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Abstract: - Sufficient conditions for the existence of solutions for a class of m-point boundary  value  

problem  involving  Caputo fractional  derivative  are  established using fixed point theorems.   Banach  

fixed point theorem,  Schaufer’s  fixed point theo- rem and Leray-Schauder type nonlinear  alternatve are 

applied to study  existence results. 
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I. INTRODUCTION 
  Recently,  many  researchers  are attracted towards  fractional  differential  equations  as many 

phenomena  in various branches of science and engineering are modeled.  Numer- ous applications are 

found in control systems,  visco-elasticity,  electrochemistry, phar- macokinetics,  food science, etc [1, 2, 3, 

20].  Significant contributions by researchers has  been  recorded  in the  monograph  due  to  Kilbas  et al 

[6].  Some results  on the theory  of fractional  differential equations  due to Lakshmikantham et.  al. can 

be seen in [7, 8, 9, 10].  Periodic  boundary value problem,  integral  boundary value problem and  initial  

value problem  for fractional  differential  equations  of order  q, 0 < q < 1 was studied  respectively  by 

Ramirez  and Vatsala  [21], Wang and Xie [22] and Zhang [23]. Author  developed  monotone  method  for 

system  of fractional  differential  equa- tions with various type of conditions involving Riemann-Liouville 

fractional  derivative and  Caputo  fractional  derivative  of order  q, 0 < q < 1 and  obtained  existence  and 

uniqueness  results.   [4, 11, 12, 13, 14, 15, 18, 19].  Benchora  [2] in the  year 2009 ob- tained  sufficient 

conditions for the boundary value problem.  Reently, author obtained sufficient conditions  for the  

existence  of solution  of boundary value  problems  using fixed point theorems  [16, 17]. In this paper 

sufficient conditions for the existence of solutions of the following m-point boundary value problem (BVP)  

involving Caputo  fractional  derivative  are established via fixed point theorems. 
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where cDq  is the Caputo fractional  derivative, f : J × R → R is a continuous  function and u0, u1, u2 , u3, 

..., uT   are real constants. 

II. PRELIMINARIES 

Notation, definitions and preliminary results required in the later section are discussed here. 

C (J, R) denotes Banach space of all continuous functions from J  into R with the norm 
∥ u ∥∞:= sup{| u(t) |: t ∈ J}. 

Definition 2.1 [3, 6] The fractional integral of a function u(t) of order q is denoted byI q u(t). It is defined as 
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where Γ(.) is the Euler-Gamma function and u ∈ L1([a, b], R) . 

Definition 2.2  [3, 6] The Caputo fractional derivative of u(t) of order q is denoted  by 
c Dq u(t). It is defined as 
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Definition 2.3  A function u(t) ∈ C
m
  (J, R) with its q-derivative existing on J  is said to be a solution of the problem if 

u(t) satisfies the equation 
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Following Lemmas play important role in the existence of solutions for the BVP (1)-(2). 

Lemma 2.1 [2] Let q > 0, then the fractional  differential  equation 
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                        for some ci ∈ R,    i = 0, 1, 2, ..., n,     n = [q] + 1. 

Lemma 2.2 [2] Let q > 0, then 
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III. EXISTENCE RESULTS 
Existence result of the BVP (1)-(2) which is an immediate consequence of Lemma 2.1 and Lemma 2.2. 

Lemma 3.1  Let m - 1  <  q ≤ m and let u(t) :  J  → R  be continuous.    A function u(t) is a solution of the fractional 

integral equation 
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if and only if u(t) is a solution of the fractional  BVP 
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Proof: Assume that u(t) satisfies (4). Applying  Lemma 2.1, we obtain 
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Using initial conditions, we get 
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Conversely, assume that u(t) satisfies fractional integral equation (3), then by definition of Caputo derivative, it follows that 

equation (4) and equation (5) also holds. 

 

4 .   MAIN RESULTS 

In this section we obtain results based on Banach fixed point theorem and Schaufer’s fixed point theorem. Following result 

is obtained by using Banach fixed point theorem. 

Theorem 4.1  Assume that there exists a constant k > 0 such that 
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,1
)4(!4

1

)1(

1














 qq
kT

q
       (6) 

then BVP (1.1)-(1.2) has a unique solution on J. 
Proof: Transform the problem (1)-(2) into a fixed point problem. Define the operator 
F : C (J, R) → C (J, R) by 




  


t

0

T

0

0

1mq1q
uds)u,s(f)sT(

)mq(!m

1
ds)u,s(f)st(

)q(

1
)t)(u(F


 

mT3322

1
t

!m

u
...t

!3

u
t

!2

u
tu   

Clearly, the fixed points of the operator F are solutions of the problem (1)-(2). We shall use the Banach contraction principle 

to prove that F has a fixed point. Now, we shall show that F is a contraction mapping. Let u, v ∈ C (J, R). Then for each t 
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Consequently, by equation (6), F  is a contraction.  By Banach fixed point theorem, we claim that F has a fixed point which 

is a solution of the boundary value problem (1)-(2). 

Following result is based on Schaefer’s fixed point theorem: 
 

Theorem 4.2 Assume that 
(i) f : J × R → R is continuous 

(ii) There exists a constant M  > 0 such that |f (t, u)| ≤ M  for each t ∈ J  and all u ∈ R. 

Then the BVP (1)-(2) has at least one solution on J . 
Proof: We shall use Schaufer’s fixed point theorem to prove that F has a fixed point. Now we prove: 
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Since f is continuous function, we have 
||F (u

n − F (u)||
∞  → 0 as n → ∞. 

(b)F  maps the bounded sets into the bounded sets in C (J, R): 
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(c)F  maps bounded sets into the equicontinuous sets C (J, R): 
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As t
1 → t

2
, the right hand side of the above inequality tends to zero. Using Arzela-Ascoli theroem, we conclude that F : C 

(J, R) → C (J, R) is completely continuous. 

(d) A priori bounds: 
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This shows that E  is bounded.  As a consequence of Schaefer’s fixed point theorem, we conclude that F has a fixed point 

which is a solution of the boundary value problem (1)- (2). 

Following existence result for the BVP (1)-(2) is obtained by using Leray-Schauder type nonlinear alternatve. 

Theorem 4.3 Assume that 

(i) f : J × R → R is continuous 

(ii) There exist ϕ
f  ∈ L1(J, R+) and continuous and nondecreasing 

ψ : [0, ∞) → (0, ∞) such that |f (t, u)| ≤ ϕ
f (t)ψ(|u|) for each t ∈ J  and all u ∈ R. 

(iii)  There exists a constant M  > 0 such that 
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Then the BVP (1)-(2) has at least one solution on J . 
Proof:  Define the operator F  as in Theorems  4.1 and 4.2.  It can be shown that F  is continuous and completely 

continuous. For λ ∈ [0, 1], let u be such that for each t ∈ J 
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The operator ),(: RJCYF   is continuous and completely continuous. By the choice of Y , there exists no u ∈ ∂Y  

such that u = λF (u) for some λ ∈ (0, 1).  As a consequence of the nonlinear alternative of Leray-Schauder type [5], we  

deduce  that  F has a fixed point u in Ȳ , which is the solution of the BVP (1)-(2). 
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