0min r  

fixed for the minimum was determined empirically and represents a compromise solution between the 

convergence speed and accuracy while approximating to the minimum in the final steps of the search. The 

maximum value, in turn, is calculated according to the area of the cost function’s domain and the number of 

atoms involved in this search, in order to “divide” this area. In the case of a cost function of two variables f(x,y), 

assuming a circular search area around the nucleus gives (2):  
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where n represents the population size and xmax, xmin, ymax, and ymin dictate the domain of the function to be 

minimized. The procedure above described results in the minimum and maximum radii that can be used in a 

specific optimization problem, wherein at each iteration the individual search radii of each atom are recalculated 

within these limits. These individual radii (limits for the electron clouds) are calculated according to the set of 

values obtained for the cost function f (energy levels) at a particular iteration using Equation (3), also defined 

empirically: 
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This function tends to maintain the values of the investigation radii of the best atoms – those with the lowest 

values for the evaluation fn – closer to the minimum value rmin, at the same time keeping those of the worst 

evaluated atoms closer to the maximum value (in fact, 
maxmin rr  ). In an analogy with the model that is source 

of inspiration for the algorithm, high values of the function to be minimized represent a more excited atomic 

state, meaning that the atom under consideration is at a higher energy level and, consequently, its electron cloud 

is distributed in a more dispersed form around its nucleus. In this way, these electrons will have greater freedom 

to explore, and can evaluate a wider area while pursuing a better path to the minimum of the cost function, that 

represents the position of lower energy and higher stability. In turn, the atoms that in a particular iteration have 

their nuclei located in more favorable positions, with lower values for the cost function, will be considered less 

excited. That less intense energy state will restrict the spread of the electron cloud, with the intention of 

proceeding with a more detailed search in the vicinity of these possible “sweet spots”. It is noteworthy that the 

ranking of the best atoms is updated at every iteration, thus an atom of low energy can move to a more excited 

state in the next step depending on the performance of another atom which may have found a better value for the 

cost function, for example.Within the limits for the scattering of the electron cloud of each atom at a given 

iteration, the electrons have their positions to evaluate the cost function defined stochastically. These positions 

are specified initially in the form of polar/spherical coordinates, wherein each point is represented by a radius 

(distance from the origin, in this case, the nucleus) and a number of angles equal to the problem’s 

dimensionality subtracted by one. Exemplifying with an easily comprehensible dimensionality, in a two 

variables function, x and y, the positions of the i electrons of each of the n atoms to evaluate the objective 

function f(x,y) will be scattered around the respective nuclei by specifying a distance from these i

nr  and an angle 

i

n .  

The angles i

n  are chosen as random values between 0 and 2π following a uniform distribution, while the 

distances from the nuclei i

nr , while also random, follow the Rayleigh distribution, given by the equation (4): 
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where it was adopted for the control parameter the value α = 1. This function was chosen because it corresponds 

to the distribution of the magnitude of a vector composed of independent random variables with Normal 

distribution, added to the fact that it resembles the real electronic distribution of the 1s orbitals, previously 

illustrated in Figure 1. Comparative tests performed with Normal and Uniform distributions support the choice 

of the Rayleigh distribution, after the latter resulted in slightly better results. The described way of calculating 

the electrons’ positions results in a radial symmetry for their distribution, as illustrated in the Figure 2 that 

simulates a “cloud” of electron density. From the values obtained in polar/spherical coordinates, the 

corresponding Cartesian coordinates, necessary for the function evaluation, are then calculated by the 

conversion equations (5) and (6): 
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Figure 2: Electron density cloud simulated with Rayleigh distribution. 

Being chosen by the described stochastic methods, the electrons’ positions must undergo a check of their 

contention to the search space. For this, each point generated, already converted to Cartesian coordinates, has its 

variables compared to their pre-defined limits. In case of a possible extrapolation in any of them, the electrons 

will be repositioned within the specified domain, according to the procedure shown in Figure 3. 

 

 
Figure 3: Electrons repositioning inside function’s domain. 

 

With the positions of all the electrons finally established, the cost function is evaluated in all their 

positions, and subsequently a comparison of the values obtained by the electrons of each atom is carried out. If 

the electron at a lower cost (lower energy state) in a specific atom shows a better result than that obtained by its 

respective nucleus, the position of this nucleus in the next iteration will be the position occupied by this best 

electron in the current iteration. Figure 4 illustrates this process. If none of the electrons of an atom presents a 

better value than its nucleus, this will not have its position updated and will wait for better luck with the new 

searches to be made by its electron cloud in the next iteration.After the movements of the atomic nuclei that 

have managed to progress at the current iteration j, the nuclei positions of all the active atoms are compared to 

those occupied in the previous iterations j-1 and j-2. The average progress in these two steps is then compared to 

the minimum value set by the user to check the convergence. This manner, the chances of characterization of a 

convergence only by the poor performance in a single iteration are reduced. When an atom reaches the criterion 

of minimum progress, it is considered that it got trapped in a local minimum, and even in the case of having a 

higher energy than the rest of the population, it is unable to keep progressing. Consequently, this atom may not 

exert additional contribution to the whole process, and then it is set as inactive in the following iterations, what 

aims to reduce the total number of function evaluations (and the computational cost) performed by the 

algorithm. At the moment when the last of the atoms in activity reaches one of the convergence criteria, the 

optimization process is considered complete, except for the cases where a maximum number of iterations is 

reached before the full convergence.  
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The sequence described in this section is illustrated in the flowchart of Figure 5. 

 

 
 

Figure 4: Movement of an atom between iterations. 

 

 
 

Figure 5: Flowchart representing the proposed algorithm. 

 

V. RESULTS 
This section presents and discusses the results obtained from performance tests of the Atomic Excitation 

model while minimizing diverse benchmark functions. The set of functions selected for the evaluation of the 

proposed algorithm (and the others chosen for comparison) tries to reproduce the most diverse situations, 



Optimization through an Atomic Excitation Model 

International organization of Scientific Research                                                               12 | P a g e  

including monotonically decreasing functions and even multimodal functions with large numbers of local 

minima and traps. All the benchmark functions are continuous and unconstrained. This exposure to different 

challenges with various difficulty levels is important for allowing a good evaluation of the strengths and 

weaknesses of metaheuristics, and specially to test reliability, efficiency and validity of newly developed 

algorithms [25]. The selected functions are described in the sequence. 

Benchmark 1: The six-hump camel back is a multimodal function defined by (7): 
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This function has six local minima inside the considered domain, being two of them global: f (x1, x2) = -1.0316 at 

(x1, x2) = (-0.0898, 0.7126) and (0.0898, -0.7126) [25]. 

Benchmark 2: The second function tested here was a complex multimodal one, obtained from [12] and defined 

by (8): 

     ,2sin1.14sin, 221121 xxxxxxf   (8) 

with the global minimum f (x1, x2) = -18.5547 at (x1, x2) = (9.039,8.668). 

Benchmark 3: Rosenbrock’s Valley is a unimodal function calculated by (9): 
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This classical optimization problem is characterized by a long and narrow flat valley where the global minimum 

is found, with a difficult convergence [25] [26]. That minimum, corresponding to f(x) = 0 is obtainable for 

xk = 1, where d is the dimensionality of the problem and k = 1,…,d. 

Benchmark 4: Rastrigin’s Function is a massively multimodal function mathematically represented by (10):  
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with global minimum f(x) = 0 for xk = 0, where k = 1,…,d. A large number of local minima are regularly 

distributed around that point [26]. 

Benchmark 5: The simplest function used here is the one known as De Jong’s first function, consisting in an n-

dimensional paraboloid defined by (11): 
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what results in a convex and unimodal function with global minimum f(x) = 0 for xk = 0, where k = 1,…,d [26]. 

Benchmark 6: Easom’s function is a unimodal function defined by (12): 
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with global minimum f(x) = -1 located at (x1, x2) = (π, π) [25]. This function is characterized by having its 

minimum inside a narrow pit surrounded by a large plateau. 

Benchmark 7: Michalewicz’s function is a multimodal test function with values calculated by (13): 
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The parameter m controls the difficulty level of the problem, making the valleys more or less steep [26]. Here 

the value adopted is m = 20, and the global minimum f(x) = - 1.5971 is found at xk = 0 for the two-dimensional 

problem. 

Benchmark 8: The last problem of this list is the Drop Wave Function, defined by (14): 
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2
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2

2

2

1

21





xx

xx
xxf , (14) 

resulting in a multimodal function with a hard-to-find global minimum f(x) = -1.0 for (x1, x2) = (0, 0) [26]. 

Initially, the evolution of the optimization process is observed using as reference Function 1, for which 

Figure 6 shows the nuclei’s positions at the start of the process and during its course towards the final 

configuration for a single run.For a comparative analysis of the AE model performance, the benchmark 

functions listed were also approached by an evolutionary and a swarm intelligence metaheuristics: the Genetic 

Algorithm and the Particle Swarm Optimization, respectively. The GA was implemented in its traditional form 

[3], though using arithmetic crossover, Gaussian mutation and roulette wheel selection. The crossover and 

mutation probabilities were set to 1.0 and 0.05, respectively, and the best individual of each generation is 

maintained to the next. The PSO was implemented according to the original conception proposed by Kennedy 

and Eberhart [6], including the adoption of the values for the cognitive and social parameters proposed by these 

authors, both equal to 2. Due to the fact that the three methods rely on stochastic factors, all the performance 

measures were accounted only after a minimum of 100 runs of any of them for each problem and with a 



Optimization through an Atomic Excitation Model 

International organization of Scientific Research                                                               13 | P a g e  

particular configuration.In the optimization of the benchmark functions with the three algorithms in this 

comparative study, parameters such as the number of individuals for the search and those that define the 

stopping criteria were adjusted so that an acceptable performance for the level of difficulty of each one of the 

problems was achieved. Further, it also takes into consideration the commitment of doing it with the smallest 

possible number of evaluations of the objective function. For a fair comparison, the populations involved in the 

search for each of the functions are the same for all three methods.Table 1 provides a compilation of simulation 

results that allow this performance comparison. In the first columns it shows, for each function, the domains 

considered and the values of the global minima. Subsequent columns, grouped by method, show the size of the 

population employed for the minimization of each function, the average number of evaluations (and iterations) 

performed until convergence and, finally, the average minimum value, together with its standard deviation. The 

best result among the three methods for each one of the functions is highlighted in bold.The metaheuristic 

proposed is the closest to the global minimum in 3 of the 8 studied cases (GA was in 3 and PSO in the other 2), 

but with results always very close to the best performing algorithms in the other cases, besides presenting the 

overall smallest standard deviation. The AE model reached the minima with a smaller number of evaluations in 

6 of the 8 cases, this time leading by a large margin when compared to the other methods, especially for the 

hardest problems. Figures 7, 8, 9 and 10 illustrate the evolution of the global minimum throughout the iterations 

for some of the studied functions while being solved by the three different methods, making evident the quality 

of faster convergence achieved by the AE model. Nevertheless, it must be emphasized that the AE performs a 

larger number of evaluations in the early iterations.The simplicity of operations and the lowest number of 

evaluations performed by the AE result in great benefit in the computational time demanded to reach the 

functions’ minima. In the tests previously reported, the average execution time for all functions by the GA were 

4.64 times higher than those obtained with the AE, while for the PSO this ratio was 3.28. The latter is affected 

by the need for interaction among individuals, what requires great effort. The GA presents as negative influence, 

in addition to the crossover interactions, the need for sorting the individuals for every generation according to 

their performance in the objective function evaluation, resulting in execution times higher than those observed 

for the other methods.  
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Figure 6: Nuclei positions at the start (a) and after 1 (b), 2 (c), 4 (d), 5 (e) and 8 (f) iterations. 
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Figure 7: Comparison of performance of AE, GA and PSO for optimization of Function 1 with population n = 6. 
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Figure 8: Comparison of performance of AE, GA and PSO for optimization of Function 2 with population n = 

40. 

 

 

 

 
Figure 9: Comparison of performance of AE, GA and PSO for optimization of Function 7 with population n = 

15. 

 

 
Figure 10: Comparison of performance of AE, GA and PSO for optimization of Function 8 with population n = 

50. 

 

VI. FINAL REMARKS 
This work presented a novel population-based metaheuristic intended to solve optimization problems. 

The proposed algorithm is inspired by atomic models and their Ground and Excited States, which represent the 

atoms’ energy conditions and that here are mimicked by the punctual values of a problem’s cost function. That 

“energy” dictates, at each iteration, stochastic investigation radii surrounding each atom in order to define their 

positions for the subsequent step, in a neighborhood search.The results obtained with this algorithm, 

accompanied by their respective performance measurements, were compared to those obtained for the same 

problems (benchmark functions projected specifically for testing optimization methods) with two of the most 

prominent population-based metaheuristics: Genetic Algorithms and Particle Swarm Optimization. The 

proposed algorithm showed itself capable of dealing efficiently with unimodal and multimodal cost functions 

within a large range of difficulty levels. Its performance even surpassed the reference algorithms in aspects as 

number of iterations and evaluations of the cost function, being able to find the minima in a large fraction of 

cases using a similar initial population.Beside its proved good performance, another highlight of the Atomic 

Excitation model is the simplicity of the algorithm, with an easily understandable procedure that exempts the 

information exchange among individuals and results computational cost-effective. This characteristic is one of 

the strong points that it has in common with the VNS family, since these make use of a division of the main 

problem and then act solving a larger number of easier problems, what for the proposed method can even make 

possible the use of parallel computing techniques to reduce processing time. The simplicity and easiness of 

implementation make this method suitable even for didactic use, and at the same time this presenting 

sophistication level and performance superior to some rudimentary algorithms as the Random Search or the Hill 

Climbing [3], leading even to the identification of local minima and suboptimal solutions, provided by its 

characteristic of individual convergence of each member in the population, represented by the atoms in this 
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analogy. 

As a novel method, the Atomic Excitation model still have a large margin for improvements and 

addition of new features. Future work aiming further development includes more extensive testing, not only 

with theoretical benchmark functions but also with “real world” applications, followed by the correction of 

eventual weaknesses to be identified. Other possible points for improvement are the addition of flexibility on the 

selection of the probability density function (that defines the investigation area), a study on the performance 

gain (or loss) that could be brought by adding the capability of information exchange among the atoms, and a 

more extensive evaluation of the effects of changes in the control parameters on the performance of the 

optimization. 
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