Difference equations with weighted differences

Keiko Uohashi

Department of Mechanical Engineering & Intelligent Systems, Faculty of Engineering, Tohoku Gakuin University, Tagajo, Miyagi 985-8537, Japan

Abstract: - In this paper we study properties of difference equations with weighted differences. Especially we treat difference equations with a space variable x and a time variable t. In the case that average differences by x define the values at next times, effects of weights for average difference s are investigated.

Keywords: - difference, difference equation, weighted difference, average difference, discrete variable

INTRODUCTION

In this paper we study properties of difference equations with weighted differences. Especially we treat difference equations with a space variable x and a time variable t. In the case that average differences by x define the values at next times, we investigate effects of weights for average differences and weights for current values.

DIFFERENCE EQUATIONS

We define the next weighted difference equation. $f(x, t+1) = \{(k-2)/k\} f(x, t) + (1/k) \{f(x-1, t) + f(x+1, t)\}, x = 1, 2, ..., t = 0, 1, 2, ... (1)$ $f(0, t+1) = \{(k-1)/k\} f(0, t) + (1/k) f(1, t), t = 0, 1, 2, ...$ f(x, 0) = 0, x = 1, 2, ... f(0, 0) > 0,

I.

II.

where a real number $k \ge 2$. We call the term f(x-1, t) + f(x+1, t) the average difference. Constant values (k-2)/k and 1/k show weights for the current value f(x, t) and for the average difference, respectively. If k = 2, equation (1) is the following; $f(x, t+1) = (1/2) \{f(x-1, t) + f(x+1, t)\}, x = 1, 2, ..., t = 0, 1, 2, ...$ (2) f(0, t+1) = (1/2) f(0, t) + (1/2) f(1, t), t = 0, 1, 2, ...f(x, 0) = 0, x = 1, 2, ...f(0, 0) > 0

Equation (2) is equivalent to the next discretization of a heat equation. $f(x, t+1) - f(x, t) = (1/2) \{f(x+1, t) - f(x, t)\} - (1/2) \{f(x, t) - f(x-1, t)\}$ = (1/2) f(x-1, t) - f(x, t) + (1/2) f(x+1, t), x = 1, 2, ..., t = 0, 1, 2, (3)

where f(x+1, t) - f(x, t) and f(x, t) - f(x-1, t) are called the forward difference and backward difference, respectively. [1]

III. PROPERTIES OF DIFFERENCE EQUATIONS

On equation (1) the next properties are holds.

Property 1. f(0, 0) = f(0, t) + f(1, t) + f(2, t) + ... for t = 0, 1, 2, ...

Property 2. The solution f(0, t) is monotone decreasing for t.

Property 3. The solution f(x, t) is monotone decreasing for x.

Property 4. In the case of $k \ge 3$, it exists some integer $T \ge 0$ such that for any $t \ge T$ the solution f(x, t) have an inflection point for x. In fact, the value of $\{f(x+1, t) - f(x, t)\} - \{f(x, t) - f(x-1, t)\}$ changes negative to positive at some x if x increases from zero, for $t \ge T$ and some T.

IV. CONCLUSION

We showed properties of difference equations with weighted average differences. Especially the existence of a inflection point for the solution is a key of the application to heat engineering, information engineering, and so on. The reason is that the existence of a inflection point may mean delay of transmission of heat and information.

International organization of Scientific Research

V. ACKNOWLEDGEMENTS

I am thankful to my students for their helpful comments.

REFERENCES

[1] S. Sugiyama, *difference/differential equations* (Kyoritsu Shuppan, 1999), in Japanese.